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Abstract: This is the first of two papers on the zero-viscosity limit for the incom-
pressible Navier-Stokes equations in a half-space. In this paper we prove short time
existence theorems for the Euler and Prandtl equations with analytic initial data in either
two or three spatial dimensions. The main technical tool in this analysis is the abstract
Cauchy-Kowalewski theorem. For the Euler equations, the projection method is used in
the primitive variables, to which the Cauchy-Kowalewski theorem is directly applicable.
For the Prandtl equations, Cauchy-Kowalewski is applicable once the diffusion operator
in the vertical direction is inverted.

1. Introduction

The zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space
is a challenging problem due to the formation of a boundary layer whose thickness is
proportional to the square root of the viscosity. Boundary layer separation, which is
difficult to control, may cause singularities in the boundary layer equations. In this and
the companion paper Part II, we overcome these difficulties by imposing analyticity on
the initial data. Under this condition, we prove that, in the zero-viscosity limit and for a
short time, the Navier-Stokes solution in a half-space goes to an Euler solution outside a
boundary layer in either two or three spatial dimensions, and that it is close to a solution
of the Prandtl equations within the boundary layer.

The construction of the Navier-Stokes solution is performed as a composite asymp-
totic expansion involving an Euler solution, a Prandtl boundary layer solution and a
correction term. It follows the earlier, unpublished analysis of Asano [1], who also
restricted the data to be analytic, but our work contains a considerably simplified ex-
position, explicit use of the Prandtl equations, and several other technical differences:
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Asano used a sup-estimate on the divergence-free projection operator, which we have
been unable to verify. He also used high order derivative norms in they (normal) variable,
whereas we find it necessary to only use second derivatives.

An earlier attempt to analyze this problem, without the requirement of analyticity
and without explicit use of the Prandtl equations, was made by Kato [8]. It was not
completely successful, since it required some unverified assumptions on the Navier-
Stokes solution. Analysis of the zero-viscosity limit for the Navier-Stokes solution in an
unbounded domain was performed in [3, 7, 13].

In this first part, we present short-time existence results for the Euler and Prandtl
equations in a half-space with analytic initial data. The main significance of the Euler
result is that it is stated in terms of the function spaces used in the Navier-Stokes result of
Part II. For the Euler equations, of course, this is not an optimal result since analyticity
is not needed for existence of a solution. Moreover, a more general existence result for
analytic solutions of the incompressible Euler equations was proved earlier by Bardos
and Benachour [2]. The present proof is somewhat different, since it uses the projection
method on the primitive variables, rather than the vorticity formulation.

For the Prandtl equations, on the other hand, our result on existence for short time
and analytic initial data is the first general existence theorem for the unsteady problem.
To the best of our knowledge, the only previous existence theorem for the unsteady
Prandtl equations was by Oleinik [10]. For the Prandtl equations with upstream velocity
prescribed at the left (x = 0) as well as at infinity and att = 0, she proved existence
for either a short time for allx > 0 or for a short distance and for all time, without
the analyticity assumption. The proof required conditions that the prescribed horizontal
velocities are all positive and strictly increasing, which are not required in our result.
For a review of related mathematical results on both the steady and unsteady Prandtl
equations, see [9].

In fact, we conjecture that the general initial value problem for the Prandtl equations
is ill-posed in Sobolev space. Although ill-posedness has not been proved, there is some
evidence in its favor: First, previous attempts to construct such solutions have failed.
Second, there are numerical solutions of Prandtl that develop singularities associated
with boundary layer separation in finite time [4–6]. Most recently, E and Engquist [14]
have proved existence of Prandtl solutions with singularities. This is not enough to show
ill-posedness, however, because in these computations and analysis the singularity time
is not small.

The main technical tool of our analysis is the abstract Cauchy-Kowalewski Theorem
(ACK), the optimal form of which is due to Safonov [11]. This theorem, which is for
systems that are first order in some sense, is directly applicable to the Euler equations.
Since the Prandtl equations are diffusive rather than first order, the classical Cauchy-
Kowalewski Theorem cannot be applied, and it may at first seem surprising that the
ACK Theorem is applicable to them. As pointed out by Asano [1], however, the ACK
Theorem may be used for a nonlinear diffusion equation after inversion of the diffusion
operator. We show below that this strategy works for the Prandtl equations, and in Part
II, we shall also apply it to the Navier-Stokes equations. The main simplification of
this analytic method over Sobolev methods is that it uses Cauchy estimates to bound
derivatives rather than energy estimates.

In Sect. 2 the Euler and Prandtl equations are stated and a number of function spaces
and norms are defined. The abstract Cauchy-Kowalewski Theorem is formulated in
Sect. 3. The existence theorem for the Euler equations is stated and proved in Sect. 4,
which includes a convenient formulation and some useful bounds for the projection
method. The existence theorem for the Prandtl equations is stated and proved in Sect. 5,
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using properties of the heat operator, which are proved in an appendix. The analysis for
Prandtl is completely independent of that for Euler. Some concluding remarks are made
in Sect. 6.

For convenience, the formulation and analysis will often be written in 2D, but the
extension to 3D is straightforward. Key points in the 3D extension will be noted and the
main results will be stated for 2D and 3D.

2. Statement of the Problem and Notation

2.1. Euler equations.The Euler equations for a velocity fieldu E =
(
uE , vE

)
are

∂tu
E + u E · ∇u E + ∇pE = 0, (2.1)

∇ · u E = 0, (2.2)

γnu E ≡ vE (x, y = 0, t) = 0, (2.3)

u E (x, y, t = 0) = u E
0 (x, y) . (2.4)

Hereu E depends on the variables(x, y, t), wherex is the transversal variable going
from −∞ to ∞, y is the normal variable going from 0 to∞, andt is the time. The
operatorγn acting on vectorial functions gives the normal component calculated at the
boundary. In the rest of this paper we shall also use the trace operatorγ, defined by

γu = (u (x, y = 0, t) , v (x, y = 0, t)) . (2.5)

In Sect. 3 we shall prove that under suitable hypotheses for the initial conditionu E
0

(essentially analyticity inx andy ) Euler equations admit a unique solution. Although
stated here for 2D, the analysis works equally well in 3D. The existence result is only
for a short time.

2.2. Prandtl equations.The Euler equations are a particular case of the Navier-Stokes
(N-S) equations, when the fluid has zero viscosity. Therefore, the Navier-Stokes solution
for small viscosityν is expected to be well approximated by an Euler solution, at least
away from boundaries, which is confirmed by numerical and experimental observations.
An analysis of the short time, spatially global behavior (in presence of a boundary) of
N-S equations will be the subject of part II of this work, [12].

In the vicinity of the boundaries, on the other hand, the effect of viscosity isO(1)
even as the viscosity goes to zero. The no-slip condition causes the creation of vorticity;
moreover in a small layer there is an adjustment of the flow to the outer (inviscid) flow.
Due to the resulting rapid variation of the fluid velocity, the velocity depends on a scaled
normal variableY = y/ε in which ε =

√
ν. Also the vertical velocity is of sizeε. The

resulting equations governing the velocity fieldu P =
(
uP , εvP

)
are Prandtl equations:

(∂t − ∂Y Y ) uP + uP ∂xuP + vP ∂Y uP + ∂xpP = 0, (2.6)

∂Y pP = 0, (2.7)

∂xuP + ∂Y vP = 0, (2.8)

uP (x, Y = 0, t) = 0, (2.9)

uP (x, Y → ∞, t) −→ uE (x, y = 0, t) , (2.10)

uP (x, Y, t = 0) = uP
0 (x, Y ) . (2.11)
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Equation (2.10) is the matching condition between the flow inside the boundary layer
and the outer Euler flow. In Sect. 5 we shall prove that the Prandtl solution approaches
the boundary value of the Euler solution at an exponential rate asY goes to infinity.
Equation (2.7) implies that the pressure is constant across the boundary layer; to match
with the Euler pressurepE , it must satisfy

∂xpP = ∂xpE (x, y = 0, t) = −γ(∂t + uE∂x)uE . (2.12)

The normal component of the velocityvP can be found, using the incompressibility
condition, to be

vP = −
∫ Y

0
∂xuP (x, Y ′, t)dY ′. (2.13)

In 3D,∂xuP is replaced by∇′ ·uP in this integral, where∇′ is the gradient with respect
to the transversal variables.

Therefore Eq. (2.6) can be considered as an equation for the transversal compo-
nentuP , with vP given by Eq. (2.13), with boundary conditions (2.9)–(2.10), and with
initial conditions (2.11). Moreover there must be compatibility between the boundary
conditions and initial conditions; i.e.

γuP
0 = 0, (2.14)

uP
0 (Y → ∞) − γuE

0 −→ 0. (2.15)

In this paper we shall prove the existence and the uniqueness of the solutions for
Eqs. (2.1)–(2.4) and (2.6)–(2.11). We now introduce the appropriate function spaces.

