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Abstract: This is the first of two papers on the zero-viscosity limit for the incom-
pressible Navier-Stokes equations in a half-space. In this paper we prove short time
existence theorems for the Euler and Prandtl equations with analytic initial data in either
two or three spatial dimensions. The main technical tool in this analysis is the abstract
Cauchy-Kowalewski theorem. For the Euler equations, the projection method is used in
the primitive variables, to which the Cauchy-Kowalewski theorem is directly applicable.
For the Prandtl equations, Cauchy-Kowalewski is applicable once the diffusion operator
in the vertical direction is inverted.

1. Introduction

The zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space
is a challenging problem due to the formation of a boundary layer whose thickness is
proportional to the square root of the viscosity. Boundary layer separation, which is
difficult to control, may cause singularities in the boundary layer equations. In this and
the companion paper Part I, we overcome these difficulties by imposing analyticity on
the initial data. Under this condition, we prove that, in the zero-viscosity limit and for a
short time, the Navier-Stokes solution in a half-space goes to an Euler solution outside a
boundary layer in either two or three spatial dimensions, and that it is close to a solution
of the Prandtl equations within the boundary layer.

The construction of the Navier-Stokes solution is performed as a composite asymp-
totic expansion involving an Euler solution, a Prandtl boundary layer solution and a
correction term. It follows the earlier, unpublished analysis of Asano [1], who also
restricted the data to be analytic, but our work contains a considerably simplified ex-
position, explicit use of the Prandtl equations, and several other technical differences:
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Asano used a sup-estimate on the divergence-free projection operator, which we have
been unable to verify. He also used high order derivative norms in(thermal) variable,
whereas we find it necessary to only use second derivatives.

An earlier attempt to analyze this problem, without the requirement of analyticity
and without explicit use of the Prandtl equations, was made by Kato [8]. It was not
completely successful, since it required some unverified assumptions on the Navier-
Stokes solution. Analysis of the zero-viscosity limit for the Navier-Stokes solution in an
unbounded domain was performed in [3, 7, 13].

In this first part, we present short-time existence results for the Euler and Prandtl
equations in a half-space with analytic initial data. The main significance of the Euler
resultis thatitis stated in terms of the function spaces used in the Navier-Stokes result of
Part Il. For the Euler equations, of course, this is not an optimal result since analyticity
is not needed for existence of a solution. Moreover, a more general existence result for
analytic solutions of the incompressible Euler equations was proved earlier by Bardos
and Benachour [2]. The present proof is somewhat different, since it uses the projection
method on the primitive variables, rather than the vorticity formulation.

For the Prandtl equations, on the other hand, our result on existence for short time
and analytic initial data is the first general existence theorem for the unsteady problem.
To the best of our knowledge, the only previous existence theorem for the unsteady
Prandtl equations was by Oleinik [10]. For the Prandtl equations with upstream velocity
prescribed at the lefte{ = 0) as well as at infinity and at= 0, she proved existence
for either a short time for alk > 0 or for a short distance and for all time, without
the analyticity assumption. The proof required conditions that the prescribed horizontal
velocities are all positive and strictly increasing, which are not required in our result.
For a review of related mathematical results on both the steady and unsteady Prandtl
equations, see [9].

In fact, we conjecture that the general initial value problem for the Prandtl equations
isill-posed in Sobolev space. Although ill-posedness has not been proved, there is some
evidence in its favor: First, previous attempts to construct such solutions have failed.
Second, there are numerical solutions of Prandtl that develop singularities associated
with boundary layer separation in finite time [4—6]. Most recently, E and Engquist [14]
have proved existence of Prandtl solutions with singularities. This is not enough to show
ill-posedness, however, because in these computations and analysis the singularity time
is not small.

The main technical tool of our analysis is the abstract Cauchy-Kowalewski Theorem
(ACK), the optimal form of which is due to Safonov [11]. This theorem, which is for
systems that are first order in some sense, is directly applicable to the Euler equations.
Since the Prandtl equations are diffusive rather than first order, the classical Cauchy-
Kowalewski Theorem cannot be applied, and it may at first seem surprising that the
ACK Theorem is applicable to them. As pointed out by Asano [1], however, the ACK
Theorem may be used for a nonlinear diffusion equation after inversion of the diffusion
operator. We show below that this strategy works for the Prandtl equations, and in Part
II, we shall also apply it to the Navier-Stokes equations. The main simplification of
this analytic method over Sobolev methods is that it uses Cauchy estimates to bound
derivatives rather than energy estimates.

In Sect. 2 the Euler and Prandtl equations are stated and a number of function spaces
and norms are defined. The abstract Cauchy-Kowalewski Theorem is formulated in
Sect. 3. The existence theorem for the Euler equations is stated and proved in Sect. 4,
which includes a convenient formulation and some useful bounds for the projection
method. The existence theorem for the Prandtl equations is stated and proved in Sect. 5,
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using properties of the heat operator, which are proved in an appendix. The analysis for
Prandtl is completely independent of that for Euler. Some concluding remarks are made
in Sect. 6.

For convenience, the formulation and analysis will often be written in 2D, but the
extension to 3D is straightforward. Key points in the 3D extension will be noted and the
main results will be stated for 2D and 3D.

2. Statement of the Problem and Notation

2.1. Euler equationsThe Euler equations for a velocity fietd” = (u”, v”) are

duf+ul . vu?+vpf =0, (2.1)
V-u?=0, (2.2)

P =0 (x,y=0,t) =0, (2.3)
uE(r,y,tZO):uéj(x,y). (2.4)

Hereu ¥ depends on the variablé¢s, y, ), wherez is the transversal variable going
from —oo to oo, y is the normal variable going from 0 t&, andt is the time. The
operatory,, acting on vectorial functions gives the normal component calculated at the
boundary. In the rest of this paper we shall also use the trace operatefined by

yu = (u(r,y=01),v(z,y=01). (2.5)

In Sect. 3 we shall prove that under suitable hypotheses for the initial conditjon
(essentially analyticity inc andy ) Euler equations admit a unique solution. Although
stated here for 2D, the analysis works equally well in 3D. The existence result is only
for a short time.

2.2. Prandtl equationsThe Euler equations are a particular case of the Navier-Stokes
(N-S) equations, when the fluid has zero viscosity. Therefore, the Navier-Stokes solution
for small viscosityv is expected to be well approximated by an Euler solution, at least
away from boundaries, which is confirmed by numerical and experimental observations.
An analysis of the short time, spatially global behavior (in presence of a boundary) of
N-S equations will be the subject of part Il of this work, [12].

In the vicinity of the boundaries, on the other hand, the effect of viscosity(19
even as the viscosity goes to zero. The no-slip condition causes the creation of vorticity;
moreover in a small layer there is an adjustment of the flow to the outer (inviscid) flow.
Due to the resulting rapid variation of the fluid velocity, the velocity depends on a scaled
normal variableY” = y/e in whiche = \/v. Also the vertical velocity is of size. The
resulting equations governing the velocity fiedd” = (u”, ev") are Prandtl equations:

(0 — Oyy)ul +ufo,u? + v oy ul +9,p" =0, (2.6)
oypt =0, (2.7)

dpuf + 0yt =0, (2.8)

uf (z,Y =0,t) =0, (2.9)

uf (2, Y — 00,t) — uF (x,y = 0,1), (2.10)

uf (2, Y, t=0) =ul (z,Y). (2.11)
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Equation (2.10) is the matching condition between the flow inside the boundary layer
and the outer Euler flow. In Sect. 5 we shall prove that the Prandtl solution approaches
the boundary value of the Euler solution at an exponential raé gees to infinity.
Equation (2.7) implies that the pressure is constant across the boundary layer; to match
with the Euler pressurg?, it must satisfy

0op” = 0up" (2,y = 0,1) = =49y +u"0,)u”. (2.12)

The normal component of the velocity’ can be found, using the incompressibility
condition, to be

Y
o= — / Opul(z, Y’ t)dY”. (2.13)
0

In 3D, d,u” is replaced by’ - u* in this integral, wher&” is the gradient with respect
to the transversal variables.

