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For the space homogeneous Boltzmann equation, we formulate a hybrid Monte
Carlo method that is robust in the fluid dynamic limit. This method is based on an
analytic representation of the solution over a single time step and involves implicit
time differencing derived from a suitable power series expansion of the solution
(a generalized Wild expansion). A class of implicit, yet explicitly implementable,
numerical schemes is obtained by substituting a Maxwellian distribution in place
of the high order terms in the expansion. The numerical solution is represented as
a convex combination of a non-equilibrium particle distribution and a Maxwellian.
The hybrid distribution is then evolved by Monte Carlo using the implicit formu-
lation for the time evolution. Computational simulations of spatially homogeneous
problems by our method are presented here for the Kac model and for the variable
hard sphere model (including Maxwell molecules). Comparison to exact solutions
and to direct simulation Monte Carlo (DSMC) computations shows the robustness
and the efficiency of the new method.c© 1999 Academic Press

Key Words:Boltzmann equation; Monte Carlo methods; fluid dynamic limit; im-
plicit time discretizations.

1. INTRODUCTION

Computation for rarefied gas dynamics (RGD) in engineering applications is most fre-
quently performed using Monte Carlo methods. The direct simulation Monte Carlo (DSMC)
method [1] has been particularly successful for a wide range of applications, from the space
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shuttle to vacuum pumps [17, 18, 25]. Intermolecular collisions are the dominant feature of
these particle methods, and the natural time scale for them is the collisional time.

This presents a difficulty for rarefied flows that are near to the fluid dynamic limit, since
then the collisional time is very small. On the other hand, for such problems the actual
time scale for evolution is the fluid dynamic time scale, which may be much larger than a
collisional time. A nondimensional measure of the significance of collisions is given by the
Knudsen numberε, which is small in the fluid dynamic limit and large in the free streaming
limit. For small Knudsen numbers, existing Monte Carlo methods lose their efficiency
because they operate on a much shorter time scale than is necessary.

The aim of this paper is to introduce a new Monte Carlo method that is robust in the
fluid dynamic limit, by which we mean that it is accurate and efficient for a full range
of Knudsen numbers. In this method, the molecular density function is represented as a
sum of two pieces: a continuous density function and a discrete collection of particles.
This representation allows an implicit formulation for the time evolution of the Boltzmann
equation, so that a small Knudsen numberε does not require small time steps. In this way,
the method automatically takes advantage of the fluid dynamic description for the evolution
when this is appropriate and naturally makes the transition from RGD to fluid mechanics.

For transport theory in general, the problem of finding numerical methods that perform
robustly in the fluid dynamic or diffusion limit is one of the most important computational
challenges. Our work follows a line of related methods for other transport problems: Larsen
and co-workers [3] were the first to develop robust methods for neutron transport in diffusive
regimes. Similar results were derived by Jin and Levermore [11, 12] and recently by Naldi
and Pareschi [19, 20] and Jinet al. [13, 14]. Caflischet al. [5] developed a robust method
for the Broadwell model of RGD.

Most recently, Gabettaet al. [9] developed a robust method for the Boltzmann equation
based on implicit time differencing derived from a suitable power series expansion, called
the Wild sum [26], which greatly influenced the present work. All of these methods were
for finite difference or finite element type methods.

In a related paper, Pareschi and Russo [22] developed a similar method based on a density
function that is represented only by particles. This has the virtue of greatly simplifying the
convection step. The hybrid method presented in the present paper is an improvement over
this particle method both in accuracy and efficiency. It combines a Monte Carlo algorithm
for the particle fraction of the distribution together with a deterministic evolution of the
continuous fraction. A brief description of both methods was presented in [21].

These are the first particle methods of this type. The only previous implicit version of a
Monte Carlo method in transport problems was for the linear equation of photon transport
[10].

Previous efforts to find hybrid methods by combining particle methods in some region
of space and fluid methods in another were developed in [4]. Another related method [8]
includes multiple collisions of some particles to improve the accuracy in each time step.

The numerical solution of the Boltzmann equation is usually approached by means of a
splitting in time of convection and interactions between particles. In this paper, the method
is developed only for the spatially homogeneous problem. In other words, the collisional
step is included, but the convective step is not. Similarity solutions [16] in velocity and
time are the main test problem here. The computations are performed using both the Kac
model [15] and the variable hard sphere models [2] including Maxwell molecules. In future
work, for which we already have preliminary results, we will generalize this method to
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include spatial dependence, i.e., convection. This will be performed first for one dimension,
on problems such as shock waves and flow between two plates, then for two dimensional
problems, such as flow around an obstacle.