2.3. Function spaces.Let us introduce the “strip", the angular sector and the “conoid"
in the complex plane

D(ρ) = R × (−ρ, ρ) = {x ∈ C : =x ∈ (−ρ, ρ)} , (2.16)

Σ(θ) = {y ∈ C : <y ≥ 0 and|=y| ≤ <y tanθ} , (2.17)

Σ(θ, a) = {y ∈ C : 0 ≤ <y ≤ a and|=y| ≤ <y tanθ} ,

∪ {y ∈ C : <y ≥ a and|=y| ≤ a tanθ} . (2.18)

In the sequel we shall always be dealing with functions that are analytic in either the
single complex variablex or the two complex variablesx andy. The functions will be
eitherL2 in the transversal variablex and bounded in the normal variabley, or L2 in
both the transversal and normal variable. Next introduce the paths along which theL2

integration is performed:

0(b) = {x ∈ C : =x = b} , (2.19)

0(θ′, a) = {y ∈ C : 0 ≤ <y ≤ a and=y = <y tanθ′} ,

∪ {y ∈ C : <y ≥ a and=y = a tanθ′} . (2.20)

Some of the norms below are defined in terms of the unscaled variabley; while
others used the scaled variableY = y/ε. Throughout this paper, the values of the angle
θ and the parameterl counting the number of derivatives will always be restricted to

0 < θ < π/4,

4 ≤ l.
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We have not attempted to make an optimal choice ofl. Given a Banach scale{Xρ}0≤ρ≤ρ0

we defineBk
β(A, Xρ) as the space of allCk functions fromA to Xρ with the norm

|f |k,ρ,β =
k∑

j=0

sup
t∈A

|∂j
t f (t)|ρ−βt. (2.21)

HereA is supposed to be an interval [0, T ] of time, andρ may be a vector of parameters
such as (ρ, θ) or (ρ, θ, µ), in which caseρ − βt is replaced by (ρ − βt, θ − βt) or
(ρ − βt, θ − βt, µ − βt). Due to the large number of function spaces and norms, we do
not have a separate notation for every norm. Instead, we will always state the function
space under consideration, and then the norm will be the one for that space.

Table 1.Table of Function (E=Euler,E1= first order Euler, P=Prandtl, S=Stokes, NS=Navier-Stokes)

Space L2 sup O(∂x) O(∂y) or O(∂Y ) O(∂t) equations

H′l,ρ x l E,P,S,NS

Hl,ρ,θ x, y j ≤ l l − j E

Hl,ρ,θ
β,T

x, y t j ≤ l k ≤ l − j l − k − j E

Kl,ρ,θ,µ x Y l − k k ≤ 2 P

K′l,ρ
β,T

x t l − j j ≤ 1 P,S

Kl,ρ,θ,µ
β,T

x Y, t l − k k ≤ 2 0 P,S

l − 1 0 1

Ll,ρ,θ x, Y l 0 S, NS

l − 2 0 < k ≤ 2

Ll,ρ,θ
β,T

x, Y t l − 2j 0 j ≤ 1 S,NS

l − 2 0 < k ≤ 2 0

N l,ρ,θ x, y l 0 E1

l − 2 0 < k ≤ 2

N l,ρ,θ
β,T

x, y t l − 2j 0 j ≤ 1 E1

l − 2 0 < k ≤ 2 0

The following are function spaces that will be used in the sequel. We begin with the
space of functions depending only on the transversal variable (thex-variable). All the
functions used below will belong, for a fixed timet and for a fixed value of the normal
coordinatey, to this space. A summary of these function spaces is made in Table 1.

Definition 2.1. H ′l,ρ is the set of all complex functionsf (x) such that

• f is analytic inD(ρ).
• ∂α

x f ∈ L2(0(=x)) for =x ∈ (−ρ, ρ), α ≤ l; i.e. if =x is inside (−ρ, ρ), then
∂α

x f (<x + i=x) is a square integrable function of<x.
• |f |l,ρ =

∑
α≤l sup=x∈(−ρ,ρ) ‖∂α

x f (· + i=x)‖L2(0(=x)) < ∞.

We now introduce the dependence on the normal variable:

Definition 2.2. H l,ρ,θ is the set of all functionsf (x, y) such that

• f is analytic insideD(ρ) × Σ(θ, a).
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• ∂α1
y ∂α2

x f (x, y) ∈ L2
(
0(θ′, a); H ′0,ρ

)
with |θ′| ≤ θ, α1 + α2 ≤ l.

• |f |l,ρ,θ =
∑

α1+α2≤l sup|θ′|≤θ ‖|∂α1
y ∂α2

x f (·, y)|0,ρ‖L2(0(θ′,a)) < ∞.

For a fixed timet all the functions used in the proof of existence and uniqueness
for Euler equations will belong to the above space. We now introduce the functions
depending on time:

Definition 2.3. The spaceH l,ρ,θ
β,T is defined as

H l,ρ,θ
β,T =

l⋂
j=0

Bj
β

(
[0, T ], H l−j,ρ,θ

)
.

If a functionf (x, y, t) belongs to this space its norm is

|f |l,ρ,θ,β,T =
l∑

j=0

sup
0≤t≤T

|∂j
t f (·, ·, t)|l−j,ρ−βt,θ−βt.

In the above spaces we shall prove the existence of a solution of the Euler equations.
We now pass to the function spaces for Prandtl equations. The main difference with

respect to the Euler equations is the presence of the heat operator(∂t − ∂Y Y ), which
breaks the symmetry between the normal and transversal coordinates. We can require
differentiability with respect to the transversal coordinateY only up to the second order,
and with respect to timet only up to the first order. Moreover, for Prandtl equations we
shall use, in theY variable, the sup norm. This will allow us to observe the behavior
of the Prandtl solution outside the boundary layer. The Prandtl solution will in fact turn
out to exponentially match the boundary data of the Euler solution.

Definition 2.4. Kl,ρ,θ,µ, with µ > 0, is the set of all functionsf (x, Y ) such that

• f is analytic insideD(ρ) × Σ(θ).
• ∂α1

Y ∂α2
x f (x, Y ) ∈ C0

(
Σ(θ); H ′0,ρ

)
with α1 ≤ 2 andα1 + α2 ≤ l.

• |f |l,ρ,θ,µ =
∑

α1≤2

∑
α2≤l−α2

supY ∈Σ(θ) e
µ<Y |∂α1

Y ∂α2
x f (·, Y )|0,ρ < ∞.

Definition 2.5. The spaceK ′l,ρ
β,T is defined as

K ′l,ρ
β,T =

1⋂
j=0

Bj
β

(
[0, T ], H ′l−j,ρ

)
.

If f (x, t) belongs to this space its norm is

|f |l,ρ,β,T =
1∑

j=0

∑
α≤l−j

sup
0≤t≤T

|∂j
t ∂α

x f (t, ·)|0,ρ−βt.

Definition 2.6. The spaceKl,ρ,θ,µ
β,T is the set of all functionsf (x, Y, t) such that

• f ∈ C0
(
[0, T ], Kl,ρ,θ,µ

)
and∂t∂

α
x f ∈ C0

(
[0, T ], K0,ρ,θ,µ

)
with α ≤ l − 1.

• |f |l,ρ,θ,µ,β,T =
∑

α1≤2

∑
α1+α2≤l sup0≤t≤T |∂α1

Y ∂α2
x f (·, Y, t)|0,ρ−βt,θ−βt,µ−βt

+
∑

α≤l−1 sup0≤t≤T |∂t∂
α
x f (·, ·, t)|0,ρ−βt,θ−βt,µ−βt < ∞.
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We now pass to the spaces for the correction terms in the Navier-Stokes solution.
We shall use the spaces below only in Part II.

Definition 2.7. N l,ρ,θ is the set of all functionsf (x, y) such that

• f is analytic insideD(ρ) × Σ(θ, a).
• ∂α1

y ∂α2
x f (x, y) ∈ L2

(
0(θ′, a); H ′0,ρ

)
with |θ′| ≤ θ, α1 ≤ 2, α1 + α2 ≤ l and

α2 ≤ l − 2 whenα1 > 0.
• |f |l,ρ,θ =

∑
α≤l sup|θ′|≤θ ‖|∂α

x f (·, y)|0,ρ‖L2(0(θ′,a))

+
∑

0<α1≤2

∑
α2≤l−2 sup|θ′|≤θ ‖|∂α1

y ∂α2
x f (·, y)|0,ρ‖L2(0(θ′,a)) < ∞.

Definition 2.8. The spaceN l,ρ,θ
β,T is defined as the set of all functionsf (x, y, t) such

that:

• f ∈ C0([0, T ], N l,ρ,θ) and∂t∂
j
xf ∈ C0([0, T ], N0,ρ,θ) with j ≤ l − 2.

• |f |l,ρ,θ,β,T =
∑

0≤j≤1

∑
α≤l−2j sup0≤t≤T |∂j

t ∂α
x f (·, ·, t)|0,ρ−βt,θ−βt

+
∑

0<α1≤2

∑
α2≤l−2 sup0≤t≤T |∂α1

y ∂α2
x f (·, ·, t)|0,ρ−βt,θ−βt < ∞

in which the norms on the right are inN l,ρ,θ.

In the above two spaces we shall prove the existence of a solution for the first order
correction of the Euler flow (see Sect. 5 of Part II).

Definition 2.9. Ll,ρ,θ is the set of all functionsf (x, Y ) such that

• f is analytic insideD(ρ) × Σ(θ, a/ε).
• ∂α1

Y ∂α2
x f (x, Y ) ∈ L2

(
0(θ′, a/ε); H ′0,ρ

)
with |θ′| ≤ θ, α1 ≤ 2, α1 + α2 ≤ l and

α2 ≤ l − 2 whenα1 > 0.
• |f |l,ρ,θ =

∑
α≤l sup|θ′|≤θ ‖|∂α

x f (·, Y )|0,ρ‖L2(0(θ′,a/ε))

+
∑

0<α1≤2

∑
0≤α2≤l−2 sup|θ′|≤θ ‖|∂α1

Y ∂α2
x f (·, Y )|0,ρ‖L2(0(θ′,a/ε)) < ∞.

Definition 2.10. The spaceLl,ρ,θ
β,T is the set of functionsf (x, Y, t) such that

• f ∈ C0
(
[0, T ], Ll,ρ,θ

)
and∂t∂

α
x f ∈ C0

(
[0, T ], L0,ρ,θ

)
with α ≤ l − 2.

• |f |l,ρ,θ,β,T =
∑

0≤j≤1

∑
α≤l−2j sup0≤t≤T |∂j

t ∂α
x f (·, ·, t)|0,ρ−βt,θ−βt

+
∑

0<α1≤2

∑
α2≤l−2 sup0≤t≤T |∂α1

Y ∂α2
x f (·, ·, t)|0,ρ−βt,θ−βt < ∞.