Therefore Eq. (2.6) can be considered as an equation for the transversal compo-
nentu?, with v* given by Eq. (2.13), with boundary conditions (2.9)—(2.10), and with
initial conditions (2.11). Moreover there must be compatibility between the boundary
conditions and initial conditions; i.e.

yud =0, (2.14)

ud (Y — o0) — yuf — 0. (2.15)

In this paper we shall prove the existence and the uniqueness of the solutions for
Egs. (2.1)—(2.4) and (2.6)—(2.11). We now introduce the appropriate function spaces.

2.3. Function spaceslet us introduce the “strip”, the angular sector and the “conoid”
in the complex plane

D(p) =R x(—p,p)={z € C :Sz € (—p,p)}, (2.16)
XO)={y € C : Ry > 0and|Sy| < Rytand}, (2.17)

X(0,a) ={y € C :0< Ry < aand|Sy| < Rytanb},
U{y e C : Ry > a and|Sy| < atand}. (2.18)

In the sequel we shall always be dealing with functions that are analytic in either the
single complex variable or the two complex variables andy. The functions will be
either L? in the transversal variable and bounded in the normal variabjeor L? in

both the transversal and normal variable. Next introduce the paths along whigf the
integration is performed:

M) ={reC :Se=b}, (2.19)
'@ ,a)={yeC :0< Ry <aandSy = Rytand'},
U{y e C : Ry > aandSSy = atand’}. (2.20)

Some of the norms below are defined in terms of the unscaled varjaibibile
others used the scaled variable= y/c. Throughout this paper, the values of the angle
6 and the parametércounting the number of derivatives will always be restricted to

0<0<m/4,
4<1.
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We have not attempted to make an optimal choide@iven a Banach scafeX , }o< <,
we defineBf (A, X,) as the space of all* functions fromA to X, with the norm

k
flkops = Y SUP|O] F(E)]p—pt. (2.21)
=0 t€A

Here A is supposed to be an interval [0] of time, andp may be a vector of parameters
such as £, 0) or (p, 0, 1), in which casep — 5t is replaced by £ — 5t,0 — (t) or

(p — Bt,0 — Bt, u — Gt). Due to the large number of function spaces and norms, we do
not have a separate notation for every norm. Instead, we will always state the function
space under consideration, and then the norm will be the one for that space.

Table 1. Table of Function (E=Eulez; = first order Euler, P=Prandtl, S=Stokes, NS=Navier-Stokes)

Space L? sup 0O(@8z) O(8y)orOdy) O(0:) equations
H'Lp x l E,P,S,NS
HLeO gy j<l l—3j E
HR wy t <l k<l—j 1—k—j E
KLp.O x Y I-k k<2 P
Kg;; x t 1—j ji<1 P,S
K};j’T’g’“ r Yt 1—k k<2 o PS
-1 0 1
Lhe? gy l 0 S, NS
-2 0<k<2
Lgf}g z,Y t 1—2j 0 j<1 S,NS
-2 O0<k<2 0
Nbet gy l 0 E1
-2 0<k<2
Né’,”T’e z,y t 1-25 0 j<1 E
-2 0<k<2

The following are function spaces that will be used in the sequel. We begin with the
space of functions depending only on the transversal variablez{tiziable). All the
functions used below will belong, for a fixed timand for a fixed value of the normal
coordinatey, to this space. A summary of these function spaces is made in Table 1.

Definition 2.1. H'"? is the set of all complex functiorf§z) such that

e fisanalytic inD(p).

e 02f € L¥I'(Sw)) for Sz € (—p,p),a < [;i.e. if Sz is inside(—p, p), then
0% f(Rz +1iSx) is a square integrable function &fz.

o | flip = 2aci SURe(p.p 102 F( +iS32) || Lor(gay < 00

We now introduce the dependence on the normal variable:
Definition 2.2. H"# is the set of all functiong(x, y) such that

e fis analytic insideD(p) x X(0, a).
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o 001002 f(z,y) € L2 (T(®', a); H'?) with |¢/] < 0, a1 +ap < 1.
® | flip.0 = 2 aprar<i SURer <o 11052022 F (-, o, L2(r(or ay) < 00-

For a fixed timet all the functions used in the proof of existence and uniqueness
for Euler equations will belong to the above space. We now introduce the functions
depending on time:

Definition 2.3. The spacd{lﬁ’f’T’e is defined as

l
Lp,0 — j 1=j,p,0
Hj5 = (B ([0, 1], H' =10 .
§=0
If a function f(z, y, t) belongs to this space its norm is

l

| fli,p,0,8, = Z sup (07 f(s s )i—j,p—pt,0—pt-
g 0<t<T

In the above spaces we shall prove the existence of a solution of the Euler equations.
We now pass to the function spaces for Prandtl equations. The main difference with
respect to the Euler equations is the presence of the heat op@atod, ), which
breaks the symmetry between the normal and transversal coordinates. We can require
differentiability with respect to the transversal coordingtenly up to the second order,
and with respect to timeonly up to the first order. Moreover, for Prandtl equations we
shall use, in th&” variable, the sup norm. This will allow us to observe the behavior
of the Prandtl solution outside the boundary layer. The Prandtl solution will in fact turn
out to exponentially match the boundary data of the Euler solution.

Definition 2.4. Kb#:%# with i > 0, is the set of all functiong(z, Y") such that

e fis analytic insideD(p) x X'(0).
e 07102 f(x,Y) € C°(X(6); H®) withoy < 2anday +az < L.

o |flipou= Zalgz Zazgl_az SUBy ¢ 5(9) eﬂﬁy‘aglang(w Y)lo,p < 0.
Definition 2.5. The spacek; % is defined as
1
Ly . s
Kb =B (10,71, H"7*).
4=0
If f(x,t) belongs to this space its norm is
l .
flippr =D > sup 8]0 f(t,op-pt.
- . 0<t<T
570 a<i—j 0SS
Definition 2.6. The spacd(f;@:e’“ is the set of all functiong(x, Y, t) such that

e f€C°([0,T], K\r%1) and 8,09 f € C° ([0, T], K%-0 ) withar < I — 1.
® [ flip0.u8.7 = 2 a1<2 2arrar<i SUR< <1 (05022 f (Y, 8)]0,p—Be,0— pt.u—pt
+ ) 01 1SUR<i<7 [0:05 (-, - D)o, p—pt,0—pt,u—pt < 0.
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We now pass to the spaces for the correction terms in the Navier-Stokes solution.
We shall use the spaces below only in Part Il

Definition 2.7. N%#- is the set of all functiong(x, 3) such that

e fis analytic insideD(p) x X(0, a).
o 020002 f(z,y) € L2 (T(0/,a); HOP) with |0'| < 6, a1 < 2, a1 +ap < I and
ax <1 —2whenay > 0.
® [flipo = Zagz SURg <e 1105 (s ool 2o ,ay)
+ 0cai<2 Xar<i—2 SURgr <o 11052052 ()

0,p ‘LZ(F(H’,a)) < 0.

Definition 2.8. The spaceNé’}}e is defined as the set of all functiorféz, y,t) such
that:

o f €0, T], N'») andd; 3 f € CO(0, T], N®»#) with j < I — 2.
® [ flip.0.87 = 2o<j<t 2oas<i—2; SUR<i<T 10705 f (.- D)lo,o—pt.0—pt
+ ) 0can<2 2oap<i—2 SUR<i<T [0y 052 f (-, -, D)o,p—pt,0—pt < o0

in which the norms on the right are iN’:»%.

In the above two spaces we shall prove the existence of a solution for the first order
correction of the Euler flow (see Sect. 5 of Part I1).

