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For the space homogeneous Boltzmann equation, we formulate a hybrid Monte
Carlo method that is robust in the fluid dynamic limit. This method is based on an
analytic representation of the solution over a single time step and involves implicit
time differencing derived from a suitable power series expansion of the solution
(a generalized Wild expansion). A class of implicit, yet explicitly implementable,
numerical schemes is obtained by substituting a Maxwellian distribution in place
of the high order terms in the expansion. The numerical solution is represented as
a convex combination of a non-equilibrium particle distribution and a Maxwellian.
The hybrid distribution is then evolved by Monte Carlo using the implicit formu-
lation for the time evolution. Computational simulations of spatially homogeneous
problems by our method are presented here for the Kac model and for the variable
hard sphere model (including Maxwell molecules). Comparison to exact solutions
and to direct simulation Monte Carlo (DSMC) computations shows the robustness
and the efficiency of the new method ) 1999 Academic Press

Key Words:Boltzmann equation; Monte Carlo methods; fluid dynamic limit; im-
plicit time discretizations.

1. INTRODUCTION

Computation for rarefied gas dynamics (RGD) in engineering applications is most
guently performed using Monte Carlo methods. The direct simulation Monte Carlo (DS
method [1] has been particularly successful for a wide range of applications, from the s|
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shuttle to vacuum pumps [17, 18, 25]. Intermolecular collisions are the dominant featut
these particle methods, and the natural time scale for them is the collisional time.

This presents a difficulty for rarefied flows that are near to the fluid dynamic limit, sir
then the collisional time is very small. On the other hand, for such problems the ac
time scale for evolution is the fluid dynamic time scale, which may be much larger the
collisional time. A nondimensional measure of the significance of collisions is given by
Knudsen numbef, which is small in the fluid dynamic limit and large in the free streamin
limit. For small Knudsen numbers, existing Monte Carlo methods lose their efficiet
because they operate on a much shorter time scale than is necessary.

The aim of this paper is to introduce a new Monte Carlo method that is robust in
fluid dynamic limit, by which we mean that it is accurate and efficient for a full ran
of Knudsen numbers. In this method, the molecular density function is represented
sum of two pieces: a continuous density function and a discrete collection of partic
This representation allows an implicit formulation for the time evolution of the Boltzma
equation, so that a small Knudsen numbeloes not require small time steps. In this way
the method automatically takes advantage of the fluid dynamic description for the evolt
when this is appropriate and naturally makes the transition from RGD to fluid mechan

For transport theory in general, the problem of finding numerical methods that perf
robustly in the fluid dynamic or diffusion limit is one of the most important computation
challenges. Our work follows a line of related methods for other transport problems: Lau
and co-workers [3] were the first to develop robust methods for neutron transport in diffu:
regimes. Similar results were derived by Jin and Levermore [11, 12] and recently by N
and Pareschi [19, 20] and J& al. [13, 14]. Caflischet al.[5] developed a robust method
for the Broadwell model of RGD.

Most recently, Gabettat al. [9] developed a robust method for the Boltzmann equatic
based on implicit time differencing derived from a suitable power series expansion, ce
the Wild sum [26], which greatly influenced the present work. All of these methods w
for finite difference or finite element type methods.

In arelated paper, Pareschi and Russo [22] developed a similar method based on ad
function that is represented only by particles. This has the virtue of greatly simplifying
convection step. The hybrid method presented in the present paper is an improvemen
this particle method both in accuracy and efficiency. It combines a Monte Carlo algori
for the particle fraction of the distribution together with a deterministic evolution of tl
continuous fraction. A brief description of both methods was presented in [21].

These are the first particle methods of this type. The only previous implicit version
Monte Carlo method in transport problems was for the linear equation of photon trans
[10].

Previous efforts to find hybrid methods by combining particle methods in some reg
of space and fluid methods in another were developed in [4]. Another related methoc
includes multiple collisions of some particles to improve the accuracy in each time ste

The numerical solution of the Boltzmann equation is usually approached by means
splitting in time of convection and interactions between patrticles. In this paper, the met
is developed only for the spatially homogeneous problem. In other words, the collisic
step is included, but the convective step is not. Similarity solutions [16] in velocity a
time are the main test problem here. The computations are performed using both the
model [15] and the variable hard sphere models [2] including Maxwell molecules. In fut
work, for which we already have preliminary results, we will generalize this method
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include spatial dependence, i.e., convection. This will be performed first for one dimens
on problems such as shock waves and flow between two plates, then for two dimens
problems, such as flow around an obstacle.

