PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Kinetic model for a step edge in epitaxial growth
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A kinetic theory is formulated for the velocity of a step edge in epitaxial growth. The formulation involves
kinetic, mean-field equations for the density of kinks and “edge adatoms” along the step edge. Equilibrium
and kinetic steady states, corresponding to zero and nonzero deposition flux, respectively, are derived for a
periodic sequence of step edges. The theoretical results are compared to results from kinetic Monte Carlo
(KMC) simulations of a simple solid-on-solid model, and excellent agreement is obtained. This theory provides
a starting point for modeling the growth of two-dimensional islands in molecular-beam epitaxy through motion
of their boundaries, as an alternative to KMC simulatidi$1.063-651X99)02806-§

PACS numbegs): 81.15.Aa, 81.15.Hi, 81.15.Kk

[. INTRODUCTION For thin-film growth by MBE, the supersaturation is typi-
cally quite large since there is almost no desorption. Hence

Modeling epitaxial growth is extremely challenging due the growth is controlled by kinetic, rather than equilibrium,
to the wide range of length and time scales represented bgonsiderations, and an appropriate continuum model should
problems of practical interest. In spite of the dramatic in-reflect this.
crease in available computational power and improved nu- The main purpose of this paper is to describe a macro-
merical algorithms over the past decade, the only viable apscopic theory for epitaxial growth and, in particular, deter-
proach remains construction of a hierarchy of models, eachline the velocity of a step edge based strictly on kinetics
of which is valid over a much narrower range. For exampleWith no near-equilibrium assumptions. The theory reduces to
ab initio methods are capable of describing atomistic pro-that of[2] when the system is in equilibrium. This theory is
cesses in great detail, but are completely inappropriate foormulated in terms of the density of kinks and “edge ada-
describing growth on macroscopic length and time scaledoms” on the step edge, as illustrated in Fig. 1. Edge ada-
Similarly, kinetic atomistic models for epitaxial growth toms are defined to be those atoms which are bound to a step
(such as simple solid-on-solid modefsave had success de- €dge, but still have mobility along the step. The density of
scribing growth processes on length scales of several tholinks and edge adatoms is determined using a mean-field
sand angstroms, but still fall short of being able to describdheory for their interactions. Our analysis starts from the ki-
growth on the scales of interest for device applications. Adietic exchange rategphrased in terms of “diffusion coeffi-
understanding of the relevant physics on each scale infients” and “coordination numbers“for atoms on the sur-
proves, the burden begins to fall more heavily on bridgingface. These parameters specify details of the dynamics of
these length and time scales, i.e., developing methodologiedPitaxial growth at a microscopic level, and are used here as
for transferring information from models at smaller scales tothe microscopic information that is needed for the macro-
parameters in models that describe larger scales. scopic model. _ _

In this paper, we lay a foundation for one approach to In some cases these rates can be obtained from experi-
connecting the atomistic and continuum scales in epitaxialMental data, although their determination is often indirect
growth. Specifically, we develop a theory for the velocity of and generally requires application of a theory whose basic
a step edge whose direct inputs are kinetic rates from atorSSumptions may not always be valid. For example, the dif-
istic processes. We expect this theory to be applicable ndtision coefficient of adatoms on a surface can be determined
only for determining the macroscopic velocity of a step edgeindirectly by measuring the density of islands in submono-
but also the velocity of the boundary of a two-dimensionallayer deposition experiments and applying basic nucleation
island in layer-by-layer molecular-beam epitaxiBE) theory[7,8]. This assumes, of course, that basic nucleation
growth. This velocity could then be used in either a simula-
tion of step dynamics or, alternatively, in an “island dynam-
ics” simulation of epitaxial growth such as that described in
[1], and therefore could provide a bridge between micro-
scopic and macroscopic length and time scales.