In the next section we recall some basic properties of the homogeneous Boltzmann
equation and its time discretization. In Section 3 we discuss the time transformation from [9]
that leads to implicit time evolution and the Wild sum formulation for the collision process.
Then we introduce a class of schemes, which are robust in the fluid limit, based on replacing
the high order terms in the Wild sum by a Maxwellian, i.e., relaxing them to equilibrium.
In Section 4, we formulate an analytic representation of the particle density functionf as
a MaxwellianM plus another density functiong, i.e., f = (1−β)g+βM with 0≤β ≤ 1.
We find equations for the evolution ofβ andg, which show how the solution evolves toward
a Maxwellian distribution withβ = 1.

A Monte Carlo method corresponding to this analytic representation is presented in
Section 5. It is implemented for the Kac and VHS models in that section. Then compu-
tational results are presented in Section 6. Finally, a summary and discussion of future
directions are presented in Section 7.

2. THE SPACE HOMOGENEOUS BOLTZMANN EQUATION

The spatially homogeneous Boltzmann equation is [6]

∂ f

∂t
= 1

ε
Q( f, f ) (1)

supplemented with the initial condition

f (v, t = 0) = f0(v), (2)

where f = f (v, t) is a nonnegative function describing the time evolution of the distribution
of particles which move with velocityv at time t > 0. The parameterε >0 is called the
Knudsen number and is proportional to the mean free path between collisions. The bilinear
collision operatorQ( f, f ) describes the binary collisions of the particles and is given by

Q( f, f )(v) =
∫
R3

∫
S2
σ(|v − v∗|, ω)[ f (v′) f (v′∗)− f (v) f (v∗)] dω dv∗. (3)

In the above expression,ω is a unit vector of the sphereS2, so thatdω is an element of area
of the surface of the unit sphereS2 in R3. Moreover(v′, v′∗) represent the post-collisional
velocities associated with the pre-collisional velocities(v, v∗) and the collision parameter
ω; i.e.,

v′ = 1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω). (4)

The kernelσ is a nonnegative function which characterizes the details of the binary in-
teractions. In the case of inversekth power forces between particles the kernel has the
form

σ(|v − v∗|, θ) = bα(θ)|v − v∗|α, (5)
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whereα= (k− 5)/(k− 1). For numerical purposes, a widely used model is the variable
hard sphere (VHS) model [2], corresponding tobα(θ)=Cα whereCα is a positive constant.
The caseα= 0 is referred to as Maxwellian gas whereas the caseα= 1 yields the hard
sphere gas.

During the evolution process, mass, momentum, and energy are conserved; i.e.,∫
R3

Q( f, f )φ(v) dv = 0, φ(v) = 1, v, v2, (6)

and in addition the distribution functionf satisfies Boltzmann’s well-knownH -theorem

d

dt

∫
R3

f log( f ) dv ≤ 0. (7)

From a physical point of view, Boltzmann’sH -theorem implies that any equilibrium dis-
tribution function, i.e., any functionf for which Q( f, f )= 0, has the form of a locally
Maxwellian distribution

M(ρ, u, T)(v) = ρ

(2πT)3/2
exp

(
−|u− v|

2

2T

)
, (8)

whereρ, u, T are the density, mean velocity, and temperature of the gas. From (6) it follows
that these quantities do not vary with time, and hence we can write

ρ(t) =
∫

R3
f (v, t) dv = ρ(0), (9)

u(t) = 1

ρ

∫
R3
v f (v, t) dv = u(0), (10)

T(t) = 1

3ρ

∫
R3

[v − u(t)]2 f (v, t) dv = T(0). (11)

When the collisional timeε is small, then the problem (1) becomes stiff. A direct, explicit
method such as DSMC then becomes computationally expensive, requiring time steps of
sizeε. An implicit method, on the other hand, would allow larger time steps by capturing
the correct relaxation of the distributionf to Maxwellian. As discussed in the Introduction,
the main point of this paper is to formulate an implicit particle method for the Boltzmann
equation.

3. IMPLICIT TIME DISCRETIZATIONS

As proposed in [9], a general idea for deriving robust numerical schemes, by which we
mean schemes that are unconditionally stable and preserve the asymptotics of the fluid
dynamic limit, for a nonlinear equation like (1) is to replace high order terms of a suitable
well-posed power series expansion by the local equilibrium. The great advantage of these
implicit schemes is to be explicitly implementable, since the schemes result from an explicit
discretization of the implicit formulation.