In the next section we recall some basic properties of the homogeneous Boltzn
equation and its time discretization. In Section 3 we discuss the time transformation fron
that leads to implicit time evolution and the Wild sum formulation for the collision proce:
Then we introduce a class of schemes, which are robust in the fluid limit, based on reple
the high order terms in the Wild sum by a Maxwellian, i.e., relaxing them to equilibriul
In Section 4, we formulate an analytic representation of the particle density furfctisn
a MaxwellianM plus another density functiap i.e., f = (1—8)g+B8M with0O< g < 1.
We find equations for the evolution gfandg, which show how the solution evolves toward
a Maxwellian distribution withg = 1.

A Monte Carlo method corresponding to this analytic representation is presente
Section 5. It is implemented for the Kac and VHS models in that section. Then com
tational results are presented in Section 6. Finally, a summary and discussion of ft
directions are presented in Section 7.

2. THE SPACE HOMOGENEOUS BOLTZMANN EQUATION

The spatially homogeneous Boltzmann equation is [6]

af 1

supplemented with the initial condition
f(v,t=0) = fo(v), 2

wheref = f (v, t) is a nonnegative function describing the time evolution of the distributic
of particles which move with velocity at timet > 0. The parameter > 0 is called the

Knudsen number and is proportional to the mean free path between collisions. The bili
collision operatoQ( f, f) describes the binary collisions of the particles and is given by

Q(f, fH(v) =/ /szo(h) — v, ) () f),) — f(v)f(v,)] dodu,. 3)
R3

In the above expression,is a unit vector of the sphel®?, so thatdw is an element of area
of the surface of the unit sphe& in R3. Moreover(v', v\) represent the post-collisional
velocities associated with the pre-collisional velocitiesv,) and the collision parameter
w; i.e.,

/ 1 / 1
v =§(v+v*+|v—v*|a)), v*:é(v+v*—|v—v*|w). 4)

The kernelo is a nonnegative function which characterizes the details of the binary
teractions. In the case of inverkéh power forces between particles the kernel has tt
form

o(Jv—vil,0) = be(0)|v — v,%, (%)
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wherea = (k — 5)/(k — 1). For numerical purposes, a widely used model is the variat
hard sphere (VHS) model [2], correspondindpt@d) = C, whereC, is a positive constant.
The casex =0 is referred to as Maxwellian gas whereas the easel yields the hard
sphere gas.

During the evolution process, mass, momentum, and energy are conserved; i.e.,

/ Q(f, lp(w)dv =0, ¢ =1v, 0% (6)

RB

and in addition the distribution functioh satisfies Boltzmann’s well-knowH -theorem
d
—/ flog(f)dv <O. @)
dt R3

From a physical point of view, Boltzmannig-theorem implies that any equilibrium dis-
tribution function, i.e., any functiorf for which Q(f, f) =0, has the form of a locally
Maxwellian distribution

o lu—v|?
M(p,u, T)(w) = WBXF’(—T)’ 8)

wherep, u, T are the density, mean velocity, and temperature of the gas. From (6) it follc
that these quantities do not vary with time, and hence we can write

p(t) = /R3 f(v,t)dv = p(0), 9
1

uct) = —/ vf (v, t)dv = u(0), (10)
P JR3

T@) = i/ [v —u®]?f (v, t)dv = T(0). (12)
3p R3

When the collisional time is small, then the problem (1) becomes stiff. A direct, explic
method such as DSMC then becomes computationally expensive, requiring time ste
sizes. An implicit method, on the other hand, would allow larger time steps by capturi
the correct relaxation of the distributidnto Maxwellian. As discussed in the Introduction,
the main point of this paper is to formulate an implicit particle method for the Boltzma
equation.

3. IMPLICIT TIME DISCRETIZATIONS

As proposed in [9], a general idea for deriving robust numerical schemes, by whict
mean schemes that are unconditionally stable and preserve the asymptotics of the
dynamic limit, for a nonlinear equation like (1) is to replace high order terms of a suita
well-posed power series expansion by the local equilibrium. The great advantage of t
implicit schemes is to be explicitly implementable, since the schemes result from an exy
discretization of the implicit formulation.