The velocity of a step edge in crystal growth was deter-
mined in the classic paper of Burton, Cabrera, and Frank
(BCF) [2] for a system with small supersaturation. Modifi-
cations of the BCF theory to include deviations from equi-
librium have been proposed earlier iB—6], but these all FIG. 1. Schematic drawing of an epitaxial surface, showing a
rely fundamentally on the system being close to equilibriumstep edge, adatoms, kinks, and edge adatoms.
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theory is valid for the material system and parameter ranges vp_+Dn-Vp_=f_, (2.3
of interest, which is not always the case. These kinetic rates
can also, in principle, be directly determined frab initio  in which p, andp_ are the limiting values op at the edge
computationg9]. This is a promising approach and although from the upper terrace and the lower terrace, respectively,
such calculations are computationally demanding, thids the normal pointing into the lower terrace, ands the
method is more likely to produce reliable numbers since naormal velocity of the boundary in the direction The term
indrect interpretation of experimental data is required. vp+ on the left is due to the motion of the boundary and
Although our kinetic, mean-field approach to epitaxial would not be present if the boundary were not moving. Al-
growth seems quite natural, we know of only one referencehough this term is typically quite small in epitaxial growth,
in which something similar is proposed. [&0], Voronkov  without it mass is not exactly conserved.
derived a related theory for the velocity of a step on a crystal Edge adatoms diffuse along a step edge until they attach
surface that is far from equilibrium. Rather than startingto a kink site, at which point we consider them to be part of
from microscopic exchange rates, his analysis depends ahe step. The diffusion equation for the edge-adatom density
the “effective supersaturation” at the step, which is difficult ¢ is
to obtain directly. His results include a formula for step edge
velocity in terms of effective supersaturation, but he does not
provide a full model for the evolution of the epitaxial sur-
face, as we formulate below. In addition, he assumed that the . . e -~ .
attachment to the step is directly from the vapor above the which [.)E is the edge diffusion c_oefﬂueng is the arc-
?ength variable along the edge, afglis the net flux of edge

epitaxial surface, whereas we have included the adatom den- .
sity on the terraces adjacent to the step. adatoms to kinks. In Eq2.4), the flux termsf.. serve as

This paper is organized as follows. The epitaxial growthsources of edge adatoms as described in the next section.

model is derived in Secs. Il and Ill. The former section con- As a step edge moves by atoms attaching to a kink, the

. . : . kink moves along the edge. Since the step edges are one
tains only equations derived from macroscopic arguments,. : . ) X ?
while all of the relations that depend on the kinetic mean_d|men3|onal, there are tW.O kinds of kinks!. F.'g' D.‘ those_

éhat move to the left, which we call left-facing kinks with

model is phrased in terms of a general set of diffusion CoefgenS'tyk/’ and those that move to the right, which we call

ficients and coordination numbers. Detailed balance implieé'ght'faCIng kinks with densitk; . We denote the total den-

certain relations among the diffusion coefficients, as deS'Y O.f I_<|nks as_k=k,+k_/. For S"T‘p"‘?'ty We assume the
scribed in Sec. IV. In Sec. V, we determine specific param-atomIStIC hopping rategi.e., the diffusion coefficients de-

eters which correspond to those in an atomistic solid-on-scribeq beIoWa_re .the Same for left- and right_—facing kir_1ks.
solid (SO model. Equilibrium solutions are derived in Sec. In particular, this implies that the macroscopic speed is the

VI and kinetic steady-state solutions are derived in Sec. VII.S""m_e for Igft- fandl :cltght-fgc[n%tl;lnlgs, SIS tl?at the vetlloultles
KMC results presented in these sections confirm the validit re —w andwfor left- and rignt-lacing Kinks, respectively.

of this theory for the SOS model. Since the equilibrium so- he resm_JItlng convective qu_x_ of kinks W'th respect to arc
lutions are consistent with those of BCF, the predicted dif_lengz_ths 'tshw(kf_k/t)' In addition, a;s dtiscnb?d n the Inext ¢
ferences between equilibrium and the kinetic steady-state sGCUON, tere areé two processes for the net gain or 10ss o

lutions show the significance of the kinetic effects; this isbink kpai,r,s.; tZe netdggin indkiﬂk pairls dug tl?' ‘l;nuc!eat(;on/
discussed in Sec. VIII, along with the application of this reakup’ Is denoted by and the net loss in kink pairs due

