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Abstract

This paper presents results showing that trajectory mor-
phing may be used to explore the trajectory space of an
epitaxial thin film growth system.

1 Introduction

Epitaxial thin film growth occurs when a thin film is
constructed in a layer by layer fashion. One example of
such a method is Molecular Beam Epitaxy (MBE). In
MBE, thin film material (e.g. semiconductor material)
is heated in a crucible which resides in a vacuum cham-
ber. The heated material evaporates, exits the crucible,
and lands on a substrate. A thin film grows on the sub-
strate in a layer by layer manner. Control of epitaxial
thin film growth has consisted mostly of simple single-
loop feedback of operating variables. For example, PID
(proportional integral derivative) regulation of effusion
cell crucible temperature and flux [10] [8], and subtrate
temperature [1]. No attempt at directly regulating crit-
ical crystal properties has been made.

Operators wishing to grow a semiconductor crys-
tal have relied on their own expertise and experience
to schedule setpoints of incident flux (crucible temper-
ature) and substrate temperature. The setpoints are
regulated with PID control. As desired growths become
more complicated, there is naturally a need to more di-
rectly regulate crystal properties.

Several recent developments have made it possible
to begin exploring in formal ways the trajectory space
of epitaxial growth during MBE. First, an ODE (or-
dinary differential equation)model has been developed
which captures features of multi-layer epitaxial growth
[4] during MBE. Other PDE (partial differential equa-
tion) models have been developed [2] [3] , but the new
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model allows application of control theory for systems
described by ODE’s. The ODE model includes impor-
tant growth phenomena such as island growth and co-
alescence. Additionally, a model output, the step edge
density, closely correlates with an actual sensor signal,
RHEED (Reflection High-Energy Electron Diffraction).
Second, a new method for exploring the trajectory space
of a nonlinear system has been developed, trajectory
morphing [6]. Trajectory morphing employs a simpli-
fied system model to come up with a desirable approxi-
mate trajectory; then projection and homotopy is used
to “morph” the desirable approximate trajectory into a
desirable true trajectory for the full model. It is em-
phasized here that the result of trajectory morphing is
a nominal (open loop) trajectory that is “close” to a
desirable trajectory. Of course, in implementation, one
would attemp to stabilize the open loop trajectory with
feedback.

This paper presents results on applying trajectory
morphing to epitaxial thin film growth as modeled by
[4]. Section 2 outlines the growth model. We have de-
rived a simplified growth model, suitable for use in mor-
phing, and this is also presented. The fundamentals of
trajectory morphing are reviewed in Section 3. Section
4 presents results from a simulation study applying tra-
jectory morphing to the thin film growth system.

2 Multi-Layer Epitaxial
Growth Model

This section presents an overview of the Multi-Layer
Epitazial Growth Model (MLEGM) [4] for thin films.
Each layer of the thin film is modeled as one atom thick.
Atoms on each layer that are grouped with other atoms
form an island. Atoms that are not attached to an is-
land are free and are called adatoms. The model con-
tains three states for each layer of growth simulated.
The states for the k** layer are pi, the adatom density
(adatoms per unit area); 15, the coverage (area cov-
erage by islands); and ny, the island density (average
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number of islands per unit area). The px and ¥ states
are normalized to the number of atoms per lattice site so
their maximum values are one. The model assumes that
adatoms move by standard diffusive lattice-site hopping;
when two come together they bond into an island. As
other adatoms diffuse to an island, they attach and con-
sequently the island grows. Atoms on top of an island
are considered to be on the next layer. The diffusive
mobility of an island is taken to be zero.

The differential equations describing how the states
change are:
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Terms in (1), with respect to the kt* layer, are: q; the
island step edge density, vx the island step edge velocity,
fi the adatom flux (up flow) from the k layer to the
k + 1 layer, f; the adatom flux (down flow) from the
k layer to the k — 1 layer, m; the nucleation rate of
new islands and c; the coalescence rate of islands. Also,
by is the average island diameter and 7} is the average
inter-island distance.

The first differential equation in (1) expresses mass
conservation: Adatoms arriving on the k** layer must
either jump up, down, nucleate, or add to px. The sec-
ond equation in (1) equates the rate of change of layer
coverage to the sum of a nucleation contribution and
growth by attachment (advancing step edges at velocity
v). The last equation simply says the rate of change
of island number density is the difference between nu-
cleation and coalescence. The constitutive relations in
(2) are more difficult to concisely explain. A full length
paper on the model is presently being prepared.