Here we will first derive the schemes as presented in [9] and then we will show how
possible to generalize this approach.
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3.1. Wild Sums Expansions
Let us consider a differential system of the type

af 1
= IP(h D uf] (12)
&

with the same initial condition (2) and whegte# 0 is a constant an® a bilinear operator.
Let us replace the time variablend the functionf = f (v, t) using the equations

T = (1— e "%, Fv,7) = f(v, t)e s, (13)

ThenF is easily shown to satisfy
oF 1
— =—-P(F,F) (14)
at 1%

with F(v, T =0) = fo(v).
Now, the solution to the Cauchy problem for (14) can be sought in the form of a po\
series

Fo,0) =Y k@),  fico) = fo(v), (15)
k=0
where the functiondy are given by the recurrence formula

P(fn, fen), k=0,1,.... (16)

Tl

1 k
fip1(v) = k——l—l Z
h=0

Making use of the original variables we obtain the following formal representation of 1
solution to the Cauchy problem (1)

o0

fu.t) = e (1 e ) fi(v). (17)

k=0

Remark 3.1. The method was originally developed by Wild [26] to solve the Boltzmar
equation for Maxwellian molecules. Here we describe the method under more ger
hypothesis orP as derived in [9]. We emphasize that the representation (17) is not uni
and other well-posed power series expansion can be obtained in a similar way [9].

Finally, note that expansion (17) continues to hold algo i$ a function ofv. Unfortu-
nately this choice leads to nonconservative schemes.

3.2. Truncation and Time Relaxed Schemes

Now, we describe the numerical approximation to problem (14).
First, we state the following [9]

PropPosSITION3.1. Let P(f, f) be a nonnegative bilinear operator such that there exi:
some functiong (v) with the property

/ P(f, f)¢((v)dv :,u/ fo(v)do, (18)
RS R®
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wherey > 0. Then the coefficients® defined by(16) are nonnegative and satis#k > 0
/ fR¢)dv = / f O (v) dv. (19)
R® R®

Now, suppose the sequenge®}y- o defined by (16) is convergent. Then (17) is wel
defined for any value of the mean free path. Moreover, if we denote by

M(v) = I(Iim fi (20)
then
tIim f(v,t) = M(v),

in which M (v) is the local (Maxwellian) equilibrium.
In [9] the following class of numerical schemes, based on a suitable truncatiorefdr
of (17), has been constructed

m
) = etV YT (1— e ) ) + (L- e )M IME). (1)
k=0

where f"(v) = f (v, nAt) andAt is a small time interval.
The main reason for introducing these schemes is given by the following result [9]

THEOREM3.1. The time discretization defined (1) satisfies the following properties

(i) 1f sup._,{|f® — M|} <C for a constant C=C(v), then it is at least a m-order
approximation(in uAt/e) of (17).

(i) Under the same assumptions of Propositiah f"+1(v) is nonnegative indepen-
dently of the value of and satisfies

/ "l o) dv = / f ¢ (v) dv. (22)
R® R®
(iii) Forany m> 1, we have

lm () = M®).

Remark 3.2. The previous theorem guarantees that the truncated sum (21) has the
rect asymptotic behavior when— 0, with order of accuracy determined by the rate ¢
convergence of the sequenfigowardsM (v). Some natural alternative truncations of (17)
such as

m
f1Hl(y) = g nAle Z (1 _ e—uAt/a)k £1(v) + (1 _ e—#At/a)erl 1,0 (23)
k=0

are consistent and conservative (i.e., satisfy (i) and (ii)), but do not possess the cc
asymptotic limit ag goes to zero.
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3.3. Application to the Boltzmann Equation

Now we apply the previous general approach to the Boltzmann equation and rel
kinetic models. To this aim, we will assume that the collision kernel satisfies a cut-
hypothesis.

DenoteQx ( f, ) to be the collision operator obtained by replacing the kerngith the
kernelos,

ox(lv — vl w) =minfo(jv —vs|, @), X}, £ >0.