theory to a continuum description of epitaxial growth. to “creation/ann_ihilation” is denoted by. the thatg andh
include both gain and loss terms. In the kinetic steady state

that is of most interest for MBE growth, there is a net gain
Il. MODEL OF THE STEP EDGE: MACROSCOPIC from nucleation/breakup and a net loss from creation/
EQUATIONS annihilation, which is the reason for takirgy>0 to corre-
pond to net gain ankl>0 to correspond to net loss. There-
ore, the kink densityk evolves according to the convective
equation

dip—Dgdlo=Ff,+f_—f, (2.9

In epitaxial growth, adatoms are deposited on a terrac
and diffuse until they attach to a step edge or collide with
another adatom. The adatom diffusion equation is

atp_DTv2p:_Tflp+F_M (21) (?tk'i‘é’s[W(kr—k/)]IZ(g—h). (25)
Additional relations between the kink densitiks k,, and
in whiqh pis the adatom. densitp is. t.he adatom diffusion k, are implied by the geometry of the step edge. Consider a
coefficient on a terrac; is the deposition flux rateM is the  ¢rystal with lattice constars, and a step edge that is nearly
loss due to nucleation, and ' is the desorption rate, which parallel to one of the primitivéi.e., lowest index crystallo-
will be omitted in the subsequent discussion. graphic directions. Lek, be the corresponding crystallo-
We definef. to be the net flux of adatoms to the step graphic axis, and the unit normal to the macroscopically
edge from the upper terrace, afd the net flux from the ¢yrved step edge. Let denote the angle betweeg andn.

lower terrace. In terms of.., the boundary conditions for along the step edge, the densities of right- and left-facing
the diffusion equation are kinks satisfy

vp.+D-Vp,=—f,, (2.2) k +k, =k, (2.6)
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k.—k,=—a tand. (2.7 equations for edge-adatom densigyand kink densityk are
) . Egs. (2.9 and (2.5). Constitutive laws for these equations
The flux fo of edge adatoms to kinks can be determinediycj e the macroscopic conditiof.6) and(2.7) for k, and
by macroscopic can|derat|ons, as follows: Denote the ste;gI , as well as Eq(2.12) for f,. The velocityv for the step
edge ad’, separating the upper terra€e, from the lower  g4ge is determined by the E.13. All of these equations
terrace() _ . Neglect deposition fluk and desorption forthe ~ are” macroscopic. Additional constitutive equations for

moment, since they are spatially distributed and do not affecf; ¢, g, andh will be determined in the next section.
the form off,. As mentioned above, we do not consider edge -

adatoms to be part of the step edge. Conservation of mass
then says that any loss of adatoms on the terraces must be 1. MODEL OF THE STEP EDGE: MEAN-FIELD
due to either growth of the step edge or accumulation of edge INTERACTION TERMS
adatoms; i.e.,
In the preceding section, macroscopic analysis was used
d _2 d to derive equations for the adatom, edge adatom, and kink
- afﬂ o pdA=a frvd3+ aJFQDdS- (2.8 densities. Here we formulate expressionsNor f., w, g,
A andh in terms of diffusion coefficients and geometric con-
stants, which we will refer to as “coordination numbers.”
Consider an interaction proces$sinvolving transitions
from stateA to stateB. Let cp be the “coordination number”
which counts the number of paths through which this transi-
J dA= _f (f,+f_ )ds. 2.9 tion can occur. Although tran_sition from to B through dif-
QU0 ferent paths may occur at different rat@nd even involve
several different atomistic procesgese may form a single
In addition, the rate of change of arc length of a movingeffective ratea,g for all transitions fromA and B. It is
curve is equal to the product of the normal veloeitgnd the  convenient to replace the transition rate by an effective “dif-
curvaturex, from which it follows that fusion coefficient,” which is defined a®ag=a%a,pg in
which a is the lattice constant. Although the diffusion coef-

On the other hand, the only way for adatoms to leave th
terraces is through the fluxds , so that

d
dt

d ficient Dy may differ fromD 55, the coordination numbers
- gods:f ¢+ ekuds. (2.10  for the process and its inverse must be the same; hence the
dt)r r .

notationcp.