Here we will first derive the schemes as presented in [9] and then we will show how it is
possible to generalize this approach.
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3.1. Wild Sums Expansions

Let us consider a differential system of the type

∂ f

∂t
= 1

ε
[ P( f, f )− µ f ] (12)

with the same initial condition (2) and whereµ 6= 0 is a constant andP a bilinear operator.
Let us replace the time variablet and the functionf = f (v, t) using the equations

τ = (1− e−µt/ε), F(v, τ ) = f (v, t)eµt/ε. (13)

ThenF is easily shown to satisfy

∂F

∂τ
= 1

µ
P(F, F) (14)

with F(v, τ = 0)= f0(v).
Now, the solution to the Cauchy problem for (14) can be sought in the form of a power

series

F(v, τ ) =
∞∑

k=0

τ k fk(v), fk=0(v) = f0(v), (15)

where the functionsfk are given by the recurrence formula

fk+1(v) = 1

k+ 1

k∑
h=0

1

µ
P( fh, fk−h), k = 0, 1, . . .. (16)

Making use of the original variables we obtain the following formal representation of the
solution to the Cauchy problem (1)

f (v, t) = e−µt/ε
∞∑

k=0

(
1− e−µt/ε

)k
fk(v). (17)

Remark 3.1. The method was originally developed by Wild [26] to solve the Boltzmann
equation for Maxwellian molecules. Here we describe the method under more general
hypothesis onP as derived in [9]. We emphasize that the representation (17) is not unique
and other well-posed power series expansion can be obtained in a similar way [9].

Finally, note that expansion (17) continues to hold also ifµ is a function ofv. Unfortu-
nately this choice leads to nonconservative schemes.

3.2. Truncation and Time Relaxed Schemes

Now, we describe the numerical approximation to problem (14).
First, we state the following [9]

PROPOSITION3.1. Let P( f, f ) be a nonnegative bilinear operator such that there exist
some functionsφ(v) with the property∫

R3
P( f, f )φ(v) dv = µ

∫
R3

f φ(v) dv, (18)
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whereµ>0. Then the coefficients f(k) defined by(16)are nonnegative and satisfy∀ k> 0∫
R3

f (k)φ(v) dv =
∫
R3

f (0)φ(v) dv. (19)

Now, suppose the sequence{ f (k)}k≥ 0 defined by (16) is convergent. Then (17) is well
defined for any value of the mean free path. Moreover, if we denote by

M(v) = lim
k→∞

fk (20)

then

lim
t→∞ f (v, t) = M(v),

in which M(v) is the local (Maxwellian) equilibrium.
In [9] the following class of numerical schemes, based on a suitable truncation form≥ 1

of (17), has been constructed

f n+1(v) = e−µ1t/ε
m∑

k=0

(
1− e−µ1t/ε

)k
f n
k (v)+

(
1− e−µ1t/ε

)m+1
M(v), (21)

where f n(v)= f (v, n1t) and1t is a small time interval.
The main reason for introducing these schemes is given by the following result [9]

THEOREM3.1. The time discretization defined by(21) satisfies the following properties:

(i) If supk>n{| f (k)−M |} ≤C for a constant C=C(v), then it is at least a m-order
approximation(in µ1t/ε) of (17).

(ii) Under the same assumptions of Proposition3.1, f n+1(v) is nonnegative indepen-
dently of the value ofε and satisfies∫

R3
f n+1 φ(v) dv =

∫
R3

f nφ(v) dv. (22)

(iii) For any m≥ 1, we have

lim
ε/(µ1t)→0

f n+1(v) = M(v).

Remark 3.2. The previous theorem guarantees that the truncated sum (21) has the cor-
rect asymptotic behavior whenε → 0, with order of accuracy determined by the rate of
convergence of the sequencefk towardsM(v). Some natural alternative truncations of (17),
such as

f n+1(v) = e−µ1t/ε
m∑

k=0

(
1− e−µ1t/ε

)k
f n
k (v)+

(
1− e−µ1t/ε

)m+1
f n
m+1(v) (23)

are consistent and conservative (i.e., satisfy (i) and (ii)), but do not possess the correct
asymptotic limit asε goes to zero.
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3.3. Application to the Boltzmann Equation

Now we apply the previous general approach to the Boltzmann equation and related
kinetic models. To this aim, we will assume that the collision kernel satisfies a cut-off
hypothesis.

DenoteQ6( f, f ) to be the collision operator obtained by replacing the kernelσ with the
kernelσ6

σ6(|v − v∗|, ω) = min{σ(|v − v∗|, ω),6}, 6 > 0.

Thus, for a fixed6, let us consider the homogeneous problem

∂ f

∂t
= 1

ε
Q6( f, f ). (24)

Problem (24) can be written in the form (12) taking

P( f, f ) = Q+6( f, f )+ f (v)
∫
R3

∫
S2

[6 − σ6(|v − v∗|, ω)] f (v∗) dω dv∗, (25)

with µ= 4π6ρ and

Q+6( f, f, ) =
∫
R3

∫
S2
σ6(|v − v∗|, ω) f (v′) f (v′∗) dω dv∗. (26)

It is a simple exercise to verify that Proposition 3.1 holds withφ(v)= 1, v, v2. Since the
coefficients fk(v), k≥1, of expansion (16), include numerous five fold integrals like (25),
the most efficient scheme for practical applications is that form= 1.