Definition 2.9. L'*/Y is the set of all functiong(z, Y) such that

e fis analytic insideD(p) x X(0, a/c).
o 07102 f(x,Y) € L2 (F(H',a/a);H’ovf’) with |6'] < 6, a1 <2, g +ap < [l and
ay <1 —2whena; > 0.
o | flip0 =2 a<i SURer <o 1105 £ V) o,pll L2r(or ae))
+ 2 0can<2 2-0<ay<i—2 SURe <o 110y 022 £ (-, Yo, | 2(r(or asey) < 00

Definition 2.10. The space.}’;’ is the set of functiong(z, Y, t) such that

e f€C°([0,T], L") andd,0% f € CO ([0, T], LO#¥) with o < I — 2.

® [ flip0.87 = 2o<j<t 2oa<i—2; SUR<i<T 10795 f (-, - D)lo,o—pt,0- st
X
+ 2 0can<2 2oap<i—2 SUR<i<r [0y 072 f (-, D)o, p—pt.0—pt < 0.

The above two spaces are the spaces where we shall prove existence and uniqueness
for the overall Navier-Stokes correction (see Sect. 7 of Part Il Part II).

The large number of function spaces is needed because of the various types of data
and equations that are considered here:

e The H function spaces, which afe?(z, y), are natural function spaces for the Euler
equations.

e The K function spaces, which ae>(L?(z),Y) with decay inY’, are natural for
the Prandtl equations.

e For Navier-Stokes, thé spaces, which aré&?(z,Y) with a restricted number of
derivatives inY’, are used to allow combination of the Euler and Prandtl results.

e For the first order Euler terms, th€ spaces, which aré?(z, y) with a restricted
number of derivatives iy, are used.
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Table 2. Table of Operators (E=Eulefy; first order Euler, P=Prandtl, S=Stokes, NS=Navier-Stokes, I=this
paper, lI=Ref [12])

Operator Description Definition Use
P> projection 1 (4.4) E E;
P half-space projection | (4.24), (4.25) By
P, integrated (in time) half-space projection 1(4.35) E
Eo(t) heat op with IC, diff inY” 1(5.4) P
Eq heat op with BC, diff inY” 1(5.8) P
E, heat op with force, diff iny” I(5.11) P
N’ e’ /)¢ I(4.10) E,SNS
Ey heat op with BC, diff inz, Y’ N(3.21) S,NS
B, heat op with force, diff inc, Y 11 (7.4) NS
P> rescaled projection 11 (7.12)-(7.13) NS
S Stokes op 11(3.36) S,NS
No projected heat op Il (7.15) NS
N* Navier-Stokes operator 11 (7.20) NS

We shall also use a large number of operators in this analysis. For convenience and
clarity, we list the operators used in this paper as well as in the second paper, in the
following table, with reference to the location of their definitions.

In the following sections we shall often estimate products of functions belonging to
the above spaces;if> 4 such products can be estimated using the following Sobolev
inequalites:

Proposition 2.1. Let f,g € H;%’ andl > 4. Thenf - g € H3%’, and

| 9lipesr <clfliposrlglipesT (2.22)

Proposition 2.2. Let f, g € L} andl > 4. Thenf - g € Lj%’, and

|f - 9lipo.s1 < clflipo.87|9000.87- (2.23)
A similar statement holds if we are using the sup norm in¥theariable:

Proposition 2.3. Let f ¢ K[Z’ifgo g € Ké’ﬁ,:e"‘ and! > 3 (I > 4in 3D). Then
f-g€ Ké;”T’Q’“, and

If-g

1p,0,8.T < | fl1,p,0.8,0,719]1,0,0,8,u,T - (2.24)

3. Cauchy-Kowalewski Theorem

By aBanachscalgX, : 0 < p < po} with norms| |, we mean a collection of Banach
spaces such thaf,, ¢ X, and| |,» <| |, whenp” < p' < po.
Lett > 0,0< p < poandR > 0.
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Definition 3.1. X, - is the set of all functiona(t) from [0, 7] to X, endowed with the
norm

[ulp,- = sup [u(t)],- (3.1)
0<t<r

Definition 3.2. X, -(R) is the set of all functions(t) from [0, 7] to X, such that
|ulpr < R. (3.2)

Definition 3.3. Y,, s - is the set of all functions(t) from [0, 7] to X, endowed with the
norm

[ulp,s,- = sup [u(t)|p—pt- (3.3)
o<t<r

Definition 3.4. Y, g -(R) is the set of all functiona(t) from [0, 7] to X, such that
|u|p,ﬁ77 < R. (34)
Fort in [0, T], consider the equation
u+ F(t,u) =0. (3.5)

The basic existence theorem for this system is the following Abstract Cauchy-Kowa-
lewski (ACK) Theorem, which is a slight modification of the version proved by Safonov
[11].

Theorem 3.1. SupposethatR > 0,7 > 0, pp > 0,andf, > OsuchthatiD < ¢t < T,
the following hold:

1. Y0 < p' < p < po— BT andVu € X, r(R) the functionF'(¢, u) : [0,7] — X,
is continuous.
2. Y0 < p < po — BoT the functionF'(¢,0) : [0,T] — X, r(R) is continuous in
[0,7] and
|F(t,0)|po— ot < Ro < R. (3.6)
3. VO < p' < p(s) < po— Pos andV ut andu? € Yy, g, 7(R),

ut — u?| ()

‘)
Pty - Fead)y < ¢ [ 1220,

Then3g > (o andTy > 0 such that Eqg. (3.5) has a unique solutiontip, s 7, .

(3.7)

In the applications below, this theorem will be applied witheplaced by a vector
of parameters/(, 0) or (p, 0, 11), and the fraction(s) — p’)~* is replaced by A(s) —
p) "+ 0(s) — ") or (p(s) — p) "L+ (O(s) — 0)) L + (u(s) — p')~ L. This does not
change the proof of the theorem.

The Euler, Prandtl and Navier-Stokes equations will be solved in a time integrated
form. That is, the system, = A(w) will replaced byu = A( [ udt) in whichu = w,. In
this form the natural estimate on the differencerois the right hand side of (3.7) plus
an additional term like

([ =t ([ -5 ). 38)
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This additional term can bounded by the right hand side of (3.7) as follows: First replace
|u(?)|, by |u|,,: everywhere, so that the norms are increasing #so restrict top(s)

which is decreasing is, so that p(s) — p') ! is also increasing. Then use the following
simple lemma:

Lemma 3.1. Suppose that(s) andb(s) are positive increasing functions. Then

( /o t a(s)ds) ( /O t b(s)ds) <t ( /0 t a(s)b(s)ds) . (3.9)

4. Existence and Uniqueness for the Euler Equations

In this section we shall prove the following theorem:

Theorem 4.1. Suppose thatr § € H"»% | > 4, withV -« § = 0andvy,u § = 0.
Then the Euler equations Eq. (2.1)-Eqg. (2.4) in either 2D or 3D admit a unique solution
uin Hlﬁ’[f‘;% forsomed < pg < p,0 < 6y < 6,0 < By, 0 < T'. This solution satisfies

: izl po.fo.
the following bound inf7 ;%"

E FE
|u |l,po,90ﬁo,T < C|u 0 |l;P’9' 4.1)

The proof of this theorem will be based on the ACK Theorem in the function spaces
X, =H"%andY, g1 = Hlﬁ’ﬁ’f’. The key idea in recasting the Euler equations into a
form suitable for an iterative procedure is to introduce a new variablgessentially

a projected velocity (see Eq. (4.36) below), so that the boundary, initial and incom-
pressibility conditions are automatically satisfied. The core of this section is devoted to
introduction of the half space projection operator, and to the estimate of this operator
(Subsections 4.1 and 4.2). After that we shall introduce an estimate on the convective
part of the Euler equation, Eqg. (4.34), as a consequence of the Cauchy estimate for the
derivative of an analytic function. In Subsect. 4.4 we shall solve the Euler equation, and
recast it in the form given by Eq. (4.37). Using the estimates on the projection operator,
and the Cauchy estimate, it will then be straightforward to verify all the hypotheses of
the ACK Theorem.