We will use diffusion coefficients¥ ,g) rather than tran-
sition rates @g) in the remainder of this paper since the
most significant transitions involve the motion of atoms

72J dJ dJ along terraces and step edges which result in diffusion of
—a vds= — pdA+ — | ¢ds i !

r dt/o,uo_ dt)r adatoms and edge adatoms. The transition rates might be
more natural for some of the other processes, but can also be
misleading since some of them may involve several atomis-

= _f (f,+ f_)ds+j (o1 + @rv)ds tic processes each with their own rate. So in order to empha-
r r size the generality of our model and achieve notational uni-
formity, we use effective diffusion coefficients, defined as
above to have the correct units of (lendfttiime.
= f (—=fot+exv)ds. (2.1 If the probability for occurrence of a stateis denoted as
r p(A), then the total rate for transitions frol to B is
cp(Daga 2)p(A). Most of the significant processes involve
8nteractions between two or more adatoms, edge adatoms, or
kinks, so thatp(A) should be a twdor more particle prob-
ability density function. The mean-field assumption is that
His density can be approximated by a product of single-
particle density functions. This approximation should be
valid if the particle densities are small and there is some
fo=v(px+a ?). (2.12 mixing in the system. This is the main assumption in our
model and its accuracy will be tested by comparison of re-
Finally, as derived if4], the normal velocityy for a step  sults from our theory to those from kinetic Monte Carlo
edge must satisfy simulations.
First consider the rate of island nucleation. Assuming that
v=awkcosé (2.13  the critical cluster size for adatoms on a terrace is @ree,
clusters of size two or larger are stable islandsen the loss
since the velocity of the edge is due to the growth of theterm M due to island nucleation is
upper terrace by motion of the kinks.

To summarize, the adatom density satisfies the diffusion

equation(2.1) with boundary condition$2.2) and(2.3). The M =2cyD+a2p?. (3.1

Combining these, we obtain

boundary I', this identity implies that the integrands
—a %y and—fo+ @k in the first and last integrals must be
the same, which shows that the flux rate for edge adatoms
kinks is
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FIG. 2. lllustration of the nucleation process. For a fixed adatom
(centey, this shows thecy,,=12 ways that a second adatom can
attach to nucleate a new island.

The coordination number,, measures the number of ways  FIG. 4. lllustration of the ratg for nucleation/breakup of kink
that two adatoms can hop together to form a cluster at @airs. This shows the number of ways that an atom can hop to a
given location as shown in Fig. 2. For the general modefixed edge adatonty, =2 for an edge adatortop); cg,=4 for an
formulated here, this figuréas well as Figs. 3, 4, and s  adatom from the upper terragaiddle); cy3=2 for an adatom from
only a caricature of the processes, but for the cubic SO®e lower terracebottom.

model developed later, this figure correctly describes these

processes. The_cqrrespondlng inverse process, t_he t_)reakup of f_=c;_(D7zap_—Dgrp)a 2. (3.3
small clusters, is ignored. Note that the tepfis justified

through the mean-field approximation.

Next consider the fluxe$.., which result from an ex- In these equationd){; is the diffusion coefficient for the
change of atoms between the terraces and an edge. They argnsition from the upper terrac¢g) to an edge ), andD £+
written in terms of diffusion coefficients and coordination js the diffusion coefficient for the inverse transition from
numbers as edge to terrace. The coordination number for transitions be-

tween the edge and the upper terrace;is. Transitions to

f.=cti(D1gap. —Dgre)a?, 3.2

FIG. 5. lllustration of the raté for creation/annihilation of kink
FIG. 3. lllustration of the kink velocityv. This shows the num-  pairs. This shows the number of ways that an adatom can fill in an

ber of ways that an adatom can hop to a fixed kink sifg=2 for empty site between two kinkg,;=2 for an edge adatorftop);

an edge adatortiop); c,,»,= 2 for an adatom from the upper terrace c,,=3 for an adatom from the upper terrageiddle); c,3=1 for