This scheme provides a first order approximation to the solution by substitutingfk, k≥ 2
with the local Maxwellian (8).

With the notations of the previous sections, the first order scheme reads

f n+1(v) = (1− τ) f n(v)+ τ(1− τ) f n
1 (v)+ τ 2M(v), (27)

whereτ = (1− e−µ1t/ε). The results of the last two subsections show that the approximation
defined by (27) is well-defined independently of the Knudsen number, has the correct
moments, and converges towards the correct fluid-dynamic limit.

The time relaxed approximation can generally be written in the form

f n+1(v) = A(λ) f n(v)+ B(λ) f n
1 (v)+ C(λ)M(v), (28)

whereλ=µ1t/ε and the weightsA, B, andC are nonnegative functions. For conservation
we must have

A(λ)+ B(λ)+ C(λ) = 1, ∀λ. (29)

A choice of functions which satisfies the previous requirements is given by

A = 1− τ, B = τ(1− τ), C = τ 2, (30)
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with τ = 1− e−λ, which corresponds to the scheme (27). A better choice of parameters is
[21]

A = 1− τ, B = τ(1− τ 2), C = τ 3, (31)

which corresponds to takingf2 = f1, fk = M , k ≥ 3 in (17).

Remark 3.3. In some particular situations the method is considerably simplified.

• For the one-dimensional Kac equation [15],

∂ f

∂t
= 1

ε

∫ +∞
−∞

1

2π
[ f (v′) f (v′∗)− f (v) f (v∗)] dv∗ dθ, (32)

where

v′ = v cosθ − v∗ sinθ, v′∗ = v sinθ + v∗ cosθ, (33)

the previous scheme can be applied directly taking

P( f, f ) = 1

2π

∫ +∞
−∞

f (v′) f (v′∗) dv∗ dθ, (34)

andµ= ρ.
Since, the only conserved quantities are the total mass and the energy, Proposition 3.1

holds forφ(v)= 1, v2.
• For Maxwell molecules the situation is similar to the case of the Kac equation. In

fact, since the collision kernel does not depend on the relative velocity (σ6 = σ6(ω)), we
simply haveP( f, f )= Q+6( f, f ) andµ= ρσ̄ where

σ̄ =
∫

S2
σ6(ω) dω. (35)

4. SPLITTING OF THE MAXWELLIAN PART

In this section, we formulate an analytic representation for the density functionf which
takes advantage of the relaxed time discretization presented in the previous section. In the
next section the analytic representation will be translated into a numerical representation.
Specifically one of the components off will be replaced by a discrete set of particles.

As derived in the previous section, the general form for a single step of the Wild relaxed
time discretization is

f n+1 = A f n + B f n
1 + C M (36)

in which f n is the density function at time stepn, f n
1 = P( f n, f n)/µ is the first order term

in (17), and the coefficientsA, B,C are positive constants as in the previous section.
In order to analyze and exploit the discretization (36), writef as the linear combination

of a Maxwellian density and a non-Maxwellian density, as

f n(v) = (1− βn)gn(v)+ βnM(v) (37)
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in whichβ is a nonnegative scalar. The Maxwellian densityM is chosen to have the same
macroscopic parameters asf n, i.e.,

ρM = ρ f , uM = u f , TM = Tf , (38)

which is equivalent to ∫
R3
φ(v) f (v) dv =

∫
R3
φ(v)M(v) dv, (39)

with φ(v)= 1, v, v2.
In (38) and (39) we have omitted the superscriptn, sinceρ f , u f , andTf are independent

of n, and as a resultM is independent ofn.
Now insert the representation (37) forf n into the discretization (36) and use the fact that

f1(M,M) = M. (40)

The right hand side of (36) then naturally splits into a Maxwellian partβn+ 1M and a
non-Maxwellian part(1−βn+ 1)gn+ 1, in which

βn+1 = Aβn + B(βn)2+ C (41)

(1− βn+1)gn+1 = A(1− βn)gn + B(1− βn)2 f1(g
n, gn)

+ 2B(1− βn)βn f1(g
n,M). (42)

It follows that

gn+1 = (A+ B(1+ βn))−1
(

Agn + B(1− βn) f1(g
n, gn)+ 2Bβn f1(g

n,M)
)
. (43)

Equation (41) is an iterated map for the coefficientβ and can be rewritten using the
conservation property (29) as

βn+1− βn = B(βn − 1)(βn − C/B). (44)

This discrete dynamical system has stationary pointsβ = 1 andβ =C/B. Our interest is
only in 0≤β ≤ 1, which is an invariant region for the system. Hence we can state the
following results:

PROPOSITION 4.1. (i) If C/B> 1, then β = 1 is an attracting point andβn→ 1 as
n→∞ at an exponential rate with coefficient(C− B), i.e.,