The above two spaces are the spaces where we shall prove existence and uniqueness
for the overall Navier-Stokes correction (see Sect. 7 of Part II Part II).

The large number of function spaces is needed because of the various types of data
and equations that are considered here:

• TheH function spaces, which areL2(x, y), are natural function spaces for the Euler
equations.

• TheK function spaces, which areL∞(L2(x), Y ) with decay inY , are natural for
the Prandtl equations.

• For Navier-Stokes, theL spaces, which areL2(x, Y ) with a restricted number of
derivatives inY , are used to allow combination of the Euler and Prandtl results.

• For the first order Euler terms, theN spaces, which areL2(x, y) with a restricted
number of derivatives iny, are used.
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Table 2. Table of Operators (E=Euler,E1 first order Euler, P=Prandtl, S=Stokes, NS=Navier-Stokes, I=this
paper, II=Ref [12])

Operator Description Definition Use

P ∞ projection I (4.4) E ,E1

P half-space projection I (4.24), (4.25) E ,E1

Pt integrated (in time) half-space projection I (4.35) E ,E1

E0(t) heat op with IC, diff inY I (5.4) P

E1 heat op with BC, diff inY I (5.8) P

E2 heat op with force, diff inY I (5.11) P

N ′ iξ′/|ξ′| I (4.10) E,S,NS

Ẽ1 heat op with BC, diff inx, Y II (3.21) S, NS

Ẽ2 heat op with force, diff inx, Y II (7.4) NS

P
∞

rescaled projection II (7.12)-(7.13) NS

S Stokes op II (3.36) S, NS

N0 projected heat op II (7.15) NS

N ∗ Navier-Stokes operator II (7.20) NS

We shall also use a large number of operators in this analysis. For convenience and
clarity, we list the operators used in this paper as well as in the second paper, in the
following table, with reference to the location of their definitions.

In the following sections we shall often estimate products of functions belonging to
the above spaces; ifl ≥ 4 such products can be estimated using the following Sobolev
inequalites:

Proposition 2.1. Letf, g ∈ H l,ρ,θ
β,T andl ≥ 4. Thenf · g ∈ H l,ρ,θ

β,T , and

|f · g|l,ρ,θ,β,T ≤ c|f |l,ρ,θ,β,T |g|l,ρ,θ,β,T . (2.22)

Proposition 2.2. Letf, g ∈ Ll,ρ,θ
β,T andl ≥ 4. Thenf · g ∈ Ll,ρ,θ

β,T , and

|f · g|l,ρ,θ,β,T ≤ c|f |l,ρ,θ,β,T |g|l,ρ,θ,β,T . (2.23)

A similar statement holds if we are using the sup norm in theY variable:

Proposition 2.3. Let f ∈ Kl,ρ,θ,0
β,T , g ∈ Kl,ρ,θ,µ

β,T and l ≥ 3 (l ≥ 4 in 3D). Then

f · g ∈ Kl,ρ,θ,µ
β,T , and

|f · g|l,ρ,θ,β,µ,T ≤ c|f |l,ρ,θ,β,0,T |g|l,ρ,θ,β,µ,T . (2.24)

3. Cauchy-Kowalewski Theorem

By a Banach scale{Xρ : 0 < ρ ≤ ρ0} with norms| |ρ we mean a collection of Banach
spaces such thatXρ′ ⊂ Xρ′′ and| |ρ′′ ≤ | |ρ′ whenρ′′ ≤ ρ′ ≤ ρ0.

Let τ > 0, 0< ρ ≤ ρ0 andR > 0.
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Definition 3.1. Xρ,τ is the set of all functionsu(t) from [0, τ ] to Xρ endowed with the
norm

|u|ρ,τ = sup
0≤t≤τ

|u(t)|ρ. (3.1)

Definition 3.2. Xρ,τ (R) is the set of all functionsu(t) from [0, τ ] to Xρ such that

|u|ρ,τ ≤ R. (3.2)

Definition 3.3. Yρ,β,τ is the set of all functionsu(t) from [0, τ ] to Xρ endowed with the
norm

|u|ρ,β,τ = sup
0≤t≤τ

|u(t)|ρ−βt. (3.3)

Definition 3.4. Yρ,β,τ (R) is the set of all functionsu(t) from [0, τ ] to Xρ such that

|u|ρ,β,τ ≤ R. (3.4)

For t in [0, T ], consider the equation

u + F (t, u) = 0 . (3.5)

The basic existence theorem for this system is the following Abstract Cauchy-Kowa-
lewski (ACK) Theorem, which is a slight modification of the version proved by Safonov
[11].

Theorem 3.1. Suppose that∃R > 0,T > 0,ρ0 > 0, andβ0 > 0such that if0 < t ≤ T ,
the following hold:

1. ∀0 < ρ′ < ρ ≤ ρ0 −β0T and∀u ∈ Xρ,T (R) the functionF (t, u) : [0, T ] −→ Xρ′

is continuous.
2. ∀0 < ρ ≤ ρ0 − β0T the functionF (t, 0) : [0, T ] −→ Xρ,T (R) is continuous in

[0, T ] and

|F (t, 0)|ρ0−β0t ≤ R0 < R. (3.6)

3. ∀0 < ρ′ < ρ(s) ≤ ρ0 − β0s and∀ u1 andu2 ∈ Yρ0,β0,T (R),

|F (t, u1) − F (t, u2)|ρ′ ≤ C

∫ t

0

|u1 − u2|ρ(s)

ρ(s) − ρ′ ds. (3.7)

Then∃β > β0 andT1 > 0 such that Eq. (3.5) has a unique solution inYρ0,β,T1.

In the applications below, this theorem will be applied withρ replaced by a vector
of parameters (ρ, θ) or (ρ, θ, µ), and the fraction (ρ(s) − ρ′)−1 is replaced by (ρ(s) −
ρ′)−1 + (θ(s) − θ′)−1 or (ρ(s) − ρ′)−1 + (θ(s) − θ′)−1 + (µ(s) − µ′)−1. This does not
change the proof of the theorem.

The Euler, Prandtl and Navier-Stokes equations will be solved in a time integrated
form. That is, the systemwt = A(w) will replaced byu = A(

∫
udt) in whichu = wt. In

this form the natural estimate on the difference ofF is the right hand side of (3.7) plus
an additional term like(∫ t

0
|u1 − u2|ρ′ds

)(∫ t

0
(ρ(s) − ρ′)−1ds

)
. (3.8)
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This additional term can bounded by the right hand side of (3.7) as follows: First replace
|u(t)|ρ by |u|ρ,t everywhere, so that the norms are increasing int. Also restrict toρ(s)
which is decreasing ins, so that (ρ(s) − ρ′)−1 is also increasing. Then use the following
simple lemma:

Lemma 3.1. Suppose thata(s) andb(s) are positive increasing functions. Then(∫ t

0
a(s)ds

)(∫ t

0
b(s)ds

)
≤ t

(∫ t

0
a(s)b(s)ds

)
. (3.9)

4. Existence and Uniqueness for the Euler Equations

In this section we shall prove the following theorem:

Theorem 4.1. Suppose thatu E
0 ∈ H l,ρ,θ, l ≥ 4, with ∇ · u E

0 = 0 andγnu E
0 = 0.

Then the Euler equations Eq. (2.1)-Eq. (2.4) in either 2D or 3D admit a unique solution
u E in H l,ρ0,θ0

β0,T
for some0 < ρ0 < ρ, 0 < θ0 < θ, 0 < β0, 0 < T . This solution satisfies

the following bound inH l,ρ0,θ0
β0,T

:

|u E |l,ρ0,θ0,β0,T < c|u E
0 |l,ρ,θ. (4.1)

The proof of this theorem will be based on the ACK Theorem in the function spaces
Xρ = H l,ρ,θ andYρ,β,T = H l,ρ,θ

β,T . The key idea in recasting the Euler equations into a
form suitable for an iterative procedure is to introduce a new variableu ?, essentially
a projected velocity (see Eq. (4.36) below), so that the boundary, initial and incom-
pressibility conditions are automatically satisfied. The core of this section is devoted to
introduction of the half space projection operator, and to the estimate of this operator
(Subsections 4.1 and 4.2). After that we shall introduce an estimate on the convective
part of the Euler equation, Eq. (4.34), as a consequence of the Cauchy estimate for the
derivative of an analytic function. In Subsect. 4.4 we shall solve the Euler equation, and
recast it in the form given by Eq. (4.37). Using the estimates on the projection operator,
and the Cauchy estimate, it will then be straightforward to verify all the hypotheses of
the ACK Theorem.

4.1. The projection operator.To prove the above theorem we need to define several
operators. We start with the Fourier transform of the functionsf (x) andg(x, y):

f̂ (ξ′) =
1

(2π)1/2

∫
dxf (x)e−ixξ′

, ĝ(ξ′, ξn) =
1

2π

∫
dxdyg(x, y)e−ixξ′−iyξn , (4.2)

where the above integrals are on the whole real line and real plane respectively. Later we
shall restricty to be nonnegative. In the rest of this paper we shall adopt the convention
of usingξ′ andξn as the dual ofx andy respectively. In 3D,x andξ′ are vectors, and
xξ′ is replaced byx · ξ′.

Suppose thatσ(T )(ξ′) is a function ofξ′ such that

T̂ f (ξ′) = σ(T )(ξ′)f̂ (ξ′), (4.3)

whereT is an operator acting on the function of one variable. Thenσ(T ) is called the
symbol of the pseudodifferential operatorT . If T acts on functions of two (or more)
variables, the definition is analogous.
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We can now define the free space projection operatorP∞ acting on vectorial func-
tionsu (x, y), as the operator whose symbol is (here and in the rest of the paper we shall
often omit the distinction between the operator and its symbol):

P∞ =
1

ξ′2 + ξ2
n

(
ξ2
n −ξ′ξn

−ξ′ξn ξ′2

)
. (4.4)

It is easy to see that the action of the above operator consists in projecting vectorial
functions onto their divergence-free part, i.e.