Thus, for a fixedz, let us consider the homogeneous problem

of 1

ar = =t D). (24)

Problem (24) can be written in the form (12) taking
P(f, f) = Qi(f, ) + f(v)/Rs/Sz[z—a:(|v—v*|,w)]f(v*>dwdv*, (25)
with u =47 Zp and
Qi(f, f,) = /]Rs /SZ oz (v — v, @) T (V) f (v)) dw dv,. (26)

It is a simple exercise to verify that Proposition 3.1 holds wiiv) = 1, v, v2. Since the
coefficientsfy(v), k>1, of expansion (16), include numerous five fold integrals like (25
the most efficient scheme for practical applications is thatrfer 1.

This scheme provides a first order approximation to the solution by substitigtikg- 2
with the local Maxwellian (8).

With the notations of the previous sections, the first order scheme reads

") =1L -0 ") + (1 — 1) (V) + T2M(v), (27)
wherer = (1 — e *A#) The results of the last two subsections show that the approximat
defined by (27) is well-defined independently of the Knudsen number, has the cor
moments, and converges towards the correct fluid-dynamic limit.

The time relaxed approximation can generally be written in the form

£ 1) = AL f(v) + B f(v) + COM(v), (28)

wherel = uAt /e and the weight#\, B, andC are nonnegative functions. For conservatiol
we must have

AL)+BM)+Ch) =1, V. (29)
A choice of functions which satisfies the previous requirements is given by

A=1-7, B=tl-1), C=r1% (30)
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with T =1 — e™*, which corresponds to the scheme (27). A better choice of parameter
[21]
A=1-7, B=11-7%), C=15 (31)
which corresponds to takinf = f1, fx = M, k> 3in (17).
Remark 3.3. In some particular situations the method is considerably simplified.

e For the one-dimensional Kac equation [15],

of 1 [/t>° 1
ot _ 7/ Q)L — F) f (0] du. 6, (32)
ot e J o 2m
where
v/ = vcosh — v, sind, v, = vsind + v, coso, (33)

the previous scheme can be applied directly taking

+00
P(f, )= % ./_OQ f(v') f(v),) dv, do, (34)
andu = p.

Since, the only conserved quantities are the total mass and the energy, Propositic
holds forg (v) =1, v2.

e For Maxwell molecules the situation is similar to the case of the Kac equation.

fact, since the collision kernel does not depend on the relative velesity:-s (w)), we
simply haveP (f, f)= Q% (f, f) andu = po where

E:/ os(w) do. (35)
F

4. SPLITTING OF THE MAXWELLIAN PART

In this section, we formulate an analytic representation for the density funttiamich
takes advantage of the relaxed time discretization presented in the previous section.
next section the analytic representation will be translated into a numerical represente
Specifically one of the components biwill be replaced by a discrete set of particles.

As derived in the previous section, the general form for a single step of the Wild rela
time discretization is

fM+l = Af" + Bf"+CM 36
1

in which f" is the density function at time step f;' = P(f", f")/u is the first order term
in (17), and the coefficientd, B, C are positive constants as in the previous section.

In order to analyze and exploit the discretization (36), wfitas the linear combination
of a Maxwellian density and a non-Maxwellian density, as

f'v) = (1~ BM9" () + B "M(v) (37)
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in which 8 is a nonnegative scalar. The Maxwellian dengityis chosen to have the same
macroscopic parameters &8, i.e.,

oM = Pf, Um = Uy, Tvm =T, (38)

which is equivalent to
/¢(u)f(v)dv=/ (WM () d, (39)
RS R3

with ¢ (v) =1, v, v2.

In (38) and (39) we have omitted the supersaniptinceps, us, andT; are independent
of n, and as a resuM is independent af.

Now insert the representation (37) fof into the discretization (36) and use the fact tha

fi(M, M) = M. (40)

The right hand side of (36) then naturally splits into a Maxwellian gdrt'M and a
non-Maxwellian par{1— g"*1)g"*+1, in which

B = AB" + B(B"?+C (41)
(1-"Hg" = AL - Mg + B(L— M2 (9", g"
+2B(1 - gMB" f1(g", M). (42)

It follows that
g™t = (A+ B+ ")t (A" + B(L— 8" fi(g", g") + 2BB" f1(g", M)) . (43)