(middle); c,,3=1 for an adatom from the lower terradeottom). an adatom from the lower terra¢eottom).
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and from the lower terrace have diffusion coefficieBts. ~ between the adatoms on the upper and lower terra€és (
andDct, and coordination numbe; . andT™), edge adatomsK), atoms at a kinkK), and atoms

The kink velocityw is determined by three processes: in the bulk(B) by which we mean those that are in a straight
transitions between an edgg) and a kink K), transitions  step edge.
between the upper terrac& {) and a kink K), and transi- First considerg: Nucleation of a kink pair occurs by an
tions between the lower terrac& () and a kink K). The  atom moving next to an existing edge adatom. The moving
rates for these three processes are denotedhyw,, and ~ atom can be either an edge adatom or an adatom from the
ws, respectively, formulas for which are derived next. Theupper or lower terrace. The net gain rates for these processes
three processes are illustrated in the upper, middle, and lowére denoted); ,g,, andgs, respectively. They are illustrated

diagrams of Fig. 3. in the upper, middle and lower diagrams in Fig. 4, respec-
First consider transitions between edge adatoms and #ely. ) o
given kink. The attachment rate &,;Dexea* in which The nucleation rate due to collision of two edge adatoms

ag is the probability for an edge adatom to be at a particulaiS Cg1Dexe’@ " in which ¢ is the density of edge adatoms,
site adjacent to the kink, the coordination numbgy counts ¢ is the probability of an edge adatom in a site adjacent to
the number of relevant adjacent sites, ddgia 2 is the the first edge adatontg; is the number of such sites, and
transition rate to go from an adjacent site to the kink. The2 “Dex is the hopping rate. Breakup of a kink pair, resulting
detachment rate is,;Dxga 2. Note that since this calcula- in two edge adatoms, occurs at ratgiDyek/k,a™*, in
tion is performed with reference to a given kink, as is approWhich ak:k, is the density of kink pairsgy; counts the
priate for a calculation of velocity, there is no factorlof number of ways that they can break up into two edge ada-
The attachment rate for adatoms from the upper terrace tms, anda"“De is the hopping rate for this transition. -
a given kink isc,,,D7p- in which a?p, is the probability We comblne these expressions with similar expressions
for an adatom to be at a particular site on the upper terractr nucleation and breakup involving an edge adatom and an
adjacent to the kink, the coordination numlogs, counts the ~adatom to obtain
number of relevant adjacent sites, @gca 2 is the transi-
tion rate to go from an adjacent site to the kink. The detach- 0=0:1170,103 (3.6)
ment rate isc,,,Dgra 2.
Similarly, the attachment and detachment rates for an ad
tom from the lower terrace to the kink aog;D¢p— and

dn which

— . — 2 -1
cwsDrra 2, respectively. 01=Cq1(Deke”—Dkekik)a
We combine these three processes to get the kink velocity
w, which is a times the net rate of attachment and detach- U2=Cga(DFxap. o—Dyrkik,)a 2, (3.7