∇ · P∞u = 0. (4.5)

The operatorP∞ can be thought of as

P∞ = 1− ∇1−1∇ · (4.6)

We define the operatorsN , D as the operators whose symbols are:

D = e−|ξ′|y , N = − 1
|ξ′|e

−|ξ′|y. (4.7)

The above operators solve the Laplace equation in the half plane with Dirichlet and
Neumann boundary condition respectively. In fact the problems

1u(x, y) = 0, u(x, y = 0) = f (x) (4.8)

and
1u(x, y) = 0, ∂yu(x, y = 0) = f (x) (4.9)

admit the solutionsu = Df andu = Nf respectively. Another operator which is useful
to introduce is

N ′ =
iξ′

|ξ′| . (4.10)

Now we express the components of the projection operator on the free space in a
different form; i.e.

P∞
n =

(−ξ′ξn, ξ′2) 1
ξ′2 + ξ2

n

=
1
2

(
−N ′

[ |ξ′|
|ξ′| + iξn

− |ξ′|
|ξ′| − iξn

]
,

[ |ξ′|
|ξ′| + iξn

+
|ξ′|

|ξ′| − iξn

])
.

(4.11)

This will be useful in proving existence and uniqueness for the Euler equations, as
well as for the Navier-Stokes error equation Part II. We now give an expression for the
projection operator involving the Fourier transform only in thex variable, which will
simplify the subsequent estimates.

Lemma 4.1. Letf (ξ′, y) be a function admitting the Fourier transform iny. Then

|ξ′|
|ξ′| + iξn

f (ξ′, y) = |ξ′|
∫ y

−∞
e−|ξ′|(y−y′)f (ξ′, y′)dy′ (4.12)

and |ξ′|
|ξ′| − iξn

f (ξ′, y) = |ξ′|
∫ ∞

y

e|ξ′|(y−y′)f (ξ′, y′)dy′. (4.13)
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We prove the second of these equalities. Define the function

k2(ξ′, y) =

{
|ξ′|e|ξ′|y y ≤ 0

0 y > 0
(4.14)

so that the integral operator in Eq. (4.13) can be written as the convolution ofk2 andf ;
i.e.

|ξ′|
∫ ∞

y

e|ξ′|(y−y′)f (ξ′, y′)dy′ = k2(ξ′, y) ∗ f (ξ′, y). (4.15)

To prove Eq. (4.13) it is enough to apply the Fourier transform with respect to they
variable to Eq. (4.15), and notice that

k̂2 =
1

(2π)1/2

|ξ′|
|ξ′| − iξn

. (4.16)

The proof of Eq. (4.12) is similar, and is done using the function

k1(ξ′, y) =

{
|ξ′|e−|ξ′|y y ≥ 0

0 y < 0.
(4.17)

As a result of Lemma 4.1, the normal and transversal components (P∞
n andP∞′)

of the projection operator can be written as

P∞
nu =

1
2

[
|ξ′|
∫ y

−∞
dy′e−|ξ′|(y−y′)(−N ′u + v)

+|ξ′|
∫ ∞

y

dy′e|ξ′|(y−y′)(N ′u + v)

]
, (4.18)

P∞′u = u +
1
2

[
−|ξ′|

∫ y

−∞
dy′e−|ξ′|(y−y′)(u + N ′v)

−|ξ′|
∫ ∞

y

dy′e|ξ′|(y−y′)(u − N ′v)

]
(4.19)

in whichu = (u, v).
We now define the projection operatorP on the half planey ≥ 0, with vanishing

normal component at the boundary, i.e. forγnu (y = 0) = 0, as

P = P∞ − ∇NγnP∞. (4.20)

It is easy to see that the following properties hold for allu :

∇ · Pu = 0, (4.21)

γnPu = 0, (4.22)

P 2 = P. (4.23)

Explicit formulas for the half-space projectionP are given by

P ′u = u − 1
2
|ξ′|
[∫ y

0
dy′e−|ξ′|(y−y′)(u + N ′v) +

∫ y

0
dy′e−|ξ′|(y+y′)(u − N ′v)

+
(

1 + e−2|ξ′|y
)∫ ∞

y

dy′e|ξ′|(y−y′)(u − N ′v)

]
, (4.24)
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Pnu =
1
2
|ξ′|
[∫ y

0
dy′e−|ξ′|(y−y′)(−N ′u + v) −

∫ y

0
dy′e−|ξ′|(y+y′)(N ′u + v)

+
(

1 − e−2|ξ′|y
)∫ ∞

y

dy′e|ξ′|(y−y′)(N ′u + v)

]
. (4.25)

If y is complex, these must be understood as contour integrals. The derivation above,
based on the free space projection operator, is simple, but one can also directly check
that the formulas (4.24) and (4.25) satisfy the conditions (4.21), (4.22) and (4.23). In
the following subsection we shall introduce some bounds on the norm of the projection
operator which we shall use in the rest of this section.

The formulas Eq. (4.24) and Eq. (4.25) can be extended to 3D by the following
modifications: Replaceu, ξ′ andN ′ = iξ′/|ξ′| by vectors. In Eq. (4.24), replaceu in the
integrals byN ′N ′ · u. In Eq. (4.25) replaceN ′u by N ′ · u.

4.2. Estimates on the projection operators.Let f ∈ H ′l,ρ and consider the norm

|f |l,ρ =
∑
k≤l

{∫
dξ′
eρ|ξ′||ξ′|kf̂ (ξ′)

2
}1/2

. (4.26)

It is easy to see that the above norm is equivalent to the one we have previously introduced
in H ′l,ρ. In the rest of this paper we shall use both of them according to convenience,
sometime switching from one to the other during the same estimate. Occasionally we
shall omit the distinction between the function and its Fourier transform.

Using the norm we just introduced, Jensen’s inequality, and the expressions (4.24),
(4.25) forP , one can easily prove the estimates in the next two lemmas.

Lemma 4.2. Letu ∈ H l,ρ,θ. ThenPu ∈ H l,ρ,θ and

|Pu |l,ρ,θ ≤ c|u |l,ρ,θ. (4.27)

We now define the functionχ as

χ(y) = min(1, |y|). (4.28)

What we want to show is that the normal component ofP goes to zero linearly fast near
the origin. A precise statement is the following:

Lemma 4.3. Letu ∈ H l,ρ,θ with l > 0. Then

sup
y∈Σ(θ)

|Pnu |0,ρ

χ(y)
≤ c|u |l,ρ,θ. (4.29)

The significance of Lemma 4.3 will be clear only when we introduce the Cauchy estimate
for normal derivatives. We shall use it in this paper to estimate the convective part of
the Euler equation, and it will be crucial in Part II to handle the large (i.e.O(ν−1/2))
generation of vorticity in the boundary layer. The proof of (4.29) can be easily achieved
by distinguishing the two cases:|y| ≥ 1 and|y| < 1.

4.3. The Cauchy estimates.To deal with the convective part of the Euler equations we
introduce the Cauchy estimate of the derivative of an analytic function:
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Lemma 4.4. Letf ∈ H ′l,ρ′′
. If ρ′ < ρ′′ then

|∂xf |l,ρ′ ≤ |f |l,ρ′′

ρ′′ − ρ′ . (4.30)

If the derivative is with respect to they variable, because of the angular shape of the
region of analyticity, we must multiply by|y| for y near 0.

Lemma 4.5. Letf ∈ H l,ρ,θ′′
. If θ′ < θ′′ < π/4 then

|χ(y)∂yf |l,ρ,θ′ ≤ |f |l,ρ,θ′′

θ′′ − θ′ . (4.31)

With the above two Cauchy estimates and using the Sobolev inequality (see e.g. Propo-
sition 2.1), it is easy to prove that

Lemma 4.6. Letf andg ∈ H l,ρ′′,θ′′
with l ≥ 4, and letρ′ < ρ′′. Then

|g∂xf |l,ρ′,θ′′ ≤ c|g|l,ρ′,θ′′
|f |l,ρ′′,θ′′

ρ′′ − ρ′ . (4.32)

Lemma 4.7. Letf andg ∈ H l,ρ′′,θ′′
, with l ≥ 4 and withg(y = 0) = 0, and letθ′ < θ′′.

Then

|g∂yf |l,ρ′′,θ′ ≤ c|g|l,ρ′′,θ′
|f |l,ρ′′,θ′′

θ′′ − θ′ . (4.33)

We can finally estimate the convective part of the Euler equations.

Lemma 4.8. Suppose thatu 1 andu 2 are inH l,ρ,θ
β,T l ≥ 4, and thatγnu 1 = γnu 2 = 0.

Moreover letρ′ andρ′′ satisfy

ρ − βt ≥ ρ′′ > ρ′,
θ − βt ≥ θ′′ > θ′

for 0 ≤ t ≤ T . Then

|u 1 · ∇u 1 − u 2 · ∇u 2|l,ρ′,θ′ ≤ c

[ |u 1 − u 2|l,ρ′′,θ′

ρ′′ − ρ′ +
|u 1 − u 2|l,ρ′,θ′′

θ′′ − θ′

]
, (4.34)

where the constantc depends only on|u 1|l,ρ,θ,β,T and|u 2|l,ρ,θ,β,T .

4.4. Pressure-free Euler equations.The usual problem with the Euler equations is
the presence of the pressure gradient in the conservation of momentum equations and
the corresponding coupling of these evolution type equations to the incompressibility
equation. There are two ways to circumvent these problems: the projection method,
which is employed here, and the vorticity formulation.