Equation (41) is an iterated map for the coefficignand can be rewritten using the
conservation property (29) as

gt — g" = B(B" — 1)(B" — C/B). (44)

This discrete dynamical system has stationary pgntsl andg = C/B. Our interest is
only in 0< 8 <1, which is an invariant region for the system. Hence we can state 1
following results:

PropPosITION4.1. (i) If C/B>1, then8 =1 is an attracting point and8" — 1 as
n — oo at an exponential rate with coefficie(@ — B), i.e,,

1-p"=a(C—-B)", a=£0, (45)

forn large, if C/B > 1.
(i) If C/B <1, thenB =1is unstable ang = C/B is attracting. In this cas@" —
C/B as n— oo at an exponential rate with coefficie(B — C), i.e.,

IC/B—pg" =a(B—C)", a#0, (46)

forn large if C/B < 1.
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Remark 4.1. The requiremenC/B > 1 cannot be verified uniformly in = uAt/e.
However, the fluid regime correspondsity> 1 so thaiC/B > 1 because of the asymptotic
preserving property. This shows thgit increases monotonically to 1 in the fluid region, a
desired.

Forexample, for the first order scheme corresponding toG3®,= /(1 — 7). Itfollows
thatg" — 1if r > 1/2. Similarly the scheme characterized by (31)8#8 = t2/(1 — 7?).
Henceg" — 1if t > 1/4/2.

Clearly, near the fluid limijcAt /e > 1 and hence =1 — e #AVe ~ 1,

5. HYBRID TIME RELAXED MONTE CARLO METHODS

In this section we describe the Monte Carlo method for the evolution of the den:
function f.

We develop the algorithms firstin the simple case of constant cross sections (Kac equ
and Maxwellian molecules) and then for the Boltzmann equation for variable hard spl
gas.

5.1. Formulation of the Method

Here we describe our new algorithm based on the evolution of the mixed distribu
f =(1-B)g+ BM. As described in Section 4, the distinguishing feature of our meth
is that the Maxwellian part of the distribution is represented analytically and the n
Maxwellian fraction is represented as a particle distribution; i.e.,

") = 1 —-BM9"(v) + BM(v), (47)
in which
1
g"(v) = N ;8(11 —v). (48)

Our starting point is the evolution equation (42) & which can be written as

P("g") _ P(@.M

gn+1 — plgn + P2 [ql (9", 9" + 0 g ) ’ (49)
1 1
in which

A B(1+ Bn)
_ . el 50
T AvBaapy P T ATBAL Ay )

1- g 28"

= = . 1
w=17p =14 (51)

Note thatiff " is a probability density, so §'. Moreover,p; >0, p2 >0, p1+ p2=1,q1 >
0,02, >0, g1+ g =1, and thereforg, and p, can be interpreted as probabilities, apd
andgq; can be interpreted as conditional probabilities.
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Thus, Eq. (49) has the following probabilistic interpretation: a particle extractedgfom
has no collision with probability;, it collides with another particle extracted fragh with
probability poqs, or it collides with a particle sampled from the Maxwellian with probability
P2Q2.

Note thatA and B are functions ofr =1 — e #*A¢ as specified in Subsection 3.3, anc
that the probabilistic interpretation is uniformly valid ipAt /e. Moreover asuAt/e —
00, B" — 1 because of the asymptotic preserving property of the quanfti&s andC.
Therefore the density functioh”" has the correct fluid limit.

The above interpretation suggests a Monte Carlo algorithm for the evolution of
distribution " = (1— g™ g" + B"M. We call this the “hybrid time relaxed Monte Carlo”
(TRMCH) method.

Remark 5.1. If the number of particles is kept fixed, then their weight changes, sin
the mass associated to the particles is proportionél te 8™). Instead, we chose to use
a variable number of particles with constant weight per particle. This choice has se\
advantages. It improves the efficiency of the method, since the number of particles
hence the computational cost) decreases without affecting the accuracy, and it simp
the exchange of particles between cells in a spatially inhomogeneous problem.

5.2. Maxwellian Molecules

We first describe the method wheé(f, f)=Q*(f, f). In this case, a Monte Carlo
algorithm based on Eqgs. (42), (49)—(51) is given by

ALGORITHM 5.1.