ment. The result is

W=W;+W,+Ws (3.4) 9s=Cga(Drrap-¢—Dyrkk)a™.
, . Finally, consideth which is the net rate of annihilation of
in which kink pairs due to two processes: The first process is the an-
nihilation of a kink pair which faces each other and is sepa-
W;=Cy1(Degxe—Dgga™ 1), rated by a single site. The kink pair is annihilated and the
step edge is completed by an adatom moving into the gap
B + 1 between the kinks. The second, inverse process is the cre-
W2=Cw2(Dr@p+—Dyra ), (3.9 ation of a kink pair by removal of a single atom from a
straight edge. The atom that fills in the gap or is removed
W3=Cy3(Drcap_—Dyra ™ b). from the straight edge can be either an edge adatom, or an
adatom from the upper or lower terrace. These three pro-
Next, consider the gain and loss of kinks. This occurs incesses are denoted hy, h,, andh;, respectively, and they
two ways: In the first process, which we call nucleation/are illustrated in the upper, middle, and lower diagrams in
breakup, a left-right kink paitfacing away from each other Fig. 5, respectively.
and consisting of two atomscan nucleate by two atoms Suppose that the atom that moves is an edge adatom.
coming together along the edge, and it can break up by aihen the annihilation rate is,;Degek,k,, in which akk,
atom moving away. The net gain of kinks due to nucleationfs the density of kink pairs facing toward each other and
breakup is denoted@ in which g is the net rate of gain of separated by a single sitag is the probability of an edge
kink pairs. In the second process, which we call creationadatom in a given site adjacent to the kink paij; counts
annihilation, a right-left kink paiffacing toward each other the number of such sites, ai-ga 2 is the hopping rate for
and separated by a single atomic vacancy along the)edge the edge adatom. The rate of creation of kink pairs is
form due to detachment of a single atom from a straightc,;Dgea 2 in which a™ ! is the density of sites from which
edge, and the kink pair can be destroyed by an atom filling iran atom can detactthis neglects the presence of edge ada-
the vacant spot. The net loss of kink pairs due to creationfoms and kinks, which is a higher-order correcjion,,
annihilation is denoted 2, in which h is the net rate of loss counts the number of ways that an atom can detach to form
of kink pairs. The signs are chosen so thandh are posi- an edge adatom, ardgga™ 2 is the hopping rate from the
tive in epitaxial growth. These processes involve transitiondulk to the edge.
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We combine these expressions with the corresponding ex- (Dg1/D7g)=(Dg/D1g). 4.9
pressions for attachment and detachment of adatoms to ob-
tain This concludes the derivation of the mean-field kinetic
model for epitaxial growth. Equation&.1)—(2.7), (2.12),
h=h,+h,+h; (3.9 (2.13, and (3.1)—(3.9 define the model in general form.
Equationg4.4)—(4.9) are detailed balance conditions that re-
in which strict the possible values of the diffusion coefficients. In de-

riving these consistency conditions, we have also derived the
h,=Chy(Depek k, —Dgea3), equilibrium solutions, Eq94.1)—(4.3), for this model.

_ V. THE CUBIC SOLID-ON-SOLID MODEL
ha=Cn2(Drgap kik,—Dgra ?), (3.9

In the previous sections, we formulated a general model
for epitaxial growth, involving diffusion coefficients and co-
ordination numbers. Now we determine these parameters for
To summarize, we have derived in this section expres®" atomistic cubic solid-on-s_oli(BOS model and use them
sions for the kink velocityw, the fluxesf, andf_, and the ih our continuum model which we will now re_fgr to as the
creation and loss termd, g, andh. continuum SOS model. We then make specific predictions

e for the behavior of this model. The cubic SOS model we use
is nearly identical to the model described[itl,12. While
not intended to describe any specific material system, this

Before f|n|sh|ng the derivation Of the epitaxia| growth model nevertheless contains all the basic mechanisms
model, we need to consider the consistency conditions redresent in epitaxial growth of many real materials. This
quired for detailed balance. Here we derive the equilibriummodel has two parameter§gs and Ey, which describe the
values of adatom, edge adatom, and kink densities and thegpergy barrier for adatom hopping on a terrace and the ad-
obtain the consistency conditions on the diffusion coeffi-ditional barrier for hopping with a single nearest neighbor.
cients. The total barrierE, for hopping is then given by¥e,=Eg

At equilibrium, detailed balance implies thét ,f_ and  +NEy, Wheren is the total number of in-plane nearest
each of the three terms i, h, andw must vanish. In ad- neighborg11,12.
dition, p is constant in equilibrium, so that, =p_ and as- The dynamics of this model involve the following four
suming that the step edge is parallel to a fundamental crystéliffusion coefficient{which, for this simple model, are hop-
direction implies thatk, =k, =k/2. The equationgy;=g, ping rates multiplied bya?): D+ is the diffusion coefficient
=g3=0 andw;=0 imply w,=w5;=0. Of the remaining for an adatom on a terracB is the diffusion coefficient for
nine equations, three provide equationsgor ¢, andk, and  a@n edge adatom along an edd, is the diffusion coeffi-
six are consistency conditions for the diffusion coefficients. cient for an atom from a kink, anBg is the diffusion coef-

From thew,, g;, andf. equations, we obtain the fol- ficient for an atom from a straight edge. These are given by
lowing equations fop, ¢, andk in equilibrium:

hs3=cns(Drgap_kk,—Dgra™>).