1− βn ∼= α(C − B)n, α 6= 0, (45)

for n large, if C/B> 1.
(ii) If C/B< 1, thenβ = 1 is unstable andβ =C/B is attracting. In this caseβn →

C/B as n→∞ at an exponential rate with coefficient(B−C), i.e.,

|C/B− βn| ∼= α(B− C)n, α 6= 0, (46)

for n large, if C/B< 1.
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Remark 4.1. The requirementC/B> 1 cannot be verified uniformly inλ=µ1t/ε.
However, the fluid regime corresponds toλÀ 1 so thatC/BÀ 1 because of the asymptotic
preserving property. This shows thatβn increases monotonically to 1 in the fluid region, as
desired.

For example, for the first order scheme corresponding to (30),C/B= τ/(1− τ). It follows
thatβn→ 1 if τ >1/2. Similarly the scheme characterized by (31) hasC/B= τ 2/(1− τ 2).
Henceβn→ 1 if τ >1/

√
2.

Clearly, near the fluid limitµ1t/εÀ 1 and henceτ = 1− e−µ1t/ε ≈ 1.

5. HYBRID TIME RELAXED MONTE CARLO METHODS

In this section we describe the Monte Carlo method for the evolution of the density
function f .

We develop the algorithms first in the simple case of constant cross sections (Kac equation
and Maxwellian molecules) and then for the Boltzmann equation for variable hard sphere
gas.

5.1. Formulation of the Method

Here we describe our new algorithm based on the evolution of the mixed distribution
f = (1−β)g+βM . As described in Section 4, the distinguishing feature of our method
is that the Maxwellian part of the distribution is represented analytically and the non-
Maxwellian fraction is represented as a particle distribution; i.e.,

f n(v) = (1− βn)gn(v)+ βM(v), (47)

in which

gn(v) = 1

Nn

Nn∑
i=1

δ
(
v − vn

i

)
. (48)

Our starting point is the evolution equation (42) forgn, which can be written as

gn+1 = p1gn + p2

[
q1

P(gn, gn)

µ
+ q2

P(gn,M)

µ

]
, (49)

in which

p1 = A

A+ B(1+ βn)
, p2 = B(1+ βn)

A+ B(1+ βn)
, (50)

q1 = 1− βn

1+ βn
, q2 = 2βn

1+ βn
. (51)

Note that if f n is a probability density, so isgn. Moreover,p1≥ 0, p2≥ 0, p1+ p2= 1,q1≥
0,q2≥ 0,q1+q2= 1, and thereforep1 and p2 can be interpreted as probabilities, andq1

andq2 can be interpreted as conditional probabilities.
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Thus, Eq. (49) has the following probabilistic interpretation: a particle extracted fromgn

has no collision with probabilityp1, it collides with another particle extracted fromgn with
probabilityp2q1, or it collides with a particle sampled from the Maxwellian with probability
p2q2.

Note thatA and B are functions ofτ = 1− e−µ1t/ε as specified in Subsection 3.3, and
that the probabilistic interpretation is uniformly valid inµ1t/ε. Moreover asµ1t/ε →
∞, βn → 1 because of the asymptotic preserving property of the quantitiesA, B, andC.
Therefore the density functionf n has the correct fluid limit.

The above interpretation suggests a Monte Carlo algorithm for the evolution of the
distribution f n= (1−βn)gn+βnM . We call this the “hybrid time relaxed Monte Carlo”
(TRMCH) method.

Remark 5.1. If the number of particles is kept fixed, then their weight changes, since
the mass associated to the particles is proportional to(1−βn). Instead, we chose to use
a variable number of particles with constant weight per particle. This choice has several
advantages. It improves the efficiency of the method, since the number of particles (and
hence the computational cost) decreases without affecting the accuracy, and it simplifies
the exchange of particles between cells in a spatially inhomogeneous problem.

5.2. Maxwellian Molecules

We first describe the method whenP( f, f )= Q+( f, f ). In this case, a Monte Carlo
algorithm based on Eqs. (42), (49)–(51) is given by

ALGORITHM 5.1.