1. setM to be the Maxwellian with the same moment as the original distribution
2. start with Ny particles sampled fronfip(v), and sejg® = 0
3. computeA(uAt/e), B(uAt/e), C(uAt/e)
4.forn=0---ntor — 1 (in whichntor is the number of time steps)
o M= AB"+ B(B")?+C
e computeps, Py, 01, G2
e compute the expected number of collision pairs:
—Ngg = P20 Nn/2
—Ngm = P202Nn/2
o performNgy, collisions between twg particles (exactly as in standard DSMC)
e perform Ngw collisions between g particle and a Maxwellian
—extracti without repetition
—samplev from the MaxwellianM with the same moment as the original
distribution f"
—perform the collision betweeny andv
—assignt = v
e updateN: Np 1 = RoundNo(1 — Bnyi1))
e correct™ ! in order to preserve masg;;1 = 1 — Nn.1/No

Remark 5.2. The above scheme conserves momentum and energy only on the ave
but not exactly. This is because the collisions with the Maxweligiif performed indepen-
dently from each other, do not maintain exact conservation of momentum and energy
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taking this into account, a conservative algorithm can be constructed by changing mol
tumuy and energyey of the Maxwellian fraction after each collisiolo¢al conservatioh
according to

)% — (vj)?
ZNOﬂ” ’

where
1 2
Em = E(d Tv + Uy),

d is the dimension of the velocity space, ahg is the temperature of the Maxwellian.
Alternatively, conservation can be restored by modifying the moments associated t«
Maxwellian fraction at the end of each time stgjopal conservation
This is obtained by imposing

(l— ,Bn+l)Ep +/3n+1EM — EO, (l— ﬁn+1)up +ﬂn+luM — u07 n> 0’

whereu, andE are the mean velocity and energy of the particles.

The two approaches give very similar results and can be uggdsfnot too small.

If the distribution is very far from equilibrium, i.e., #, < 1, then because of fluctuations,
it may happen that the energy decreases too much, and it is impossible to chang
parameters of the Maxwellian to impose conservation. On the other hand, in this case,
a very small fraction of collisions will be non-conservative, and therefore the lack of ex
conservation will not affect the quality of the result.

5.3. VHS Kernels

Now we consider the case of VHS collision kernels. In this case the dynamics of
collision is locally characterized by the quantitigs= exp(—oij p At/€) which depend on
the pair. This gives rise to a local evolution gf.

An acceptance-rejection technique, similar to the one used for DSMC, can be adoj
The conservative algorithm to update andg" can be written as

ALGORITHM 5.2.

l.set8 =0,N.=0
2. compute an upper bourXl of ¢j; (as in DSMC)
3. computer = exp(—p Z At/e) and the corresponding quantitiés B, C, p1, pz,
01, 02
4. compute the number of dummy collision pairs:
o Ngm = P202Nq/2
e Ngg = P201Nn/2
5. performNgg dummy collisions betweeg-particles, i.e.,
e extract(i, j) without repetition
e computeA;, B;j, Cij, pzij (with ¢ replaced by[ij)
o if p» Rand< py; then perform the collision between andv; (as in stand-
ard DSMC)
—B < B+ 28
—N¢ < Ng+2
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6. perform Ngm dummy collisions between thgparticles and the Maxwellian,
e extracti without repetition
e sample one particlen, from the Maxwellian
o computeAim, Bim, Cim, P2im
o if pp Rand< puim then perform the collision between and the Maxwellian
—pB < B+ Bim
—Ne < N;+1
7. " =B/N;
8. updateN: Ny 1 =RoundNy(1—g"*1))
9. correct8" 1 in order to preserve mass
10. correcuy, andTy to maintain conservation of momentum and energy.

Remark 5.3. Note that in the space homogeneous case, the Maxwellian equilibri
fraction " can only increase, and, consequently, the number of particles can only decr
if we start from a completely discrete distributiof’(= 0). WhenN"*! < N", some par-
ticles are just disregarded. In accordance with the evolution equatiof, fibr At /e is
sufficiently large, the number of particles decreases exponentially, and the distributic
rapidly projected onto a Maxwellian.