First we define the operatorPt, whose action on a vector functionu (x, y, t) is given
by

Ptu (x, y, t) = P

∫ t

0
dsu (x, y, s), (4.35)

and pose
u E(x, y, t) = u E

0 (x, y) + Ptu
?. (4.36)
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It is clear that onceu E is expressed in the above form, the initial and boundary conditions
for the Euler equations and the incompressibility condition are automatically satisfied.
If we put (4.35) into the conservation of momentum equation we get

u ? + H (u ?, t) = 0, (4.37)

where
H (u ?, t) = (u E

0 + Ptu
?) · ∇(u E

0 + Ptu
?). (4.38)

Existence and uniqueness of the solutionu ? of Eq. (4.37), which implies existence and
uniqueness for the Euler equations, is stated in the following theorem:

Theorem 4.2. Supposeu E
0 ∈ H l,ρ,θ l ≥ 4, with ∇ · u E

0 = 0 andγnu E
0 = 0. Then

Eq. (4.37) admits a unique solutionu ? in H l,ρ0,θ0
β0,T

for some0 < ρ0 < ρ, 0 < θ0 < θ,
β0 > 0, T > 0.

Theorem 4.1 follows directly from Theorem 4.2, using the following proposition, which
is a consequence of Lemma 4.2:

Proposition 4.1. Letu ? ∈ H l,ρ0,θ0
β0,T

. ThenPtu
? ∈ H l,ρ0,θ0

β0,T
and

|Ptu
?|l,ρ0,θ0,β0,T

≤ c|u ?|l,ρ0,θ0,β0,T . (4.39)

We have also the following bound onPt :

Proposition 4.2. Let u ? ∈ H l,ρ0,θ0
β0,T

and letρ′ < ρ0 − β0T andθ′ < θ0 − β0T . Then

Ptu
? ∈ H l,ρ′,θ′

for each0 < t < T and

|Ptu
?|l,ρ′,θ′ ≤ c

∫ t

0
ds|u ?(·, ·, s)|l,ρ′,θ′ ≤ c|u ?|l,ρ0,θ0,β0,T . (4.40)

In the rest of this section we shall be concerned with proving Theorem 4.2. To do this
we shall verify that the operatorH satisfies all the hypotheses of the ACK Theorem in
the function spacesXρ,θ = H l,ρ,θ (at each fixedt) andYρ,θ,β,T = H l,ρ,θ

β,T (as a function
of t), and withρ replaced by the vector (ρ, θ).

4.5. The forcing term.It is obvious thatH satisfies the first condition of the ACK
Theorem in the normsH l,ρ,θ. In this subsection we shall prove that there exists a constant
R0 such that

|H (t, 0)|l,ρ0−βt,θ0−βt ≤ R0 (4.41)

in H l,ρ,θ for 0 ≤ t ≤ T , which verifies the second assumption of the theorem. The
constantR0 will of course depend on|u E

0 |l,ρ,θ and on the difference betweenρ andρ0,
θ andθ0. From Eq. (4.38), we see that

H (t, 0) = u E
0 · ∇u E

0 , (4.42)

and Lemmas 4.6 and 4.7 imply

|u E
0 · ∇u E

0 |
l,ρ0−βt,θ0−βt

≤ c|u E
0 |2l,ρ,θ, (4.43)

which gives the desired bound (4.41). We now pass to the Cauchy estimate.
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4.6. The Cauchy estimate.In this subsection we shall be concerned with proving that
the operatorH satisfies the last hypothesis of the ACK Theorem. We have to show that,
if ρ′ < ρ(s) ≤ ρ0 − βs, θ′ < θ(s) ≤ θ0 − βs, and ifu ?1 andu ?2 are inH l,ρ0,θ0

β,T l ≥ 4,
with

|u ?1|l,ρ0,θ0,β,T ≤ R, |u ?2|l,ρ0,θ0,β,T ≤ R, (4.44)

then inH l,ρ,θ

|H (t, u ?1) − H (t, u ?2)|l,ρ′,θ′

≤ C

∫ t

0
ds

{ |u ?1 − u ?2|l,ρ(s),θ′

ρ(s) − ρ′ +
|u ?1 − u ?2|l,ρ′,θ(s)

θ(s) − θ′

}
.

(4.45)

First estimate the nonlinear term ofH . Using Lemma 4.8 to estimate the convective
part of the operatorH and then Proposition 4.2 leads toPtu

?1 · ∇Ptu
?1 − Ptu

?2 · ∇Ptu
?2


l,ρ′,θ′

≤ c

∫ t

0
ds

[ |u ?1 − u ?2|l,ρ(s),θ′

ρ(s) − ρ′ +
|u ?1 − u ?2|l,ρ′,θ(s)

θ(s) − θ′

]
+
∫ t

0
|u ?1 − u ?2|l,ρ0,θ0,β0,T ds

×
∫ t

0

[ |u ?1|l,ρ(s),θ′ + |u ?2|l,ρ(s),θ′

ρ(s) − ρ′ +
|u ?1|l,ρ′,θ(s) + |u ?2|l,ρ′,θ(s)

θ(s) − θ′

]
ds

≤ C

∫ t

0
ds

[ |u ?1 − u ?2|l,ρ(s),θ′

ρ(s) − ρ′ +
|u ?1 − u ?2|l,ρ′,θ(s)

θ(s) − θ′

]
(4.46)

in H l,ρ,θ, using Lemma 3.1 and the bound (4.44) in the last step. The estimate of the
linear part is similar.

4.7. Conclusion of the proof of Theorem 4.1.Since all of the hypotheses of the ACK
Theorem have been verified, the proof of Theorem 4.2 has been achieved. There exist
0 < ρ0 < ρ, 0 < θ0 < θ, and aβ0 > 0 such that Eq. (4.37) admits a unique solution in
H l,ρ0,θ0

β0,T
. This also concludes the proof of Theorem 4.1 for the Euler equations.

5. Existence and Uniqueness for Prandtl’s Equations

We want to prove that the Prandtl equations (2.6)-(2.11) admit a unique solution in an
appropriate function space. The main result of this section is the following theorem:

Theorem 5.1. Suppose thatuP
0 satisfies the compatibility conditions (2.14) and (2.15),

thatu E
0 ∈ H l+1,ρ,θ, and thatuP

0 −γuE
0 ∈ Kl+1,ρ0,θ0,µ0 l ≥ 3 (l ≥ 4 in 3D). Then there

exists a unique solutionuP of the Prandtl equations (2.6)-(2.11). This solution can be
written as:

uP (x, Y, t) = ũP (x, Y, t) + γuE , (5.1)

whereũP ∈ Kl,ρ1,θ1,µ1
β1,T

, with 0 < ρ1 < ρ0, 0 < θ1 < θ0, 0 < µ1 < µ0, β1 > β0 > 0.

This solution satisfies the following bound inKl,ρ1,θ1,µ1
β1,T

:

|ũP |l,ρ1,θ1,µ1,β1,T < c
(|uP

0 − γuE
0 |l+1,ρ0,θ0,µ0 + |u E

0 |l+1,ρ,θ

)
. (5.2)
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In particular this shows that if the initial condition for Prandtl equations exponentially
approaches the initial value of the Euler flow calculated at the boundary, the same
property will be true for the Prandtl solution at least for short time.

The proof of this theorem will occupy the remainder of this section. As in the proof
of existence and uniqueness for the Euler equation, we shall recast the Prandtl equations
in a form suitable for the use of the ACK Theorem (see Eq. (5.38) below). In Prandtl’s
equations a second order operator (the heat operator) is present. The key idea is to invert
this operator, taking into account boundary and initial conditions. Therefore we shall
first introduce the heat operators, and prove some bounds on them.

In Subsect. 5.2 we find an operator form for Prandtl equations, Eq. (5.38). The
resulting operatorF consists of two terms: The first is a forcing term that accounts for
BC and IC. The second is the composition of a convective operator and the inverse of
the heat operator with zero BC and IC.

With the bounds on the heat and convective operators, it is then straightforward to
get the desired bounds, which is performed in Subsects. 5.3 and 5.4.

In the rest of this section we shall always supposel ≥ 4 (l ≥ 5 in 3D), as needed
for Proposition 2.3.

5.1. Estimates on heat operators.To solve Prandtl equations we introduce the heat
kernel:

E0(Y, t) =
1

(4πt)1/2
exp (−Y 2/4t), (5.3)

and the heat operators acting on functionsf (Y ) with <Y ≥ 0 andt ≥ 0,

E0(t)f =
∫ ∞

0
dY ′ [E0(Y − Y ′, t) − E0(Y + Y ′, t)

]
f (Y ′). (5.4)

The operatorE0(t) is obtained by convolution with the heat kernelE0(Y, t), with respect
to Y , once the functionf (Y ) is extended in an odd manner to<Y < 0. Note that for
t ≥ 0 andY ≥ 0,

(∂t − ∂Y Y ) E0(t)f = 0, (5.5)

E0(t)f |t=0 = f (Y ), (5.6)

γE0(t)f = 0. (5.7)

We need the following operatorE1, acting on functions defined on the boundary:

E1g(x, t) =
∫ t

0
ds h(Y, t − s)g(x, s), (5.8)

whereh(Y, t) is defined by:

h(Y, t) =
Y

t

exp(−Y 2/4t)
(4πt)1/2

. (5.9)

The functionE1g solves the heat equations with zero initial data and with boundary
valueg; i.e.

(∂t − ∂Y Y ) E1g = 0,

E1g|t=0 = 0, (5.10)

γE1g = g.



450 M. Sammartino, R. E. Caflisch

UsingE0(t) we define the operatorE2 by

E2f =
∫ t

0
dsE0(t − s)f (s)

=
∫ t

0
ds

∫ ∞

0
dY ′ [E0(Y − Y ′, t − s) − E0(Y + Y ′, t − s)

]
f (Y ′, s).(5.11)

The operatorE2 inverts the heat operator with zero initial data and boundary data; i.e.

(∂t − ∂Y Y ) E2f = f,

E2f |t=0 = 0, (5.12)

γE2f = 0.