1. setM to be the Maxwellian with the same moment as the original distributionf0

2. start withN0 particles sampled fromf0(v), and setβ0 = 0
3. computeA(µ1t/ε), B(µ1t/ε),C(µ1t/ε)
4. for n= 0 · · ·nTOT− 1 (in whichnTOT is the number of time steps)
• βn+1= Aβn+ B(βn)2+C
• computep1, p2,q1,q2

• compute the expected number of collision pairs:
—Ngg = p2q1Nn/2
—NgM = p2q2Nn/2

• performNgg collisions between twog particles (exactly as in standard DSMC)
• perform 2NgM collisions between ag particle and a Maxwellian

—extracti without repetition
—samplev from the MaxwellianM with the same moment as the original

distribution f n

—perform the collision betweenvi andv
—assignvn+1

i = v′i
• updateN : Nn+1 = Round(N0(1− βn+1))

• correctβn+1 in order to preserve mass:βn+1 = 1− Nn+1/N0

Remark 5.2. The above scheme conserves momentum and energy only on the average,
but not exactly. This is because the collisions with the MaxwellianM , if performed indepen-
dently from each other, do not maintain exact conservation of momentum and energy. By
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taking this into account, a conservative algorithm can be constructed by changing momen-
tumuM and energyEM of the Maxwellian fraction after each collision (local conservation),
according to

u′M = uM −
v′j − v j

N0βn
, E′M = EM −

(v′j )
2− (v j )

2

2N0βn
, n > 0, (52)

where

EM = 1

2

(
d TM + u2

M

)
,

d is the dimension of the velocity space, andTM is the temperature of the Maxwellian.
Alternatively, conservation can be restored by modifying the moments associated to the

Maxwellian fraction at the end of each time step (global conservation).
This is obtained by imposing

(1− βn+1)Ep + βn+1EM = E0, (1− βn+1)up + βn+1uM = u0, n > 0,

whereup andEp are the mean velocity and energy of the particles.
The two approaches give very similar results and can be used ifβn is not too small.
If the distribution is very far from equilibrium, i.e., ifβn¿ 1, then because of fluctuations,

it may happen that the energy decreases too much, and it is impossible to change the
parameters of the Maxwellian to impose conservation. On the other hand, in this case, only
a very small fraction of collisions will be non-conservative, and therefore the lack of exact
conservation will not affect the quality of the result.

5.3. VHS Kernels

Now we consider the case of VHS collision kernels. In this case the dynamics of the
collision is locally characterized by the quantitiesτi j = exp(−σi j ρ1t/ε) which depend on
the pair. This gives rise to a local evolution ofβn.

An acceptance-rejection technique, similar to the one used for DSMC, can be adopted.
The conservative algorithm to updateβn andgn can be written as

ALGORITHM 5.2.

1. setβ = 0, Nc = 0
2. compute an upper bound6 of σi j (as in DSMC)
3. computeτ = exp(−ρ61t/ε) and the corresponding quantitiesA, B,C, p1, p2,

q1,q2

4. compute the number of dummy collision pairs:
• NgM = p2q2Nn/2
• Ngg = p2q1Nn/2

5. performNgg dummy collisions betweeng-particles, i.e.,
• extract(i, j ) without repetition
• computeAi j , Bi j ,Ci j , p2i j (with τ replaced byτi j )

• if p2 Rand< p2i j then perform the collision betweenvi andv j (as in stand-
ard DSMC)

—β ← β + 2βi j

—Nc← Nc+ 2
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6. perform 2NgM dummy collisions between theg-particles and the Maxwellian,
• extracti without repetition
• sample one particle,m, from the Maxwellian
• computeAim, Bim,Cim, p2im

• if p2 Rand< p2im then perform the collision betweenvi and the Maxwellian
—β ← β + βim

—Nc← Nc+ 1
7. βn+ 1=β/Nc

8. updateN: Nn+ 1=Round(N0(1−βn+ 1))

9. correctβn+ 1 in order to preserve mass
10. correctuM andTM to maintain conservation of momentum and energy.

Remark 5.3. Note that in the space homogeneous case, the Maxwellian equilibrium
fractionβn can only increase, and, consequently, the number of particles can only decrease
if we start from a completely discrete distribution (β0= 0). WhenNn+ 1< Nn, some par-
ticles are just disregarded. In accordance with the evolution equation forβ, if 1t/ε is
sufficiently large, the number of particles decreases exponentially, and the distribution is
rapidly projected onto a Maxwellian.

6. NUMERICAL RESULTS

In this section we test the hybrid time relaxed Monte Carlo (TRMCH) by comparing
it with standard DSMC. We consider three initial value problems, respectively, for the
Kac equation, Boltzmann equation for Maxwell molecules, and hard spheres. In our tests
we use the set of parameters defined by (31) and perform a single run, with a number of
particles sufficiently large to control the effects of the fluctuations. We express the results
as a function of the scaled time variablet/ε which we denote again byt in order to simplify
the notations.

6.1. The Kac Equation

We compare the Monte Carlo solutions with an exact solution of the Kac equation (32),
corresponding to the initial condition

f0(v) = v2 exp(−v2), v ∈ R.

The solution is given by [16]

f (v, t) = 1

2

[
3

2
(1− C)

√
C + (3C − 1)C3/2v2

]
exp(−Cv2),

where

C = 1

3− 2 exp(−√π t/16)
.