4.1. The projection operatorTo prove the above theorem we need to define several
operators. We start with the Fourier transform of the functipfg andg(x, y):

- 1 L 1 o
F€)= G [ dat@e € €6 = 5 [ doduglog)e =0 42)
where the above integrals are on the whole real line and real plane respectively. Later we
shall restricty to be nonnegative. In the rest of this paper we shall adopt the convention
of using¢’ and¢,, as the dual of: andy respectively. In 3Dg and¢’ are vectors, and
& is replaced by: - £'.

Suppose that(T)(¢’) is a function of¢’ such that

T1(E) = o(TNENF(E), (4.3)

whereT" is an operator acting on the function of one variable. Théh) is called the
symbol of the pseudodifferential operatbr If T acts on functions of two (or more)
variables, the definition is analogous.
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We can now define the free space projection operBfSracting on vectorial func-
tionsu (z,y), as the operator whose symbol is (here and in the rest of the paper we shall
often omit the distinction between the operator and its symbol):

00 — 1 5721 _glgn
P> = 5/2+£TZL <_£I€n £/2 ) : (44)

It is easy to see that the action of the above operator consists in projecting vectorial
functions onto their divergence-free part, i.e.

V- P>®u =0. (4.5)
The operatoP>° can be thought of as
pP*=1-vVA~lv. (4.6)
We define the operator, D as the operators whose symbols are:
D=e €l N=_ 1 -1y 4.7)

The above operators solve the Laplace equation in the half plane with Dirichlet and
Neumann boundary condition respectively. In fact the problems

Au(z,y) = 0, ulz,y = 0) = f(x) (4.8)

and
Au(z,y) = 0, 0yu(z,y = 0) = f(x) (4.9

admit the solutions = D f andu = N f respectively. Another operator which is useful
to introduce is
&’

[
Now we express the components of the projection operator on the free space in a
different form; i.e.

N’ = (4.10)

!/ ! 1
= (—f &ns € 2) m

:1<_Nf[ € __I¢] H €, €] D
2 ‘f/l + Zé-n |§/| - Zgn ‘gll + an |§I| - Zgn

This will be useful in proving existence and uniqueness for the Euler equations, as
well as for the Navier-Stokes error equation Part Il. We now give an expression for the
projection operator involving the Fourier transform only in thgariable, which will
simplify the subsequent estimates.

(4.11)

Lemma 4.1. Let f(¢',y) be a function admitting the Fourier transformin Then

|£| = —1€' [(y—v")
€] +ic, € ) =€ \/ e SV (e y)dy' (4.12)
and |£|
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We prove the second of these equalities. Define the function

€']elsl y <0

4.14
0 y>0 ( )

k2(£/7 y) = {
so that the integral operator in Eq. (4.13) can be written as the convolutigresfd f;
ie.

€ / SO (& )y = kal€ ) * F(€ ). (4.15)
Yy

To prove Eg. (4.13) it is enough to apply the Fourier transform with respect tg the
variable to Eq. (4.15), and notice that

!
S S 15

SR —— N — 4.16
2" e e - it (4-16)
The proof of Eq. (4.12) is similar, and is done using the function
/ ef‘glly >0
G B S 4.17)
0 y < 0.

As a result of Lemma 4.1, the normal and transversal compongfits @nd P>’)
of the projection operator can be written as

1 Y ’ ’
P>®, u = 5 [|§/|/ dy/eflé ly—y )(,N/u.pv)
+¢'| / dy’e'ﬁ"‘y—“(zv’u”)} (4.18)
y
TN P A /
P u—u+2[—|§|/ dy'e (u+ N'v)

—|¢'] / dy'el€1=v)(y — N’v)] (4.19)
Y

in whichu = (u,v).
We now define the projection operatBron the half plang, > 0, with vanishing
normal component at the boundary, i.e.4gm (y = 0) =0, as

P =P>® — VN, P*. (4.20)
It is easy to see that the following properties hold forall
V- Pu =0, (4.22)
mPu =0, (4.22)
P?=P (4.23)

Explicit formulas for the half-space projectidhare given by
y ’ ’ y ! ’
Pu =u-— %K" [/ dy'e 10—y + N'v) .,./ dy'e” €10 ) (y — N'v)
0 0

o0
+ (1 +e_2|5/|y) / dy'el€ 1= — N'v) |, (4.24)
y
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1 Y ’ ’ Y / /
Pu = §‘§’| {/0 dy’e"g I(y—y )(—N’u+v) _/0 dy’e“f [(y+y )(N’u +0)

+<1fe*2‘€"y) / dy € 16— (N + )| . (4.25)
Yy

If y is complex, these must be understood as contour integrals. The derivation above,
based on the free space projection operator, is simple, but one can also directly check
that the formulas (4.24) and (4.25) satisfy the conditions (4.21), (4.22) and (4.23). In
the following subsection we shall introduce some bounds on the norm of the projection
operator which we shall use in the rest of this section.

The formulas Eq. (4.24) and Eq. (4.25) can be extended to 3D by the following
modifications: Replace, ¢’ and N’ =&’ /|¢’| by vectors. In Eq. (4.24), replaeein the
integrals byN’ N’ - u. In Eq. (4.25) replac&’u by N’ - u.

4.2. Estimates on the projection operatotset f € H'"* and consider the norm

Flio = {/df' 2}1/2. (4.26)

k<l

el lg' 1k f(e)

Itis easy to see that the above normis equivalent to the one we have previously introduced
in H''¢. In the rest of this paper we shall use both of them according to convenience,
sometime switching from one to the other during the same estimate. Occasionally we
shall omit the distinction between the function and its Fourier transform.

Using the norm we just introduced, Jensen’s inequality, and the expressions (4.24),
(4.25) for P, one can easily prove the estimates in the next two lemmas.

Lemma 4.2. Letu € HY»? ThenPu € H"*? and
‘P’U, |l,p,6 § c\u |17p’9. (427)

We now define the functiog as

x(y) = min(L, [y]). (4.28)

What we want to show is that the normal componen®afoes to zero linearly fast near
the origin. A precise statement is the following:

Lemma 4.3. Letu € HY»? with! > 0. Then

|Pnu IO

5P S C|u
vexo) X)

1p,6- (4.29)

The significance of Lemma 4.3 will be clear only when we introduce the Cauchy estimate
for normal derivatives. We shall use it in this paper to estimate the convective part of
the Euler equation, and it will be crucial in Part Il to handle the large Q.~/?))
generation of vorticity in the boundary layer. The proof of (4.29) can be easily achieved
by distinguishing the two caselg/| > 1 and|y| < 1.

4.3. The Cauchy estimate3o deal with the convective part of the Euler equations we
introduce the Cauchy estimate of the derivative of an analytic function:
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Lemma 4.4. Letf € H'-*" If p' < p/ then

102 fl1,p < p'J,c l_”p (4.30)

If the derivative is with respect to the variable, because of the angular shape of the
region of analyticity, we must multiply byy| for y near 0.

Lemma4.5. Letf € H-»9" 1f ¢ < 0" < w/4then

‘f|l,p,0”
[21Z— .

With the above two Cauchy estimates and using the Sobolev inequality (see e.g. Propo-
sition 2.1), it is easy to prove that

IXW)0y fli,p,60 < (4.31)

Lemma 4.6. Let f andg € H-"" with{ > 4, and letp’ < p”. Then
f 1,p".,0"
1902 fli,pr,0m < clglipr 0 Ko ,|,'p_ —. (4.32)
P’ —p
Lemma 4.7. Letf andg € H-*"#" withl > 4 and withg(y = 0) = 0, and letd’ < 6"
Then

f l7 //70//
|gayf|l,p”,0’ S C|9|l,p”79"9,|,%0,~ (433)

We can finally estimate the convective part of the Euler equations.
Lemma 4.8. Suppose thai * andu 2 are in H;%’ | > 4, and thaty,u * = v,u 2 = 0.
Moreover letp’ and p” satisfy
p—Bt=>p" >0,
0—-08t>0" >0
for0<t<T.Then

L u?y

1.2
ul—w e, fu

1 1 2 2
|u Vu"—u*®-Vu |l,P’79’ <c o — pf 9" — ¢

, (4.34)

where the constantdepends only ofu !