IV. EQUILIBRIUM AND DETAILED BALANCE

DT=a2ve_ES/kBT, DE:DTE_EN/kBT,

p=(Dg/D1g)(Dye/Dek)a?, 4.1
Dc=Dre 2En/*eT=D2/D, (5.2)
o= (ald)k?, (4.2
Dg=Dre 3En/keT=D23/D3,
k:2(DKE/DEK)1/2a71. (43)
) ) in which v is an attempt frequency, typically of order
The equations fog,,h; ,h, then imply 10'% sec’!, T is temperature, ankis is the Boltzmann fac-
tor.
(D7¢/Dgr1)(Dgr/Dre)(Dke/Dex) =1, (4.4) In terms of these diffusion coefficients, the diffusion co-
efficients for individual transitions are
(Dep/Dge)(Dye/Dex)?=1, (4.9 . . . +
D1g=D7x=D7g=D1, Dgr=Dex=Dgp=Deg,
(D1g/Dgr)(DE/D1e)(Dye/Deg)?=1. (4.6) (5.2

The remaining equations fdr_, gs, andhg then imply Pkr=Pre=Dra=Di,  Der=Pee=Pax=De.
All hops are assumed to be to a nearest-neighbor site with
(Dgr/D1g)=(Dgr/D1g) (47  one exception: at a kink, an atom can hop between the kink
and its diagonal neighbor along the edge. Diagonal hops
were included because they allow atoms to hop around cor-
(Dg7/D7)=(Dg7/D7y) (4.8 ners and across kinks, resulting in compact islands in kinetic
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Monte Carlo simulations of this model. Step-edge asymme- Equilibrium
try, with different hopping rates from the upper and lower
terraces to the edge, could easily be included but is omittec
here for simplicity.

Next we determine the coordination numbers for this
model. First consider nucleation in which one adatom hops
to a neighboring site of another adatom. To avoid duplicationx
in counting, pick a site for the atom that does not hop andZ
count the ways in which an atom hops to it. As illustrated in @10‘1
Fig. 2, there are two possible routes from each of the fourg
diagonal sites and one possible route from each of the four*
sites that are next nearest neighbors in the horizontal or ver
tical directions. Thereforey,=12.

Next consider the kink velocity. To be specific, con-
sider a right-facing kink. As shown in Fig. 3, there are two
sites from which an edge adatom can hop to the kink, one tc , s
the right of the kink and one directly attached to the kitile 10'
latter joins the kink by a diagonal hppso thatc,,;=2. From
the lower terrace, there is only a single position, diagonally
opposite the _Comer of the kink, frqm which an adatom Calyetermined from KMC computations (¢, with error baesxd BCF
hop to the kink, so that,z;=1. Finally, from the upper theory (solid line).
terrace, an adatom can hop to the kink either from the left

(on top of the end of the kinkor from below(opposite the it the specification of the diffusion coefficien®.2) result
site to the right of the kink so thatc,,=2. Together these i, the following formulas:

10°

10

FIG. 6. Kink densityk vs timet for equilibrium with F=0 as

show that
p=(Dg/Dy)at¢, (6.2)
W=2Dgo+Dra(2p,+p_)—5Dga "l (5.3 =T
Next consider the nucleation and breakup of kink pairs, o= (al4)k?, (6.2
which are described by the tergnand illustrated in Fig. 4.
For a given edge adatom, there are two weyesm the right k=2(Dy/Dg)Y%a 1. 6.3

or from the lef} in which a second edge adatom can hop to

it, so thatcy; =2. From the lower terrace, there are also twoThe detailed balance requiremeris4) and (4.7)—(4.9) fol-
ways (from the right or left in which an adatom can hop to |ow directly from Eq.(5.2) for the diffusion coefficients. The
it, so thatcyz=2. Finally, from the upper terrace, there are two remaining condition§4.5) and(4.6) are then equivalent
four ways(one from each of the sites to the right or left and tg the detailed balance requirement that