In order to compare our results with those obtained in [8], we reconstruct the density
function on a grid, by convolving the particle distribution by a suitable mollifier.
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More precisely, we use

fDSMC(VI ) = 1

N

N∑
j=1

WH (VI − v j ), (53)

fTRMCH(VI ) = (1− βn)
1

Nn

Nn∑
j=1

WH
(
VI − vn

j

)+ βnMn(VI ), (54)

where fDSMC and fTRMCH denote, respectively, the reconstructed density function obtained
by DSMC and TRMCH on a regular grid

{VI = Vmin+ I1V, I = 1, . . . , Ng}.

The smoothing functionWH is given by

WH (x) = 1

H
W

(
x

H

)
, W(x) =


3/4− x2 if |x| ≤ 0.5,
(x − 3/2)2/2 if 0.5< |x| ≤ 1.5,
0 otherwise.

The valueH = 0.2 has been selected as a good compromise between fluctuations and
resolution. The simulations are performed fort ∈ [0, 8] by starting withN= 5× 104 parti-
cles.

In Fig. 1 we present the numerical results obtained with the same time step1t = 0.5 at
two different times. The correspondingL2-norm of the error is reported in Fig. 3 (left).

It is evident that TRMCH gives a better representation of the solution especially near the
local extrema.

Figure 2 shows the results of the same test where the time step of the TRMCH is four
times larger then the one used by DSMC. TheL2-norm of the error is plotted in Fig. 3
(right). Note that in spite of the larger time step, TRMCH solution seems to better capture
the features of the exact solution.

We remark that in the first test case (Fig. 1) the computational cost of TRMCH is slightly
lower than the cost of DSMC, while in the second case (Fig. 2) it is about five times smaller.
This is because for TRMCH the number of particles (and therefore the number of collision
per time step) decreases in time (see Fig. 4).

6.2. Maxwell Molecules

Next we consider the 2D homogeneous Boltzmann equation for Maxwell molecules. An
exact solution of the equation corresponding to the initial condition

f0(v) = v2

π
exp(−v2), (55)

is given by

f (v, t) = 1

2πC

[
1− 1

C
(1− C)

(
1− v2

2C

)]
exp

(
− v

2

2C

)
, (56)

whereC(t)= 1− (1/2) exp(−t/8).
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FIG. 1. Kac equation. Distribution function at timet = 1.5 (top) andt = 3.0 (bottom). Exact (line), DSMC
(+), and TRMCH (♦). Time step1t = 0.5.
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FIG. 2. Kac equation. Distribution function at timet = 2.0 (top) andt = 4.0 (bottom). Exact (line), DSMC
(+), and TRMCH (♦). Time step1t = 0.25 (DSMC) and1t = 1.0 (TRMCH).
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FIG. 3. Kac equation.L2 error vs time, DSMC (+) and TRMCH (♦). Top,1t = 0.5. Bottom,1t = 0.25
(DSMC),1t = 1.0 (TRMCH).
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FIG. 4. Kac equation. Number of particles (top) and number of collisions (bottom) vs time for TRMCH. Time
step1t = 0.5 (♦),1t = 1.0 (+).
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The comparison with the exact solution is obtained by reconstructing the function on a
regular grid of spacing1v= 0.25 by the “weighted area rule.”

All the simulations have been performed fort ∈ [0, 16] by starting withN= 105 particles.
In Fig. 5 we show theL2 norm of the error in time for both DSMC and TRMCH on the

time interval [0, 8]. In the first test we use the same time step1t = 0.4. The results confirm
the gain of accuracy of the TRMCH method on the transient time scale (left). Fort ≥ 4, the
methods are almost equivalent since the maximum value reached byβn at the end of the
simulation is about 0.12 and hence most of the distribution is composed of particles.

Using a time step of1t = 0.6 for the TRMCH and1t = 0.15 for the DSMC the gain of
accuracy is less evident but more uniform in time (right). Here the final value ofβn is about
0.25.

We report in Fig. 6 the variations of the moments associated to the Maxwellian fraction
in the TRMCH method. The variation in the first time steps is due to the fact that we use,
as initial moments of the hybrid distribution, the exact moments of the analytical solution.

Finally, we test the schemes by computing the fourth order moment in time and by
comparing it with the exact solution

M4(t) = 8C(t)(2− C(t)). (57)

For the TRMCH method we use the relations

MTRMCH
4 = (1− βn)

1

Nn

Nn∑
i=1

δ(v − vi )v
4
i + βn

(
8T2

M + u2
M

(
8TM + u2

M

))
.

The results are plotted in Fig. 7. It is clear that the solution given by TRMCH is more
accurate even with a larger time step.

6.3. VHS Molecules

The last test problem deals with the numerical solution of the Boltzmann equation for
hard sphere molecules (VHS, forα= 1) with Cα = 1.