Lpo.pr andlw 2|, 0 5.7
4.4. Pressure-free Euler equationslhe usual problem with the Euler equations is
the presence of the pressure gradient in the conservation of momentum equations and
the corresponding coupling of these evolution type equations to the incompressibility
equation. There are two ways to circumvent these problems: the projection method,
which is employed here, and the vorticity formulation.

First we define the operatét, whose action on a vector functian(zx, y, t) is given
by

t
P (z,y,t) = P/ dsu (z,y, s), (4.35)
0

and pose
u B2,y 1) =ug(@,y) + Pu’ (4.36)
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Itis clearthatonce ¥ is expressedin the above form, the initial and boundary conditions
for the Euler equations and the incompressibility condition are automatically satisfied.
If we put (4.35) into the conservation of momentum equation we get

u*+H (u*,t)=0, (4.37)
where
H@*t)=wf+Pu*) -V +Pu™). (4.38)

Existence and uniqueness of the solutioh of Eq. (4.37), which implies existence and
uniqueness for the Euler equations, is stated in the following theorem:

Theorem 4.2. Supposew ¥ € HP0 1 > 4, withV - §’ = 0andv,u § = 0. Then
Eq. (4.37) admits a unique solutian* in H;;O’jOT’O" for some0 < pp < p, 0 < Gy < 0,
Bo>0,T7>0.

Theorem 4.1 follows directly from Theorem 4.2, using the following proposition, which
is a consequence of Lemma 4.2:

Proposition 4.1. Letw * € H;"%™. ThenPu * € H*%" and

|Pt’U/*

1,00,00,00,T S C|’LL * 1,p0,00,50, T+ (439)

We have also the following bound d? :

Proposition 4.2. Letu * € Hé’off‘}’g‘] and letp’ < pp — BoT and§’ < 6y — BoT. Then
Pou* € H'? foreachO < ¢t < T and

t
|Ptu *‘l,p/ﬁ’ < C/O ds|'u, *('7 B 5)|l,p',9’ < C‘u * 1,p0,60,530,T - (4'40)

In the rest of this section we shall be concerned with proving Theorem 4.2. To do this
we shall verify that the operatdd satisfies all the hypotheses of the ACK Theorem in
the function spaceX , o = H'*"Y (at each fixed) andY, o 5.7 = Hlﬁ’ﬁ,ze (as a function
of t), and withp replaced by the vectop(6).

4.5. The forcing term.It is obvious thatH satisfies the first condition of the ACK
Theoreminthe norm&#-?_ In this subsection we shall prove that there exists a constant
Rp such that

[H (¢, 0)1,00-t.00-pt < Ro (4.41)

in H-? for 0 < t < T, which verifies the second assumption of the theorem. The
constantRo will of course depend ofu &1, , o and on the difference betwegrandpo,
6 andfy. From Eg. (4.38), we see that

Ht0)=ul -Vuf, (4.42)
and Lemmas 4.6 and 4.7 imply

ug - Vu <cludlZ, o (4.43)

5|
0 l1,pg—pt,00— Bt

which gives the desired bound (4.41). We now pass to the Cauchy estimate.
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4.6. The Cauchy estimatén this subsection we shall be concerned with proving that
the operatoiHH satisfies the last hypothesis of the ACK Theorem. We have to show that,

if o < p(s) < po— s, 0’ < 0(s) < flo— Bs, and ifu ** andu *2 are iInHL" | > 4,
with

| "o po00,8.7 < Ry w21 po00,8.7 < R, (4.44)
then in {FLr:?
|H (ta u *1) - H (t7 u *2)|l,p’,9’
co[fas Tt m e | et — w20 (4.45)
- (s) — p' 0(s) — 0 ’
0 P P

First estimate the nonlinear term & . Using Lemma 4.8 to estimate the convective
part of the operatoFf and then Proposition 4.2 leads to

| Pu*t - VPu*t — Pu*? - VPu*?|, o

S AN el i P2 W C ek R
S C S — ) —y
0 p(s) —p ()

t
*1 *2
+/ [u ™™ = w1, po,00,60, 75
0

y /t [ o0+ [ 20, 10 o + 1w e |
p(s) —p 0(s) — ¢’
*1 *2 , *1 *2 o
gs [T = oo | 1w — w0 (4.46)
p(s) — o 0(s) —0'
in H57-? using Lemma 3.1 and the bound (4.44) in the last step. The estimate of the
linear part is similar.

0
t

<C

0

4.7. Conclusion of the proof of Theorem 4 .3ince all of the hypotheses of the ACK
Theorem have been verified, the proof of Theorem 4.2 has been achieved. There exist
0< po<p, 0<b<6,and afy > 0 such that Eq. (4.37) admits a unique solution in
H};O’f‘;ef’. This also concludes the proof of Theorem 4.1 for the Euler equations.

5. Existence and Uniqueness for Prandtl’s Equations

We want to prove that the Prandtl equations (2.6)-(2.11) admit a unique solution in an
appropriate function space. The main result of this section is the following theorem:

Theorem 5.1. Suppose that/” satisfies the compatibility conditions (2.14) and (2.15),
thatu § € H!*4r9 and thatul —yuf € K*Leoboro | > 3(1 > 4in 3D). Then there
exists a unique solution” of the Prandtl equations (2.6)-(2.11). This solution can be
written as:

uF (2, Y, t) =08 (z, Y, t) + yu?, (5.1)
whereii” € K47, with0 < p1 < po, 0 < 61 < 6o, 0 < i1 < pio, 1 > o > 0.
This solution satisfies the following bound]ifgl’flT’el’“l:

|1~"P|l7pl-,917#17ﬂ17T <c (‘U(IJD - 7u§|l+l,po,90,ﬂo + |u (I)E‘Hl,pﬂ) . (5-2)
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In particular this shows that if the initial condition for Prandtl equations exponentially
approaches the initial value of the Euler flow calculated at the boundary, the same
property will be true for the Prandtl solution at least for short time.

The proof of this theorem will occupy the remainder of this section. As in the proof
of existence and uniqueness for the Euler equation, we shall recast the Prandtl equations
in a form suitable for the use of the ACK Theorem (see Eq. (5.38) below). In Prandtl's
equations a second order operator (the heat operator) is present. The key idea is to invert
this operator, taking into account boundary and initial conditions. Therefore we shall
first introduce the heat operators, and prove some bounds on them.

In Subsect. 5.2 we find an operator form for Prandtl equations, Eq. (5.38). The
resulting operatof’ consists of two terms: The first is a forcing term that accounts for
BC and IC. The second is the composition of a convective operator and the inverse of
the heat operator with zero BC and IC.

With the bounds on the heat and convective operators, it is then straightforward to
get the desired bounds, which is performed in Subsects. 5.3 and 5.4.

In the rest of this section we shall always suppbse4 (I > 5 in 3D), as needed
for Proposition 2.3.

5.1. Estimates on heat operator§o solve Prandtl equations we introduce the heat
kernel:

oY1) = ﬁ exp (- V2/41), (5.3)

and the heat operators acting on functigif¥’) with Y > 0 andt > 0,
Eo(t)f = / dY' [Eo(Y =Y’ t) — Eo(Y +Y', )] F(Y). (5.4)
0

The operato¥(t) is obtained by convolution with the heat keridgl(Y, t), with respect
to Y, once the functiory(Y) is extended in an odd manneri&Y” < 0. Note that for
t > 0andY >0,

(0 — Oyy) Eo(t)f = 0, (5.5)
Eo(t)fli=0 = f(Y), (5.6)
VEo(t)f = 0. (5.7)

We need the following operatdty, acting on functions defined on the boundary:

Eig(x,t) = /ot dsh(Y,t — s)g(x, s), (5.8)

whereh(Y, t) is defined by:

Y exp(-Y?/4t)
t (4nt)/2

The functionFE1¢g solves the heat equations with zero initial data and with boundary
valueg; i.e.