6. NUMERICAL RESULTS

In this section we test the hybrid time relaxed Monte Carlo (TRMCH) by compari
it with standard DSMC. We consider three initial value problems, respectively, for |
Kac equation, Boltzmann equation for Maxwell molecules, and hard spheres. In our
we use the set of parameters defined by (31) and perform a single run, with a numb
particles sufficiently large to control the effects of the fluctuations. We express the res
as a function of the scaled time variabje which we denote again kyin order to simplify
the notations.

6.1. The Kac Equation

We compare the Monte Carlo solutions with an exact solution of the Kac equation (:
corresponding to the initial condition

fo(v) = vZexp(—v?), veR.

The solution is given by [16]
173 3/2,2 2
fo.n=35|50- C)~/C + (3C — 1)C¥%?| exp(—Cv?),

where

1

C=3C 2exp(—/7t/16)°

In order to compare our results with those obtained in [8], we reconstruct the den
function on a grid, by convolving the patrticle distribution by a suitable mollifier.
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More precisely, we use

1N
fosmc(V)) = N Z Wh (V| —vj), (53)

NH
frrmcH(VI) = (1— B )—ZWH Vi — o) + "M (W), (54)
j=1

where fpsuc and frrucH denote, respectively, the reconstructed density function obtair
by DSMC and TRMCH on a regular grid

Vi = Vimin+ 1AV, | =1,..., Ng}.

The smoothing functioVy is given by

1 « 3/4—x2 if x| < 0.5,
Wy (X) = ﬁW(E), W(X) = (X —3/2)?/2 if 0.5 < |x| < 1.5,
0 otherwise

The valueH =0.2 has been selected as a good compromise between fluctuations
resolution. The simulations are performedfer[0, 8] by starting withN =5 x 10* parti-
cles.

In Fig. 1 we present the numerical results obtained with the same timeé\stef.5 at
two different times. The correspondihg-norm of the error is reported in Fig. 3 (left).

It is evident that TRMCH gives a better representation of the solution especially neal
local extrema.

Figure 2 shows the results of the same test where the time step of the TRMCH is
times larger then the one used by DSMC. Titienorm of the error is plotted in Fig. 3
(right). Note that in spite of the larger time step, TRMCH solution seems to better cap
the features of the exact solution.

We remark that in the first test case (Fig. 1) the computational cost of TRMCH is sligt
lower than the cost of DSMC, while in the second case (Fig. 2) itis about five times sma
This is because for TRMCH the number of particles (and therefore the number of colli
per time step) decreases in time (see Fig. 4).

6.2. Maxwell Molecules

Next we consider the 2D homogeneous Boltzmann equation for Maxwell molecules.
exact solution of the equation corresponding to the initial condition

v2
fo(w) = — exp(—v?), (55)

is given by

1 v2 v2
o=y fi-ta-o(i-2)|es(-2). w9

whereC(t) =1— (1/2) exp(—t/8).
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FIG. 1. Kac equation. Distribution function at tinte= 1.5 (top) andt = 3.0 (bottom). Exact (line), DSMC
(+), and TRMCH ¢). Time stepAt =0.5.
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FIG. 2. Kac equation. Distribution function at time= 2.0 (top) andt = 4.0 (bottom). Exact (line), DSMC
(+), and TRMCH ¢>). Time stepAt =0.25 (DSMC) andAt = 1.0 (TRMCH).
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FIG. 3. Kac equationL? error vs time, DSMC ) and TRMCH (). Top, At =0.5. Bottom, At =0.25
(DSMC), At =1.0 (TRMCH).
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The comparison with the exact solution is obtained by reconstructing the function c
regular grid of spacingsv = 0.25 by the “weighted area rule.”

All the simulations have been performed far [0, 16] by starting withN = 10° particles.

In Fig. 5 we show the.2 norm of the error in time for both DSMC and TRMCH on the
time interval [0, 8]. In the first test we use the same time atep- 0.4. The results confirm
the gain of accuracy of the TRMCH method on the transient time scale (left) Farthe
methods are almost equivalent since the maximum value reachgtl &ythe end of the
simulation is about @2 and hence most of the distribution is composed of particles.

Using a time step oAt = 0.6 for the TRMCH andAt = 0.15 for the DSMC the gain of
accuracy is less evident but more uniform in time (right). Here the final valgé sfabout
0.25.