The initial condition is the same used for the Maxwell molecules (55). The “exact” solu-
tion has been computed using the DSMC method with 2× 106 particles and1t = 5× 10−3.

As in the previous case, the density distribution is obtained by reconstructing the function
on a regular grid of spacing1v= 0.25 by the “weighted area rule” and the simulations have
been performed fort ∈ [0, 16] by starting withN= 105 particles.

In Fig. 8 we show the time evolution of the fourth order moment of the solution. The
results confirm the gain of accuracy and the reduction of fluctuations of the TRMCH method
with respect to the DSMC method for larger time steps.

Next we report the number of dummy collisions and the number of effective collisions
per time step performed by DSMC and TRMCH (Fig. 9).

In spite of the fact that the time step for TRMCH is larger than that of DSMC, the number
of dummy collisions is higher for DSMC. The reason is that this number is proportional to
µ1t for DSMC, and it is proportional to 1−exp(−µ1t) for TRMCH. This is an additional
reason of the better efficiency of the TRMCH with respect to DSMC.

Finally we give in Fig. 10 the variations ofβn and of the number of particles in time for
the TRMCH method.
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FIG. 5. Maxwell molecules.L2 norm of the error vs time. DSMC (+) and TRMCH (♦). Top,1t = 0.4.
Bottom,1t = 0.15 (DSMC),1t = 0.6 (TRMCH).



110 PARESCHI AND CAFLISCH

FIG. 6. Maxwell molecules. Moments of the Maxwellian in the TRMCH method vs time. TemperatureTM

(♦), velocityuM,x (×), anduM,y (+). Top,1t = 0.4. Bottom,1t = 0.6.
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FIG. 7. Maxwell molecules. Fourth order moment vs time. DSMC (+), TRMCH (♦), and exact (line) solu-
tion. Top,1t = 0.4. Bottom,1t = 0.15 (DSMC),1t = 0.6 (TRMCH).
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FIG. 8. Hard sphere molecules. Fourth order moment vs time. DSMC (+), TRMCH (♦), and “exact” (line)
solution. Top,1t = 0.1 for DSMC and1t = 0.2 for TRMCH. Bottom,1t = 0.1 for DSMC and1t = 0.4 for
TRMCH.
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FIG. 9. Hard sphere molecules. Number of effective (line) and dummy (dashed line) collisions vs time. DSMC
(+), TRMCH (♦). Top,1t = 0.1 for DSMC and1t = 0.2 for TRMCH. Bottom,1t = 0.1 for DSMC and1t = 0.4
for TRMCH.
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FIG. 10. Hard sphere molecules. Value ofβn (top) and number of particles (bottom) vs time for TRMCH.
Time step,1t = 0.2 (♦),1t = 0.4 (+).
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7. CONCLUSION AND FUTURE WORKS

The implicit Monte Carlo method presented above has been shown to provide favorable
performance for spatially homogeneous problems, in comparison to the DSMC method.
Longer time steps are allowed, without degradation of accuracy, because the time evolution
is performed using an implicit formulation. In the small relaxation limit, the method projects
the density distribution to the correct equilibrium state.

Computational complexity and statistical variance are reduced because of the smaller
number of particles used to represent the solution, the remainder of which is represented
by a continuous (Maxwellian) distribution. Both of these improvements are made possible
by approximating the Boltzmann solution using a generalized Wild sum.

The spatially homogeneous problem is presented here mainly as a step towards a complete
method for spatially inhomogeneous problems. In these problems, convection drives the
distribution away from equilibrium while collisions drive it toward equilibrium. Although
the new method has yet to be validated for spatially inhomogeneous problems, we have
obtained some promising preliminary results. In particular we expect that the TRMCH
method including convection will be robust in the fluid dynamic limit, allowing time steps
on the fluid dynamic time scale and reducing to a kinetic scheme for the fluid equations
[7, 23].

Previous attempts to obtain such a robust method have had only limited success. One
of the main obstacles has been the difficulty of recognizing when a particle distribution
is close to equilibrium or picking out the Maxwellian component of a distribution. Indeed
for standard particle methods, there is no reduction in computational complexity when the
distribution is at equilibrium. We believe that this difficulty has been solved in the TRMCH
method: The Maxwellian component of the distribution evolves according to a deterministic
scheme derived from the generalized Wild sum.

A related paper [22] presents a simpler version of the method, simply called TRMC, in
which the Maxwellian component is also represented by particles instead of by a continuous
distribution. In each time step, the particles from the Maxwellian component are sampled
directly from a Maxwellian distribution. This still allows longer time steps, since it involves
an implicit time formulation, but the fluctuations are not reduced. The generalization to
spatial inhomogeneities is particularly straightforward for this method, since convection
can be performed directly on the particles. In the fluid limit the method becomes a particle
scheme for the Euler equations [24].
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