(0r — Oyy) Erg = 0,
E19li=0 = 0, (5.10)
vE19 =g.
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Using Ey(t) we define the operatdt, by

t
Baf = [ dsEolt ~ 91(9)
0
t [e'e]
= / ds/ dY' [Eo(Y = Y',t —5) — Eo(Y +Y',t — s)] f(Y',5).(5.11)
0 0
The operatoi&, inverts the heat operator with zero initial data and boundary data; i.e.
(0 — Oyy) Eaf = f,
E5 flt=0 = 0, (5.12)
vE2f = 0.
We now recall some basic properties of the heat operators. In the estimatesdislaw,

constant depending (at most) only @, 5, 1 andT’. Notice that the restrictioft < 7 /4
is needed here. Proofs of the results in this subsection are presented in Appendix A.

Lemma 5.1. Let f(Y) andg(Y") be two continuous bounded functions, and lle¢ expo-
nentially decaying at infinity; i.e. there exists a positive such that
SUBy e s €Y [9(Y)] < 0. Let0 < 0 < /4. Then

sup | [ ay'|Ey £ Y007 < swp 1), (643)
yex©) | Jo Yex(9)
sup etRY / dY'|Eo(Y £Y",8)|g(Y")| < ¢ sup eV |g(Y)|  (5.14)
Yex(9) 0 Yex()

in which the constant depends only ofi and .

Lemma5.2. Let f € C*([0,T7]), with f(0)=0,0 < # < n/4andj = 1,2. Then

sup "™ |Eyf| < esup|f(t)| (5.15)
Yex(6) >0
sup o | o) mf | < {sup|f<t)| . sup|f'(t)|} . (5.16)
Yex(6) >0 t>0

The following bounds on analytic norms of the heat operators will be used throughout
the rest of this paper:

Proposition 5.1. Letu € K"7-%# with yu = 0. ThenEy(t)u € K»:%+ for all t and

sup |Eo(t)u <clu . (5.17)
O§t§T| ‘l,pﬁ,u | |l,p»9,u

The above estimate obviously implies thg{t)u € Klﬁ’ﬁ,zg’“ for all g andT and that

| Eo()ul1,0,0,1,8,1 < cltli,p,0,u- (5.18)
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Corollary 5.1. Letu' =u+ f withu € K79+, f ¢ H'* constant with respect to
andt; moreoveryu = —f. ThenEg(t)u’ — f € K%+ for all t and

39 1B = flu0, < € ([l 1F1,) (5.19)

The above estimate obviously implies tha(t)u’ — f € K3;%"" for all 3 andT and
that '

[Bo(u’ = flipomsr < ¢ (1ulipou*1f1,) - (5.20)

In the next proposition we give an estimateHyi(t)u in a different space, namely in
L%, we shall not use this estimate in this paper but in Part Il Part I1.

Proposition 5.2. Letu € Lb79 with vu = 0. ThenEy(t)u € L'+ for all t and
(5.21)

0<t<T
The above estimate obviously implies thg{t)u € Ll o % for all 8 andT and that
| Eo(t)uli,p.0.8,7 < clulipo- (5.22)
Proposition 5.3. Let¢ € K’l P with ¢(t = 0) = 0. ThenF1¢ € Klﬁ'}pT’e’u and
|E101,0,0,,8,7 < €|l1,p.8.1- (5.23)

We have the following estimate fdf,:

Proposition 5.4. Letu € K;%"". ThenEou € K%"* and

| E2uli,p,0,,87 < clulip,0,u,8.1- (5.24)
The following estimates will also be useful:

Proposition 5.5. Letu € K%"" with yu = 0.1f o' < p — pt, ' < 6 — Bt and
w < pu— Bt, then

t
| Epuli,pr0nw < C/ dslu(:, -, 8)|1,p,00 < ltfi,p,0,u,8,7- (5.25)
0

5.2. The final form of Prandtl’'s equationit.is useful to introduce the new variabié =
af =l —~yuP. (5.26)

Itis more natural to write Prandtl equations in terms of this new variable: Firstbecause the
matching condition with the outer Euler flow, Eqg. (2.10), will be simply a consequence
of the fact that.™ is exponentially decaying v, i.e. of the fact that.* ¢ Klﬁp1 B
Second the gradient of the pressure will not show up in the equation. Equation (2.6) in
terms ofu?” becomes:

(0 — Oyy) @ + il opyu®

Y 5.27
+yufo,af +afo,af — [/ 0,0 dY" + Y dpyu® | 8y af =0, ( )
0
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where we have used
Y Y
P = — / opufdy’ = — / 0,0 dY" +Y Opyu® (5.28)
0 0

and the Euler equation at the boundary
v [0pu® +uP9,u” +0,p"] = 0. (5.29)
The initial condition for Eq. (5.27) is
af (@, Y, t=0) =ul (x,Y) — yud = af (5.30)
while the boundary condition is
vl = —yu®. (5.31)

Equation (5.27) for.” with (5.30) as initial condition and (5.31) as boundary condition,
and withv®” given by (5.28), is equivalent to (2.6)-(2.11) fer”. To prove existence and
uniqueness for (5.27)-(5.31), we shall use the ACK Theorem with the n&#mé* and
Klﬁ’gze*“. To put Eq. (5.27) in a suitable form for the application of the ACK Theorem,

we have to invert the heat operator in Eq. (5.27), taking into account the IC and BC. We
defineU to be

U= —yuf — By (yu® —yud’) + Eo(t) (g +ub) - (5.32)

It is easy to see thdf solves the heat equation with (5.30) as IC and (5.31) as BC; i.e.

(Or — 0yy)U =0, (5.33)
Ut=0)=4a7, (5.34)
U = —yu®. (5.35)

Define the operator& (i, t), which is (minus) the convective part of Eq. (5.27), and
F as

K@?t) = {ﬂpam’qu +~yuf ol + af o, al

Y
— [ / ot dy’ +YaﬂuE] ayap}, (5.36)
0

F(t, i) = BK (@ 1)+ U. (5.37)
The following equation is then equivalent to Egs. (5.27)—(5.31):
af = F(t,ab). (5.38)

The rest of this section is devoted to proving that the opet&fora”) satisfies all the
hypotheses of the ACK Theorem wifti = K0+ andY = KZB’ZL‘Q’“.

5.3. The forcing termit is obvious that the operatdf satisfies the first condition of the
ACK Theorem. In this subsection we shall prove that the opefatmatisfies the second
condition of the ACK Theorem. Namely we prove that
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‘F(t, O)‘l,pl—ﬁotﬁl—ﬁot,m—ﬁot < Ro (5-39)
in K bei—Pot,01—Pot.ua—0ot for 0 < t < T, whereRy is a constant.
Since
F(t,0)=U, (5.40)

Corollary 5.1 and Proposition 5.3 show that

Proposition 5.6. Giventhatil’ € K'*brvovmwithy il = —yul anduf € HILrb,
thenyu® € K% andU € K74 satisfying

~ P
Ul1p0, 00,1607 < € (105 |143,01,00 + |0 141,101,111 - (5.41)

Notice how, to get thatu” < Kg(;f’Tl, a Sobolev estimate in thgvariable has been
used. With this proposition one sees that the forcing term is estimated in terms of the
initial conditions for Prandtl equations and of the outer Euler flow. This concludes the
proof of the estimate (5.39)

5.4. The Cauchy estimatén this and in the next subsections we shall prove that the
operatorF’ as given by Eq. (5.37) satisfies the last hypothesis of the ACK Theorem.
Namely we want to show that i’ < p(s) < p1 — Bos, € < 0(s) < 61 — [os,

1W< ) < pa — Bos, and ifu® andu® are inK ;47 with

|U(1)|17P17917/L17507T <R and|u(2)‘l,p1,91,/t1ﬂo,T <R, (5-42)
then
|F(t, u™) — Ft,u®)i o0

co [ as I =Pl o, 11D = 1Py o 0
= 3 — 0(s) — 0/
0 p(s) = p ()

[u® —u@) o0 )
e . (5.43)

In this subsection we shall be concerned with the opet&torhe operatois involves
three different kinds of terms:

1. The nonlinear term involving the-derivativeu” 0,.4.";
2. the nonlinear term involving thlé—derivative,foy dY'o,at - oyal;
3. the linear terms.