We report in Fig. 6 the variations of the moments associated to the Maxwellian frac
in the TRMCH method. The variation in the first time steps is due to the fact that we
as initial moments of the hybrid distribution, the exact moments of the analytical soluti

Finally, we test the schemes by computing the fourth order moment in time and
comparing it with the exact solution

Ma(t) = 8C(®)(2 - C(1)). (57)

For the TRMCH method we use the relations

1 &
MRMCH — (1 — ;9”)m D 8w — v+ B"(8TG + Uy (8Tw + uy)).
i=1

The results are plotted in Fig. 7. It is clear that the solution given by TRMCH is mc
accurate even with a larger time step.

6.3. VHS Molecules

The last test problem deals with the numerical solution of the Boltzmann equation
hard sphere molecules (VHS, fer=1) withC, = 1.

The initial condition is the same used for the Maxwell molecules (55). The “exact” so
tion has been computed using the DSMC method with1®F particles and\t =5 x 1073,

As inthe previous case, the density distribution is obtained by reconstructing the func
on aregular grid of spacingv = 0.25 by the “weighted area rule” and the simulations hav
been performed fare [0, 16] by starting withN = 1C° particles.

In Fig. 8 we show the time evolution of the fourth order moment of the solution. T
results confirm the gain of accuracy and the reduction of fluctuations of the TRMCH met
with respect to the DSMC method for larger time steps.

Next we report the number of dummy collisions and the number of effective collisic
per time step performed by DSMC and TRMCH (Fig. 9).

In spite of the fact that the time step for TRMCH is larger than that of DSMC, the num|
of dummy collisions is higher for DSMC. The reason is that this number is proportiona
At for DSMC, and itis proportional to X exp(—u At) for TRMCH. This is an additional
reason of the better efficiency of the TRMCH with respect to DSMC.

Finally we give in Fig. 10 the variations @ and of the number of particles in time for
the TRMCH method.
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FIG. 5. Maxwell moleculesL? norm of the error vs time. DSMC¥) and TRMCH ¢). Top, At =0.4.
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FIG. 8. Hard sphere molecules. Fourth order moment vs time. DSMCTRMCH (), and “exact” (line)
solution. Top,At =0.1 for DSMC andAt =0.2 for TRMCH. Bottom,At =0.1 for DSMC andAt = 0.4 for
TRMCH.
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7. CONCLUSION AND FUTURE WORKS

The implicit Monte Carlo method presented above has been shown to provide favor
performance for spatially homogeneous problems, in comparison to the DSMC met
Longer time steps are allowed, without degradation of accuracy, because the time evol
is performed using an implicit formulation. In the small relaxation limit, the method proje
the density distribution to the correct equilibrium state.

Computational complexity and statistical variance are reduced because of the sn
number of particles used to represent the solution, the remainder of which is represe
by a continuous (Maxwellian) distribution. Both of these improvements are made poss
by approximating the Boltzmann solution using a generalized Wild sum.

The spatially homogeneous problem is presented here mainly as a step towards a cor
method for spatially inhomogeneous problems. In these problems, convection drive:
distribution away from equilibrium while collisions drive it toward equilibrium. Althougt
the new method has yet to be validated for spatially inhomogeneous problems, we
obtained some promising preliminary results. In particular we expect that the TRM
method including convection will be robust in the fluid dynamic limit, allowing time stej
on the fluid dynamic time scale and reducing to a kinetic scheme for the fluid equat
[7, 23].

Previous attempts to obtain such a robust method have had only limited success.
of the main obstacles has been the difficulty of recognizing when a patrticle distribut
is close to equilibrium or picking out the Maxwellian component of a distribution. Inde
for standard particle methods, there is no reduction in computational complexity wher
distribution is at equilibrium. We believe that this difficulty has been solved in the TRMC
method: The Maxwellian component of the distribution evolves according to a determini
scheme derived from the generalized Wild sum.

A related paper [22] presents a simpler version of the method, simply called TRMC
which the Maxwellian componentis also represented by particles instead of by a contin
distribution. In each time step, the particles from the Maxwellian component are sam|
directly from a Maxwellian distribution. This still allows longer time steps, since it involve
an implicit time formulation, but the fluctuations are not reduced. The generalizatior
spatial inhomogeneities is particularly straightforward for this method, since convec
can be performed directly on the particles. In the fluid limit the method becomes a par
scheme for the Euler equations [24].
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