We now recall some basic properties of the heat operators. In the estimates below,c is a
constant depending (at most) only onρ, θ,β,µ andT . Notice that the restrictionθ < π/4
is needed here. Proofs of the results in this subsection are presented in Appendix A.

Lemma 5.1. Letf (Y ) andg(Y ) be two continuous bounded functions, and letg be expo-
nentially decaying at infinity; i.e. there exists a positiveµ such that
supY ∈Σ(θ) e

µ<Y |g(Y )| < ∞. Let0 < θ < π/4. Then

sup
Y ∈Σ(θ)

∫ ∞

0
dY ′|E0(Y ± Y ′, t)|f (Y ′)

 ≤ c sup
Y ∈Σ(θ)

|f (Y )|, (5.13)

sup
Y ∈Σ(θ)

eµ<Y

∫ ∞

0
dY ′|E0(Y ± Y ′, t)|g(Y ′)

 ≤ c sup
Y ∈Σ(θ)

eµ<Y |g(Y )| (5.14)

in which the constantc depends only onθ andµ.

Lemma 5.2. Letf ∈ C1 ([0, T ]), with f (0) = 0, 0 < θ < π/4 andj = 1, 2. Then

sup
Y ∈Σ(θ)

eµ<Y |E1f | ≤ c sup
t>0

|f (t)| (5.15)

sup
Y ∈Σ(θ)

eµ<Y
∂j

Y E1f
 ≤ c

{
sup
t>0

|f (t)| + sup
t>0

|f ′(t)|
}

. (5.16)

The following bounds on analytic norms of the heat operators will be used throughout
the rest of this paper:

Proposition 5.1. Letu ∈ Kl,ρ,θ,µ with γu = 0. ThenE0(t)u ∈ Kl,ρ,θ,µ for all t and

sup
0≤t≤T

|E0(t)u|l,ρ,θ,µ ≤ c |u|l,ρ,θ,µ . (5.17)

The above estimate obviously implies thatE0(t)u ∈ Kl,ρ,θ,µ
β,T for all β andT and that

|E0(t)u|l,ρ,θ,µ,β,T ≤ c|u|l,ρ,θ,µ. (5.18)
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Corollary 5.1. Letu′ = u + f with u ∈ Kl,ρ,θ,µ, f ∈ H ′l,ρ constant with respect toY
andt; moreoverγu = −f . ThenE0(t)u′ − f ∈ Kl,ρ,θ,µ for all t and

sup
0≤t≤T

|E0(t)u′ − f |l,ρ,θ,µ ≤ c
(
|u|l,ρ,θ,µ + |f |l,ρ

)
. (5.19)

The above estimate obviously implies thatE0(t)u′ − f ∈ Kl,ρ,θ,µ
β,T for all β andT and

that
|E0(t)u′ − f |l,ρ,θ,µ,β,T ≤ c

(
|u|l,ρ,θ,µ + |f |l,ρ

)
. (5.20)

In the next proposition we give an estimate ofE0(t)u in a different space, namely in
Ll,ρ,θ; we shall not use this estimate in this paper but in Part II Part II.

Proposition 5.2. Letu ∈ Ll,ρ,θ with γu = 0. ThenE0(t)u ∈ Ll,ρ,θ for all t and

sup
0≤t≤T

|E0(t)u|l,ρ,θ ≤ c|u|l,ρ,θ. (5.21)

The above estimate obviously implies thatE0(t)u ∈ Ll,ρ,θ
β,T for all β andT and that

|E0(t)u|l,ρ,θ,β,T ≤ c|u|l,ρ,θ. (5.22)

Proposition 5.3. Letφ ∈ K ′l,ρ
β,T with φ(t = 0) = 0. ThenE1φ ∈ Kl,ρ,θ,µ

β,T and

|E1φ|l,ρ,θ,µ,β,T ≤ c|φ|l,ρ,β,T . (5.23)

We have the following estimate forE2:

Proposition 5.4. Letu ∈ Kl,ρ,θ,µ
β,T . ThenE2u ∈ Kl,ρ,θ,µ

β,T and

|E2u|l,ρ,θ,µ,β,T ≤ c|u|l,ρ,θ,µ,β,T . (5.24)

The following estimates will also be useful:

Proposition 5.5. Let u ∈ Kl,ρ,θ,µ
β,T with γu = 0. If ρ′ < ρ − βt, θ′ < θ − βt and

µ′ < µ − βt, then

|E2u|l,ρ′,θ′,µ′ ≤ c

∫ t

0
ds|u(·, ·, s)|l,ρ′,θ′,µ ≤ c|u|l,ρ,θ,µ,β,T . (5.25)

5.2. The final form of Prandtl’s equations.It is useful to introduce the new variable ˜uP :

ũP = uP − γuE . (5.26)

It is more natural to write Prandtl equations in terms of this new variable: First because the
matching condition with the outer Euler flow, Eq. (2.10), will be simply a consequence
of the fact that ˜uP is exponentially decaying inY , i.e. of the fact that ˜uP ∈ Kl,ρ1,θ1,µ1

β1,T
.

Second the gradient of the pressure will not show up in the equation. Equation (2.6) in
terms ofũP becomes:

(∂t − ∂Y Y ) ũP + ũP ∂xγuE

+ γuE∂xũP + ũP ∂xũP −
[∫ Y

0
∂xũP dY ′ + Y ∂xγuE

]
∂Y ũP = 0,

(5.27)
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where we have used

vP = −
∫ Y

0
∂xuP dY ′ = −

[∫ Y

0
∂xũP dY ′ + Y ∂xγuE

]
(5.28)

and the Euler equation at the boundary

γ
[
∂tu

E + uE∂xuE + ∂xpE
]

= 0. (5.29)

The initial condition for Eq. (5.27) is

ũP (x, Y, t = 0) = uP
0 (x, Y ) − γuE

0 = ũP
0 (5.30)

while the boundary condition is

γũP = −γuE . (5.31)

Equation (5.27) for ˜uP with (5.30) as initial condition and (5.31) as boundary condition,
and withvP given by (5.28), is equivalent to (2.6)-(2.11) foru P . To prove existence and
uniqueness for (5.27)-(5.31), we shall use the ACK Theorem with the normsKl,ρ,θ,µ and
Kl,ρ,θ,µ

β,T . To put Eq. (5.27) in a suitable form for the application of the ACK Theorem,
we have to invert the heat operator in Eq. (5.27), taking into account the IC and BC. We
defineU to be

U = −γuE
0 − E1

(
γuE − γuE

0

)
+ E0(t)

(
ũP

0 + γuE
0

)
. (5.32)

It is easy to see thatU solves the heat equation with (5.30) as IC and (5.31) as BC; i.e.

(∂t − ∂Y Y ) U = 0, (5.33)

U (t = 0) = ũP
0 , (5.34)

γU = −γuE . (5.35)

Define the operatorsK(ũP , t), which is (minus) the convective part of Eq. (5.27), and
F as

K(ũP , t) = −
{

ũP ∂xγuE + γuE∂xũP + ũP ∂xũP

−
[∫ Y

0
∂xũP dY ′ + Y ∂xγuE

]
∂Y ũP

}
, (5.36)

F (t, ũP ) = E2K(ũP , t) + U. (5.37)

The following equation is then equivalent to Eqs. (5.27)–(5.31):

ũP = F (t, ũP ). (5.38)

The rest of this section is devoted to proving that the operatorF (t, ũP ) satisfies all the
hypotheses of the ACK Theorem withX = Kl,ρ,θ,µ andY = Kl,ρ,θ,µ

β,T .

5.3. The forcing term.It is obvious that the operatorF satisfies the first condition of the
ACK Theorem. In this subsection we shall prove that the operatorF satisfies the second
condition of the ACK Theorem. Namely we prove that
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|F (t, 0)|l,ρ1−β0t,θ1−β0t,µ1−β0t ≤ R0 (5.39)

in Kl,ρ1−β0t,θ1−β0t,µ1−β0t for 0 ≤ t ≤ T , whereR0 is a constant.
Since

F (t, 0) = U, (5.40)

Corollary 5.1 and Proposition 5.3 show that

Proposition 5.6. Given that̃uP
0 ∈ Kl+1,ρ1,θ1,µ1 withγũP

0 = −γuE
0 anduE

0 ∈ H l+1,ρ1,θ1,
thenγuE ∈ K ′l,ρ1

β0,T
andU ∈ Kl,ρ1,θ1,µ1

β0,T
satisfying

|U |l,ρ1,θ1,µ1,β0,T ≤ c
(|uE

0 |l+1,ρ1,θ1 + |ũP
0 |l+1,ρ1,θ1,µ1

)
. (5.41)

Notice how, to get thatγuE ∈ K ′l,ρ1
β0,T

, a Sobolev estimate in they variable has been
used. With this proposition one sees that the forcing term is estimated in terms of the
initial conditions for Prandtl equations and of the outer Euler flow. This concludes the
proof of the estimate (5.39)

5.4. The Cauchy estimate.In this and in the next subsections we shall prove that the
operatorF as given by Eq. (5.37) satisfies the last hypothesis of the ACK Theorem.
Namely we want to show that ifρ′ < ρ(s) ≤ ρ1 − β0s, θ′ < θ(s) ≤ θ1 − β0s,
µ′ < µ(s) ≤ µ1 − β0s, and ifu(1) andu(2) are inKl,ρ1,θ1,µ1

β0,T
with

|u(1)|l,ρ1,θ1,µ1,β0,T < R and|u(2)|l,ρ1,θ1,µ1,β0,T < R, (5.42)

then

|F (t, u(1)) − F (t, u(2))|l,ρ′,θ′,µ′

≤ C

∫ t

0
ds

{ |u(1) − u(2)|l,ρ(s),θ′,µ′

ρ(s) − ρ′ +
|u(1) − u(2)|l,ρ′,θ(s),µ′

θ(s) − θ′

+
|u(1) − u(2)|l,ρ′,θ′,µ(s)

µ(s) − µ′

}
. (5.43)

In this subsection we shall be concerned with the operatorK. The operatorK involves
three different kinds of terms:

1. The nonlinear term involving thex-derivativeũP ∂xũP ;
2. the nonlinear term involving theY -derivative,

∫ Y

0 dY ′∂xũP · ∂Y ũP ;
3. the linear terms.