Before going into the details we anticipate that term (1) will be estimated using the
Cauchy estimate in the-variable, term (2) will be estimated using the Cauchy estimate
in theY -variable, the linear growth ili” of the coefficient of term (3) will be estimated
using the exponential decay 1 of the solution. Here and in the rest of this section

0<p' <p” < p1—fot,
0< @ <0 <01 — B,
0<p <p’ <p1— fot.

We now state some lemmas used to estimate the convective operator.
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Lemma 5.3. Suppose thai® and«® are in Kéf;zal’“l. Then

R (R
o —p

@, u® — uP9,u@|, g v < c (5.44)

in the K#%# norm, where the constant depends only oru®|; ,, 4, ... 5.7 and
2
|u( )|l,917917M1,ﬁo7T'

In fact

|u(1)8$u(1) - u(z)amu(z)h,p’,e’,w
< uD3, (u® = u®) |1 g + [P0y (1D = u®) [1 g1 0
+|6T [U(Z) (U(l) — u(z))] |l,p’,0/,u’
[u® — u®y g

<o e (5.45)

We now pass to estimation of terms involving thealerivative. First we give aversion
of the Cauchy estimate Lemma 4.5 for analytic functions exponentially decaying in the
Y -variable.

Lemma5.4. Letf € H"*"¢"-#" Then

flop o w
IX(Y)Oy flipr0nr < |‘|9,,/)77'9,M 1 flpr o (5.46)

YOy fli,00,00

IN

|flopror w1 F 0w
(= M I + |f|l7P'a9'7M" (5.47)

To estimate the nonlinear term involving thederivative we have to use the fact that
the normal component of the velocity, as expressed by the integral froffr Dgoes to
zero linearly fast. We now state a lemma similar to Lemma 5.3.

Lemma 5.5. Suppose thai and«@® are in Klﬁ’o”}:,zel’“l. Then

Y Y
8yu(l)/ dY'8,u® — 8yu(2)/ dY'8,u®
0 0

Lp’, 07! (5.48)

<. [|u(l) _ U(2)|l,p”,9’,u’ . ‘u(l) _ U(2)|l,p/,9”,/¢/
— p// _ p/ 9" — 9

in the K5A%:# norm.

The proof of Lemma 5.5 goes like the proof of Lemma 5.3. The only thing to be noticed
is the fact that, because of the presence of a derivative in both the terms, one cannot use
the Sobolev estimate right away, but has to pay attention to the waydérvatives
distribute between them. If all thiederivatives hit the term involving the integral one
has to Cauchy estimate thederivatives inside it. If instead all derivatives hit the term
involving theY -derivative one has to Cauchy estimate that derivative.

The estimate of the linear term whose coefficient grows linearly is expressed
in the following lemma.
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Lemma 5.6. Suppose thai® and«® are in Ké;flﬁel’“l. Then
Y 0,vuf 0y u® — Y 9,7uP 0y u®@|; o0

oo [0 =gy 0 —u@l
= 0 — ¢ W=

T |u(1) — u(z)‘l’pl’ggul .(5.49)

Using Lemmas 5.3, 5.5 and 5.6 we can conclude this subsection with the following
estimate on the convective operator of Prandtl equations:

Proposition 5.7. Suppose/®) andu® are in K741, Then

‘ K(u(l)? t) - K(u(2)7 t) ’ l p/ 9’ /"'/

1 2
<e |u® _ff( ’Iz,,/w,ef,;u+
P —p

|U(l) - U(2)|l,p'79”7u’ + |u(1) - U(2)|l,p’79’-,u” + |u(1) _

2
0" — @' W= u ‘171)/79/4“

(5.50)

5.5. Conclusion of the Proof of Theorem 5o conclude the proof of estimate (5.43),
first notice that in the iterative construction of the solution of (5.38), each term satisfies

v = —yuP. The differencek (uM) — K (u®) need be considered only for these
functions. As a result, we may assume that
v [K@®, 1) — K@®,1)] =0. (5.51)

This will allow us to use Proposition 5.5. In fact:

| F(u(l)) t) - F(U(Z)Dt) | 1—1 pl.el H/

= | Es [K(ta u(l)) - K(t7 u(Z))} ’ 1—1,p",0" 1’

t
gc/ ds |K(u(1),t)—K(u(2),t)‘171 ' o
A 20

t ). . —_ @ . o
< C/ ds |:|’U/ ( ; ,S) u (_7 7f)|l71,p(s),«9 o
0 p(s) —p

+ ‘U(l)(w 5 8) — U(Z)(‘a g 3)‘171,9’,9(8)#’
0(s) — o’

+ ‘u(l)('v ‘y S) - u(2)(_’ K 8)|l—1yﬂl»9'au(3)
p(s) — '
With the above estimate we conclude this subsection. The proof of the estimate (5.43)

has been finally achieved. Therefore operdtaatisfies all the hypotheses of the ACK
Theorem, and Theorem 5.1 has been proved.

(5.52)
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5.6. Afinal remark.The main result of this section is Theorem 5.1 stating the existence
and the uniqueness of a solutiaff of Egs. (2.6)—(2.11), and that this solution is the
sum of a function exponentially decaying outside the boundary layer and of the value at
the boundary of the Euler flow.

What about normal velocity”? Corresponding ta” definev™ by

Y
P = - / ot dy’. (5.53)
0

Using this expression, the fact thaf is exponentially decaying in thg variable, and
a Cauchy estimate in thevariable, it follows thav® differs by a constant (i ) from
1—1,p1,601,p1

afunctionink; 7 with p] < p1. Renamingy}, just to simplify the notation, we
can therefore conclude that
i e Ki_proivm, (5.54)
o =5 —5P(Y = 00) € Ky i, (5.55)

6. Conclusions

This concludes the proofs of existence for the Euler and Prandtl equations with analytic
initial data. These results will be used in Part Il [12] as the leading order terms in
an asymptotic expansion for the solution of the Navier-Stokes equations with small
viscosity. The solution will be found as a composite expansion, using the Prandtl solution
near the boundary and the Euler solution far from the boundary.

Appendix A: The estimates for the heat operators

Proof of Lemma 5.1We prove the estimate (5.14); the estimate (5.13) can be proved
analogously. Sef = (Y’ +Y)/\/4t so that

Ry 00 ef(yiy’)z/u

sup e* dY' ———— (Y’

Yezl(ae) /o VAant o)

=¢ sup MY / dnefnzg(:FY+n\/4;t)
Yex(0) +Y/Vat

<c sup eV |g(y)]. (A1)
Y €3(0)

This uses the restriction that0 6 < 7 /4, so that—"" < e~*®7" for some constarit
and thus

/ d77e_772 exp—(FY +nV4t) < c. (A.2)
+Y/\Vat

Proof of Lemma 5.2We begin with the estimate (5.15). Use the change of variable

¢ =Y/\/A(t — s) to obtain
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Y —Y?/4(t—s)
sup etRY / ds——°© f(s)
Yex®) VAT(t — 5)
= sup Y |2 / dce=S f(t — Y?/4¢?)
Yex(o) Y/ VAt

o0
<sup|f(t)| sup "2 d¢e=¢
Y ex(6) Y/t

= esup| (1) (A3)

We now pass to the estimate (5.16) wjtl 1. Sincef(0) = 0, then

Y efY /A(t—s)
sup ™Y |9 / ds—— s
YeEF()e) Y Van(t — s) )f( )
— uRY > 7<2X ’ 2 /42
=2 supe dCe 5 't = Y<°/4¢9)
Y €3(60) v/t ¢

< supl['(1)] sup ™Y d¢e=< /¢
YeX(0) Y/V4t

= esuplf' @) (A-4)

The estimate (5.16) with = 2 can be proved in a similar way, usifg E1 f = 0, F1 f.