The control variables are J, the incident adatom
flux, and Dy, the diffusive mobility coefficient which is
physically controlled by adjusting the substrate temper-
ature. The terms Dy and D_ refer to different diffu-
sion coefficients for the upward and downward flux of
adatoms since diffusion at a step edge can be distinct

from diffusion along a terrace. For simplicity we took
Dy = D_ = D, = D, though this is not necessary for
the methods to work. The model output is ¢ = Zszl qx
where N is the number of layers. As mentioned, this out-
put corresponds well to an actual RHEED sensor signal.

Figure 1 shows model states and output for a four

" layer simulated growth. The inputs were J = 1/4,D =

25 x 108 resulting in D/J = 105, which is characteristic
of MBE. The output, g, exhibits characteristic oscilla-
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Figure 1: Full Model Output and States for Constant
Controls

tory behavior. The coverage states, ¥k, are monoton-
ically increasing and show good layer-by-layer growth.
The island densities ny, small at layer start, are maxi-
mum near the middle of the layer’s growth then drop off
to zero at layer end. It is noted that all of the states have
positive values. A negative adatom density, coverage, or
island density is clearly not physical.

The interested reader is referred to [4] for full details
on the derivation of the model.

2.1 Simplified Model

. To apply trajectory morphing, one needs a simple model

of the system to be morphed. The need for the sim-
ple model is reviewed in Section 3. The full MLEGM
model presented in the previous section is highly coupled
and nonlinear. It is non-obvious how to cooperatively
use J and D to steer the system in a specified man-
ner. We had hoped to find a physically plausible simpli-
fied model that was also differentially flat so as to make
the generation of approximate trajectories rather trivial.
Unfortunately, we could not accomplish that. Instead,
simulation and order of magnitude analysis were used
to eliminate terms, and develop approximations, in the
MLEGM.
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The following approximations of (2) were made:

fro = Dipeni(GEr + Dk —vs-1)
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where the 0 subscript denotes terms for the simple model.
Figure 2 shows the output and states for the simple
model with J = 1/4, D = 25x10%. Comparing Figures 1
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Figure 2: Simple Model Output and States for Constant
Controls

and 2 reveals that, while their are inevitable quantita-
tive differences, the simplified model behaves in manner
qualitatively similar to the MLEGM. This is important.

3 Trajectory Morphing

Trajectory morphing [6] is a method for exploring the
trajectory space of a nonlinear system. Trajectories of
a nonlinear system can be defined as follows. Let f be
a C",r > 1, mapping from R™ x R™ to R" and consider

T 2(t) = fz(t),u(t)),

Let X and U be the space of measureable functions from
R* to R® and R™ respectively. A curve (z(-),u(:)) €
X x U satisfying 4 is a trajectory of . Recent work has
shown that the set of exponentially stabilizable trajec-
tories has a manifold structure [7].

Trajectory morphing uses projection and homotopy
as tools to explore the trajectory space. Consider the
trajectory tracking projection operator P : (a(-), u(-)) —

z(0) = zo (4)

(®(-),u(-)) defined by

u(t) = Bt z(t), at), u(t))
a(t) = flz(t),u(®) (5)
z(0) = «af0)

where the feedback law [ satisfies the invariance condi-
tion

Bt oy, p) = (6)

for any (o, ) € R**™ and Vt. It is shown in [6] that P
takes curves in an Lo, neighborhood of (a(-), u(-)) into
system trajectories, i.e. it is a projection from the vector
space of (a(-), u(-)) curves onto the manifold of system
trajectories.

Consider the optimization problem
S IPA@0), 60) = @) ua(NIE ()

where Py : (a(-),u()) — (2(-),u(:)) is the trajectory
tracking projection operator defined by

min
(z(-),u(-)

u(t) = ﬂ(tvz(t)va(t)7 /"(t))
£(t) = (1=Nfo(z(®),u(t)) + Af(z(t),u(®)) (8)
z(0) = a(0)

where fy is the simple model, f is the full model and A is
a homotopy scalar that takes values from 0 to 1. The op-
timization problem above minimizes the tracking error
between a desired trajectory of the simple system and a
trajectory projected onto the system scaled by the ho-
motopy factor A\. Once the minimization is complete, A
can be increased and the minimization performed again
resulting in a trajectory that is closer to the full sys-
tem trajectories. This process can be repeated until a
minimization is found between the nominal trajectory
and full system trajectories (A = 1). In summary, the
process is:

1. Design feedback law 8 that stabilizes (zg,uo) for
fo-

2. Increment A and solve (7) using (zq, up) as initial
guess. Call solution (z),u)).

3. Simulate f) to make sure 3 stabilizes (zyx,uy). If
not, redesign 3.

4. Increment A and solve (7) using (zx, u,) as an ini-
tial guess.

5. If A = 1 stop; otherwise goto number 3.

3.1 Design of Stabilizing Feedback

Morphing requires a feedback! which exponentially sta-
bilizes approximate trajectories. To this end, we de-
signed a controller using Linear Quadratic Regulator

L A single feedback through all values of A is not required, i.e.,
you can redesign the feedback at each step of the morphing pro-
cess.
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(LQR) theory (see [9]). The linearization of (1) along
a desired trajectory (z*,u*) results in the linear time
varying system

2(t) = A(t)z(t) + B(t)v(t) (9)

where A(t) = D, f(z*,u*) and B(t) = Dy f(z",u"). Sta-
bilizing (9) may be accomplished by solving

T
min / 20)TQz(t) + v(®)TRo(®) dt  (10)
u() Jo

where @, R, M are positive definite matrices. The solu-
tion to (10) is known to be

Uopt(t) = RIB(t)TP(t)2(t) = K (t)z(t) (11)

where P is the solution to the Riccati equation with final
condition

-P=ATP+PA+Q—-PBR'BTP
P(T)=0

This particular feedback design method was chosen for
two reasons. First, solving the LQR problem involves
selecting matrices @ and R. These matrices balance
the cost of the optimization between tracking errors and
control perturbations which gives the designer flexibility
in the design. Secondly, the optimal control in (11) is
guaranteed to stabilize the linearization (9) around the
desired trajectory because V(t,2(t)) = z(t)TP(t)z(t) is
a Lyapunov function for (9). The stabilization is valid
for some region local to the desired trajectory.

4 Simulation Study

In this section we present, results of trajectory morphing

on the MLEGM. For this study, a four layer MLEGM .

was chosen; hence we have 12 states. Showing all of
the 12 state trajectories is cambersome and messy. So,
to simplify the presentation, the output of each trajec-
tory of interest will be shown and the relative state and
control tracking errors will be shown as a measure of
the overall tracking accuracy. Tracking errors will be
computed using an Ly norm.

One complete step of the morph will be presented.
Although the morphing process is not shown carried out
all the way to A = 1, there is no conceptual difference
between the first and subsequent morphing steps.

Following the algorithm presented in Section 3, the
first step in trajectory morphing is to generate a feed-
back law that stabilizes a nominal (desired) trajectory.
The nominal trajectory was taken to be the one re-
sulting from applying constant controls to the simple
model. This was shown in Figure 2. This nominal tra-
jectory was then used to compute the linearization of the
MLEGM along this trajectory. The linearization was

then used in computing a LQR feedback law described
in Section 3.1. The final trajectory tracking feedback
controller used for projection was

u(t) = p(t) + K(t)(a(t) —2(t)) (12)

Note that this feedback law satisfies the invariance con-
dition in (6).

The next step in the morphing process is to solve
the optimization problem in (7). The homotopy scalar
was incremented to a small value, A = 0.1. Then the
initial guess for a trajectory was projected onto the A =
0.1 system trajectories. At this point, the initial guess
is simply the nominal trajectory. Figure 3 shows the
nominal output and the projected output. Also shown is
the state and control tracking errors. A relatively large
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Figure 3: Projected OQutput and Tracking Errors

deviation in output appears at about 8 seconds into the
trajectory. At the same time, there is also a relatively
large increase in state and control tracking error. The
state-tracking error for the entire trajectory was 0.31
and the control-tracking error was 0.21.

The optimization problem was then solved using a
steepest descent method. See [5] for a description. Af-
ter calculating the steepest descent direction of the func-
tional, a scaled version of the steepest descent was added
to the current trajectory guess and then projected onto
the system trajectories. The result is the morphed tra-
jectory (again, one step shown). Figure 4 shows the
morphed output and its associated tracking errors. As
is shown the large deviation in the middle of the output
trajectory has been diminished. Although there is no-
ticeable deviations in output tracking at more locations
along the trajectory, the overall state-tracking error was
reduced from 0.31 to 0.22, a reduction of 29%. The over-
all control-tracking error also went down slightly from
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Figure 4: Morphed Output and Tracking Errors

0.21 to 0.19. The final controls that resulted from this
step of morphing are shown in Figure 5.
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Figure 5: Morphed Controls after Morph Step.

5 Conclusion

In conclusion, it has been shown that trajectory mor-
phing can be successfully applied to explore the trajec-
tory space for an epitaxial thin film growth model. A
multi-layer epitaxial thin film growth model was pre-
sented along with a simplified version used to generated
a desired trajectory for the full model.
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