Before going into the details we anticipate that term (1) will be estimated using the
Cauchy estimate in thex-variable, term (2) will be estimated using the Cauchy estimate
in theY -variable, the linear growth inY of the coefficient of term (3) will be estimated
using the exponential decay inY of the solution. Here and in the rest of this section

0 < ρ′ < ρ′′ ≤ ρ1 − β0t,

0 < θ′ < θ′′ ≤ θ1 − β0t,

0 < µ′ < µ′′ ≤ µ1 − β0t.

We now state some lemmas used to estimate the convective operator.
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Lemma 5.3. Suppose thatu(1) andu(2) are inKl,ρ1,θ1,µ1
β0,T

. Then

|u(1)∂xu(1) − u(2)∂xu(2)|l,ρ′,θ′,µ′ ≤ c
|u(1) − u(2)|l,ρ′′,θ′,µ′

ρ′′ − ρ′ (5.44)

in the Kl,ρ,θ,µ norm, where the constantc depends only on|u(1)|l,ρ1,θ1,µ1,β0,T and
|u(2)|l,ρ1,θ1,µ1,β0,T .

In fact

|u(1)∂xu(1) − u(2)∂xu(2)|l,ρ′,θ′,µ′

≤ |u(1)∂x

(
u(1) − u(2)

) |l,ρ′,θ′,µ′ + |u(2)∂x

(
u(1) − u(2)

) |l,ρ′,θ′,µ′

+|∂x

[
u(2)

(
u(1) − u(2)

)] |l,ρ′,θ′,µ′

≤ c
|u(1) − u(2)|l,ρ′′,θ′,µ′

ρ′′ − ρ′ . (5.45)

We now pass to estimation of terms involving theY -derivative. First we give a version
of the Cauchy estimate Lemma 4.5 for analytic functions exponentially decaying in the
Y -variable.

Lemma 5.4. Letf ∈ H l,ρ′,θ′′,µ′′
. Then

|χ(Y )∂Y f |l,ρ′,θ′,µ′ ≤ |f |l,ρ′,θ′′,µ′

θ′′ − θ′ + µ′|f |l,ρ′,θ′,µ′ , (5.46)

|Y ∂Y f |l,ρ′,θ′,µ′ ≤ |f |l,ρ′,θ′′,µ′

θ′′ − θ′ + µ′ |f |l,ρ′,θ′,µ′′

µ′′ − µ′ + |f |l,ρ′,θ′,µ′ . (5.47)

To estimate the nonlinear term involving theY -derivative we have to use the fact that
the normal component of the velocity, as expressed by the integral from 0 toY , goes to
zero linearly fast. We now state a lemma similar to Lemma 5.3.

Lemma 5.5. Suppose thatu(1) andu(2) are inKl,ρ1,θ1,µ1
β0,T

. Then∂Y u(1)
∫ Y

0
dY ′∂xu(1) − ∂Y u(2)

∫ Y

0
dY ′∂xu(2)


l,ρ′,θ′,µ′

≤ c

[ |u(1) − u(2)|l,ρ′′,θ′,µ′

ρ′′ − ρ′ +
|u(1) − u(2)|l,ρ′,θ′′,µ′

θ′′ − θ′

] (5.48)

in theKl,ρ,θ,µ norm.

The proof of Lemma 5.5 goes like the proof of Lemma 5.3. The only thing to be noticed
is the fact that, because of the presence of a derivative in both the terms, one cannot use
the Sobolev estimate right away, but has to pay attention to the way thel derivatives
distribute between them. If all thel derivatives hit the term involving the integral one
has to Cauchy estimate thex-derivatives inside it. If instead all derivatives hit the term
involving theY -derivative one has to Cauchy estimate that derivative.

The estimate of the linear term whose coefficient grows linearly inY is expressed
in the following lemma.
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Lemma 5.6. Suppose thatu(1) andu(2) are inKl,ρ1,θ1,µ1
β0,T

. Then

|Y ∂xγuE∂Y u(1) − Y ∂xγuE∂Y u(2)|l,ρ′,θ′,µ′

≤ c

[ |u(1) − u(2)|l,ρ′,θ′′,µ′

θ′′ − θ′ +
|u(1) − u(2)|l,ρ′,θ′,µ′′

µ′′ − µ′ + |u(1) − u(2)|l,ρ′,θ′,µ′

]
.(5.49)

Using Lemmas 5.3, 5.5 and 5.6 we can conclude this subsection with the following
estimate on the convective operator of Prandtl equations:

Proposition 5.7. Supposeu(1) andu(2) are inKl,ρ1,θ1,µ1
β0,T

. ThenK(u(1), t) − K(u(2), t)


l,ρ′,θ′,µ′

≤ c

[ |u(1) − u(2)|l,ρ′′,θ′,µ′

ρ′′ − ρ′ +

|u(1) − u(2)|l,ρ′,θ′′,µ′

θ′′ − θ′ +
|u(1) − u(2)|l,ρ′,θ′,µ′′

µ′′ − µ′ + |u(1) − u(2)|l,ρ′,θ′,µ′

]
.

(5.50)

5.5. Conclusion of the Proof of Theorem 5.1.To conclude the proof of estimate (5.43),
first notice that in the iterative construction of the solution of (5.38), each term satisfies
γũP = −γuE . The differenceK(u(1)) − K(u(2)) need be considered only for these
functions. As a result, we may assume that

γ
[
K(u(1), t) − K(u(2), t)

]
= 0. (5.51)

This will allow us to use Proposition 5.5. In fact:F (u(1), t) − F (u(2), t)


l−1,ρ′,θ′,µ′

=
E2

[
K(t, u(1)) − K(t, u(2))

]
l−1,ρ′,θ′,µ′

≤ c

∫ t

0
ds
K(u(1), t) − K(u(2), t)


l−1,ρ′,θ′,µ′

≤ c

∫ t

0
ds

[ |u(1)(·, ·, s) − u(2)(·, ·, s)|l−1,ρ(s),θ′,µ′

ρ(s) − ρ′

+
|u(1)(·, ·, s) − u(2)(·, ·, s)|l−1,ρ′,θ(s),µ′

θ(s) − θ′

+
|u(1)(·, ·, s) − u(2)(·, ·, s)|l−1,ρ′,θ′,µ(s)

µ(s) − µ′

]
. (5.52)

With the above estimate we conclude this subsection. The proof of the estimate (5.43)
has been finally achieved. Therefore operatorF satisfies all the hypotheses of the ACK
Theorem, and Theorem 5.1 has been proved.
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5.6. A final remark.The main result of this section is Theorem 5.1 stating the existence
and the uniqueness of a solutionuP of Eqs. (2.6)–(2.11), and that this solution is the
sum of a function exponentially decaying outside the boundary layer and of the value at
the boundary of the Euler flow.

What about normal velocityvP ? Corresponding to ˜uP defineṽP by

ṽP = −
∫ Y

0
∂xũP dY ′. (5.53)

Using this expression, the fact that ˜uP is exponentially decaying in theY variable, and
a Cauchy estimate in thex variable, it follows that ˜vP differs by a constant ( inY ) from

a function inK
l−1,ρ′

1,θ1,µ1

β1,T
with ρ′

1 < ρ1. Renamingρ′
1, just to simplify the notation, we

can therefore conclude that
ũP ∈ Kl−1,ρ1,θ1,µ1

β1,T
, (5.54)

v̄P = ṽP − ṽP (Y = ∞) ∈ Kl−1,ρ1,θ1,µ1
β1,T

. (5.55)

6. Conclusions

This concludes the proofs of existence for the Euler and Prandtl equations with analytic
initial data. These results will be used in Part II [12] as the leading order terms in
an asymptotic expansion for the solution of the Navier-Stokes equations with small
viscosity. The solution will be found as a composite expansion, using the Prandtl solution
near the boundary and the Euler solution far from the boundary.

Appendix A: The estimates for the heat operators

Proof of Lemma 5.1.We prove the estimate (5.14); the estimate (5.13) can be proved
analogously. Setη = (Y ′ ± Y )/

√
4t so that

sup
Y ∈Σ(θ)

eµ<Y


∫ ∞

0
dY ′ e

−(Y ±Y ′)2/4t

√
4πt

g(Y ′)


= c sup

Y ∈Σ(θ)
eµ<Y


∫ ∞

±Y/
√

4t

dηe−η2

g(∓Y + η
√

4t)


≤ c sup

Y ∈Σ(θ)
eµ<Y |g(Y )|. (A.1)

This uses the restriction that 0< θ < π/4, so thate−η2 ≤ e−k<η2
, for some constantk

and thus ∫ ∞

±Y/
√

4t

dηe−η2

exp−(∓Y + η
√

4t) ≤ c. (A.2)

Proof of Lemma 5.2.We begin with the estimate (5.15). Use the change of variable
ζ = Y/

√
4(t − s) to obtain
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sup
Y ∈Σ(θ)

eµ<Y


∫ t

0
ds

Y

t − s

e−Y 2/4(t−s)

√
4π(t − s)

f (s)


= sup

Y ∈Σ(θ)
eµ<Y

2
∫ ∞

Y/
√

4t

dζe−ζ2

f (t − Y 2/4ζ2)


≤ sup

t
|f (t)| sup

Y ∈Σ(θ)
eµ<Y 2

∫ ∞

Y/
√

4t

dζe−ζ2

= c sup
t

|f (t)|. (A.3)

We now pass to the estimate (5.16) withj = 1. Sincef (0) = 0, then

sup
Y ∈Σ(θ)

eµ<Y

∂Y

∫ t

0
ds

Y

t − s

e−Y 2/4(t−s)

√
4π(t − s)

f (s)


= 2 sup

Y ∈Σ(θ)
eµ<Y


∫ ∞

Y/
√

4t

dζe−ζ2 Y

ζ2
f ′(t − Y 2/4ζ2)


≤ sup

t
|f ′(t)| sup

Y ∈Σ(θ)
eµ<Y Y

∫ ∞

Y/
√

4t

dζe−ζ2

/ζ2

= c sup
t

|f ′(t)|. (A.4)

The estimate (5.16) withj = 2 can be proved in a similar way, using∂2
Y E1f = ∂tE1f .