Proof of Propositions 5.1Denote with)? a1 derivative inz andY” where the derivative
in Y does not show up more than twice (we stress again that in our functional setting a
Y derivative is required up to order two, see e.g. Definition 2.4). Then

|Eo(t)uli,p,0,, = Z sup e
<l Yex(o)

sup
[Sz[<p

o4 / dY’' [Eo(Y =Y, t) — Eo(Y +Y’,8)] u(z,Y”)
0

L2

< sup etRY
51 YeEZ(©)

/ ay’ [|E0(Y - Y/a t)| + ‘EO(Y + Y/at)H sSup Haju('vyl)HLz
0 [Sz|<p

S c|u‘l,p,0,ua (AS)

where Lemma 5.1 has been used in the last step. For the first derivatiyth@boundary
terms afY” = 0 vanished becausdY = 0) = 0; for the second derivative, they vanished
due to cancelation of the twb, factors.
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Proof of Proposition 5.2 Denote byp’ a ;" derivative inz andY’, where the derivative
in Y does not show up more than twice. Also iVaderivative does show up, the order
of thex derivative is at most — 2 (as required irfif":*-%). Then

|E0(t)u|l_, 0= sup / dY
g Z (o’ ,a/¢)

g1 '=?

N 1/2

o / dY' [Eo(Y =Y’ 1) — Eo(Y +Y',1)] u(z,Y”)
0

L2(Rz) }

1o / dnefnzu(x, Y +nvV/4t)

sup
ISz[<p

> sup (/ dY{ sup
i<t 0'<6 o’ ,a/c) |Sz|<p

|/ -Y/ V&
o\ 1/2
> 2
—/ dze % u(x,-Y + Z\/Az)l
Y/Va L2(Rz)
N 1/2
[e'e] s )
SZZ/ dne™"" sup / dy ¢ sup || u(-,Y")||,,
j<li —o0 0'<6 r'6’,a/¢) |Sz|<p
< c\u|l7p79. (A6)
Proof of Proposition 5.3 We have
‘El¢|l,p,9,u,ﬁ,T S c Z Z sup sup e(ﬂfﬁt)éﬁy
122 <l oy OSIST YER(O-BY)

sup 051052 1l 2

[Sz|<p—pt
<ed > sup  sup WO
122 <oy OSIST YER(O-BY)
Oy'Er sup  [|0726) 1
[Sz|<p—pt
< c|plip.p,1- (A7)

In passing from the first to the second line we have used the facEthasolves the
heat equation (so th& F1u = dyy Fyu); in passing from the second to the third line
we have used Lemma 5.2 wilf{t) = supg,|<,— s 1072¢|| 2.
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Proof of Proposition 5.4To estimateE,u|; . 9., 3,7 We mustestimat®? Exulo . 0...8,1
with o < 1, |8y8§E2u|o,p,9,#,37T witha <1 -1, |8tagE2u|o’p’9’#ﬁ7T witha <[l-1
and|ayy6gE2u|07p79,M,g,T with o <[ — 2. We begin WitH83E2u|0,p797u75,T:

_ —BHRY
03 Eaulo,p,0,u,8 7 = SUP sup el
0<t<T YeX(§—3T)

t o
8;‘/ ds [/ dne_"zu(w,Y + 14t — s), s)
0

sup
|Sz|<p—pt —Y/VA4(E=s)
(oo}
+ / dze_zzu(x, =Y +2/4(t — s), s)
Y/VA(E—s) L2

sup  sup W TAORY
0<t<T YeX(6—pT)

t o0
[ as [/ dne=" sup  [[02u( Y +n\/AG— ), )12
0

~Y/VAE=S) | S| <p— Bt

IN

+/ dee™®  sup ||agu(.,—Y+z\/m,s)lle]

Y/ V/AGE=3) |Sa|<p—Bt

< |0gulop6.usr SUP  SUP
0<t<T YeX(6—BT)

t e} e}
/ ds / d776_’72 + / dze
0 —Y/AE=5) Y/ /AG=3)

|0z ulo,p,0,1,,T- (A.8)

We now pass t¢dy 0% Eoulo,p,0,.,8,7; the only difference from the above estimate will
be the appearance of a boundary term, behaving\ike— s), which is nevertheless
bounded using the regularizing property of the integration in time,

|0y 09 Faulopoupr < SUp  sup W PO
0<t<T Y EX(0—BT)

t o
/ “ [/ dne™™ sup Oy 0Su(, Y + /A — 9), 5) 12
0

—Y/ VA=) |Sw|<p—Bt
+/ dre™  sup  ||Oy0%ul-, —Y +2\/A( — ), 9) 2
Y/ VA=) |Sw|<p—pt

67Y2/4(tfs)

25— sup |8%u(-0,s)
/4(t — 8) ‘gw‘gpiﬁt || ||L2‘|

t o o=Y?/4(t—s)

|0y 05 u|0,p,6,1.8,7 + 05 u|0,p.6,u,87 SUP sup ds————
@ 1000l @ 21000 o<t<Tves@—pnJo VAt —s)

IN

N

< |0y 9zulo,p,0,u,6,1 + clOg ulo,p,0,,8,T
(A.9)

We now pass t¢0; 03 Eoulo,p,0,.,8,T"
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10407 E2ulo,,0,,8,T
< sup  sup P PORY {| sup |05 u(-, Y, )| 2
<

0<t<T YeX(0—pt) Sz|<p—pt
Y e—Y2/4(t—s)
sup (|07 u(:,0,1)] 22

t
+ ds| ——M—
/0 t—=5 VAt —9) |su|<p-pt
oo 2 1
+ dne™"n——= sup |0y O0su(-,Y +n\/At — s),1)| L2
/—Y/4(t—s) VE—5) |52/<p—pt v

[Sz|<p—pt

> 1
_ dze % z————— Su 0 3§‘u',7Y+z At — s),t
/Y/ws) NG p [0y 07u( VA —s) )||L2‘|}
< clOgu

< C|u|l7p70,uﬁ7T'

0,0,0,u,8.T T c|0y 9z u 0,0,0,11,8,T

(A.10)

The term|0yy 03 Eoulo,p,0,.,8,7 Can be bounded using the estimate (A.10) and the fact
thatdyy Fou = 9; E>u — u. This concludes the proof of Proposition 5.4.

Proof of Proposition 5.5The proof of Proposition 5.5 is very similar to the proof of
Proposition 5.4, the main difference being that one is not allowed to use the regularizing
properties of the integration in time; no singular term appears, though, because of the
requirement that: = 0 at the boundary. Here we present the estimate of the term
|8y8;‘E2u|0,p/,9/7#/ with o <[l-1:

, t
|0y 0% Equlo, 0 < SUP eF 8W/ ds
0

Yeo(6)
/ dne"72 sup |0y 0%u(-, Y + /4t — s), 8)|| 2
—Y/Vait—s) [Sz|<p!
o0
+/ dee™ sup Oy OZu(, —Y +2y/aG — 5), 9)|| 2
Y/VA{E—s) ISz|<p’
t
S/ ds|Oy 03 u(:, - 8)lo,pr 07 - (A.11)
0
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