Proof of Propositions 5.1 .Denote with∂j ajth derivative inx andY where the derivative
in Y does not show up more than twice (we stress again that in our functional setting a
Y derivative is required up to order two, see e.g. Definition 2.4). Then

|E0(t)u|l,ρ,θ,µ =
∑
j≤l

sup
Y ∈Σ(θ)

eµ<Y

sup
|=x|<ρ

∥∥∥∥∂j

∫ ∞

0
dY ′ [E0(Y − Y ′, t) − E0(Y + Y ′, t)

]
u(x, Y ′)

∥∥∥∥
L2

≤
∑
j≤l

sup
Y ∈Σ(θ)

eµ<Y

∫ ∞

0
dY ′ [|E0(Y − Y ′, t)| + |E0(Y + Y ′, t)|] sup

|=x|<ρ

∥∥∂ju(·, Y ′)
∥∥

L2

≤ c|u|l,ρ,θ,µ, (A.5)

where Lemma 5.1 has been used in the last step. For the first derivative inY , the boundary
terms atY = 0 vanished becauseu(Y = 0) = 0; for the second derivative, they vanished
due to cancelation of the twoE0 factors.
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Proof of Proposition 5.2 .Denote by∂j ajth derivative inx andY , where the derivative
in Y does not show up more than twice. Also if aY derivative does show up, the order
of thex derivative is at mostl − 2 (as required inH l,ρ,θ). Then

|E0(t)u|l,ρ,θ =
∑
j≤l

sup
θ′≤θ

(∫
0(θ′,a/ε)

dY

{
sup

|=x|<ρ

∥∥∥∥∂j

∫ ∞

0
dY ′ [E0(Y − Y ′, t) − E0(Y + Y ′, t)

]
u(x, Y ′)

∥∥∥∥
L2(<x)

}2
1/2

∑
j≤l

sup
θ′≤θ

(∫
0(θ′,a/ε)

dY

{
sup

|=x|<ρ

∥∥∥∥∥∂j

[∫ ∞

−Y/
√

4t

dηe−η2

u(x, Y + η
√

4t)

−
∫ ∞

Y/
√

4t

dze−z2

u(x, −Y + z
√

4t)

]∥∥∥∥∥
L2(<x)


2


1/2

≤
∑
j≤l

2
∫ ∞

−∞
dηe−η2

sup
θ′≤θ

∫
0(θ′,a/ε)

dY

{
sup

|=x|<ρ

∥∥∂ju(·, Y ′)
∥∥

L2

}2
1/2

≤ c|u|l,ρ,θ. (A.6)

Proof of Proposition 5.3 .We have

|E1φ|l,ρ,θ,µ,β,T ≤ c
∑
α1≤2

∑
α2≤l−α1

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

sup
|=x|≤ρ−βt

‖∂α1
Y ∂α2

x E1φ‖L2

≤ c
∑
α1≤2

∑
α2≤l−α1

sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

∂α1
Y E1 sup

|=x|<ρ−βt

‖∂α2
x φ‖L2


≤ c|φ|l,ρ,β,T . (A.7)

In passing from the first to the second line we have used the fact thatE1u solves the
heat equation (so that∂tE1u = ∂Y Y E1u); in passing from the second to the third line
we have used Lemma 5.2 withf (t) = sup|=x|<ρ−βt ‖∂α2

x φ‖L2.
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Proof of Proposition 5.4 .To estimate|E2u|l,ρ,θ,µ,β,T we must estimate|∂α
x E2u|0,ρ,θ,µ,β,T

with α ≤ l, |∂Y ∂α
x E2u|0,ρ,θ,µ,β,T with α ≤ l − 1, |∂t∂

α
x E2u|0,ρ,θ,µ,β,T with α ≤ l − 1

and|∂Y Y ∂α
x E2u|0,ρ,θ,µ,β,T with α ≤ l − 2. We begin with|∂α

x E2u|0,ρ,θ,µ,β,T :

|∂α
x E2u|0,ρ,θ,µ,β,T = sup

0≤t≤T
sup

Y ∈Σ(θ−βT )
e(µ−βt)<Y

sup
|=x|≤ρ−βt

∥∥∥∥∥∂α
x

∫ t

0
ds

[∫ ∞

−Y/
√

4(t−s)
dηe−η2

u(x, Y + η
√

4(t − s), s)

+
∫ ∞

Y/
√

4(t−s)
dze−z2

u(x, −Y + z
√

4(t − s), s)

]∥∥∥∥∥
L2

≤ sup
0≤t≤T

sup
Y ∈Σ(θ−βT )

e(µ−βt)<Y

∫ t

0
ds

[∫ ∞

−Y/
√

4(t−s)
dηe−η2

sup
|=x|≤ρ−βt

‖∂α
x u(·, Y + η

√
4(t − s), s)‖L2

+
∫ ∞

Y/
√

4(t−s)
dxe−z2

sup
|=x|≤ρ−βt

‖∂α
x u(·, −Y + z

√
4(t − s), s)‖L2

]
≤ |∂α

x u|0,ρ,θ,µ,β,T sup
0≤t≤T

sup
Y ∈Σ(θ−βT )∫ t

0
ds

[∫ ∞

−Y/
√

4(t−s)
dηe−η2

+
∫ ∞

Y/
√

4(t−s)
dze−z2

]
= |∂α

x u|0,ρ,θ,µ,β,T . (A.8)

We now pass to|∂Y ∂α
x E2u|0,ρ,θ,µ,β,T ; the only difference from the above estimate will

be the appearance of a boundary term, behaving like
√

(t − s), which is nevertheless
bounded using the regularizing property of the integration in time,

|∂Y ∂α
x E2u|0,ρ,θ,µ,β,T ≤ sup

0≤t≤T
sup

Y ∈Σ(θ−βT )
e(µ−βt)<Y

∫ t

0
ds

[∫ ∞

−Y/
√

4(t−s)
dηe−η2

sup
|=x|≤ρ−βt

‖∂Y ∂α
x u(·, Y + η

√
4(t − s), s)‖L2

+
∫ ∞

Y/
√

4(t−s)
dxe−z2

sup
|=x|≤ρ−βt

‖∂Y ∂α
x u(·, −Y + z

√
4(t − s), s)‖L2

−2
e−Y 2/4(t−s)

√
4(t − s)

sup
|=x|≤ρ−βt

‖∂α
x u(·, 0, s)‖L2

]

≤ |∂Y ∂α
x u|0,ρ,θ,µ,β,T + c|∂α

x u|0,ρ,θ,µ,β,T sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

∫ t

0
ds

e−Y 2/4(t−s)

√
4(t − s)

≤ |∂Y ∂α
x u|0,ρ,θ,µ,β,T + c|∂α

x u|0,ρ,θ,µ,β,T .

(A.9)

We now pass to|∂t∂
α
x E2u|0,ρ,θ,µ,β,T :
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|∂t∂
α
x E2u|0,ρ,θ,µ,β,T

≤ sup
0≤t≤T

sup
Y ∈Σ(θ−βt)

e(µ−βt)<Y

{
sup

|=x|≤ρ−βt

‖∂α
x u(·, Y, t)‖L2

+
∫ t

0
ds

[
Y

t − s

e−Y 2/4(t−s)

√
4(t − s)

sup
|=x|≤ρ−βt

‖∂α
x u(·, 0, t)‖L2

+
∫ ∞

−Y/4(t−s)
dηe−η2

η
1√

(t − s)
sup

|=x|≤ρ−βt

‖∂Y ∂α
x u(·, Y + η

√
4(t − s), t)‖L2

−
∫ ∞

Y/4(t−s)
dze−z2

z
1√

(t − s)
sup

|=x|≤ρ−βt

‖∂Y ∂α
x u(·, −Y + z

√
4(t − s), t)‖L2

]}
≤ c|∂α

x u|0,ρ,θ,µ,β,T + c|∂Y ∂α
x u|0,ρ,θ,µ,β,T

≤ c|u|l,ρ,θ,µ,β,T .

(A.10)

The term|∂Y Y ∂α
x E2u|0,ρ,θ,µ,β,T can be bounded using the estimate (A.10) and the fact

that∂Y Y E2u = ∂tE2u − u. This concludes the proof of Proposition 5.4.

Proof of Proposition 5.5.The proof of Proposition 5.5 is very similar to the proof of
Proposition 5.4, the main difference being that one is not allowed to use the regularizing
properties of the integration in time; no singular term appears, though, because of the
requirement thatu = 0 at the boundary. Here we present the estimate of the term
|∂Y ∂α

x E2u|0,ρ′,θ′,µ′ with α ≤ l − 1:

|∂Y ∂α
x E2u|0,ρ′,θ′,µ′ ≤ sup

Y ∈σ(θ′)
eµ′<Y

∫ t

0
ds[∫ ∞

−Y/
√

4(t−s)
dηe−η2

sup
|=x|≤ρ′

‖∂Y ∂α
x u(·, Y + η

√
4(t − s), s)‖L2

+
∫ ∞

Y/
√

4(t−s)
dxe−z2

sup
|=x|≤ρ′

‖∂Y ∂α
x u(·, −Y + z

√
4(t − s), s)‖L2

]

≤
∫ t

0
ds|∂Y ∂α

x u(·, ·, s)|0,ρ′,θ′,µ′ . (A.11)
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