two ways from directly on top of the edge adaforso that

Cg2=4. It then follows that D2=D.Ds, 6.4)
g=2¢[a Dge+aD(2p,+p_)]—8a Dxkk, . which is a direct consequence of E@5.1).
(5.9 The three equation$5.1)—(6.3) are consistent with the

o o equilibrium density values derived in Appendix A (2],
Similarly, as shown in Fig. %1 =2, ¢,,=3,andcy3=1s0  except that2] includes the effects of kinks of size larger
that than one, resulting in

h=[2Dg¢+aD(3p. +p_)]lkk,~6Dga 3. (5.5 k=2\Dy/Dg(1+ D« /Dg) ta ™. (6.5

This is the same dsin Eq. (6.3) in the limit of small values
of Dk /Dg.

Using the specific diffusion coefficients and coordination For partial validation of this step edge model, we have
numbers for the continuum SOS model from the precedingerformed computations for the motion of a periodic series
section, we now formulate predictions from the model in twoof step-edges, using standard kinetic Monte Carlo techniques
particular regimes: equilibrium and kinetic steady states. Théo simulate the atomisticSOS model. Computations were
analytic results from the model are directly compared to theperformed for a range of values of diffusion coefficients
results of KMC simulations to provide validation for the (D+,Dg) (or equivalently, binding energidss andEy) and
model and, in particular, the mean-field approximation. terrace widthd.. Since the kink density is significantly larger

Equilibrium values for the adatom, edge adatom, and kinkhan the adatom and edge-adatom densities, we use it to
densities were derived in Sec. IV. Here we specialize thoseompare with the prediction of E¢6.3) or Eq. (6.5).
results to the continuum SOS model described in the preced- Figure 6 shows a comparison of the simulation results and
ing section. The detailed balance resutsl)—(4.3) together  the prediction of Eq(6.5) for the equilibrium kink density

VI. THERMODYNAMIC EQUILIBRIUM
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with F=0, D1=10"?, and the ratid /D varying between ) Kinetic Steady State

105 and 16°. The agreement is excellent, with the differ- 10 ' ' ' '
ences between theory and simulation well within one stan-
dard deviation of the simulation results. Agreement with the
leading-order formula6.3) is also good, but not quite as
close as that for Eq(6.5. These results demonstrate the
accuracy of the growth model in the equilibrium regime. In
particular, they confirm that our model is consistent with &
BCF theory for equilibria with small kink densities. This is
also a first test of the validity of the mean-field approxima-
tions used in the model.

it
-
o
[
.

kink densi

VII. KINETIC STEADY STATE FOR STEP FLOW

Finally consider a kinetic steady state consisting of a pe-
riodic sequence of steps, separated by distareed moving
at velocityv along one fundamental crystallographic direc- " G
. o . O 10 10
tion. For nonzero deposition fluk, we find a kinetic steady D
state, in whichp=p(x—wvt), ¢ andk are constants, and
=0. FIG. 7. Kink densityk, normalized byL*3, vs edge diffusion

In steady statéand neglecting desorption and nucleajjon coefficientDg for kinetic steady state, for various values of terrace
the flux to the boundaries must equal the total depositiorwidth L. Parameter values are flii=1 and adatom diffusiol+
flux, which implies =10 Results are shown from the kinetic thedsplid line) and
KMC computations withL=25 (squares L=50 (O), and L
=100 (A).

10° 107
E

v=a’(f,+f_)=a’LF. (7.2

Monte Carlo simulation, with differences that are less than
The remaining steady-state equations are one standard deviation of the KMC results. Validation of the
present theory shows the validity of the mean-field approxi-
_ _ e mation, which was the main step in its derivation.
0=fi+f—fo, 0=g—h. (7.2 Equation(7.5) is our main result, showing the difference
between the kinetic steady-state kink density and the equilib-
Here we neglect the slowest proces§is and Dg and  rium kink density(6.3). In deriving this result, we have ig-
assume thaak<1. For the model formulated in Sec. V, one nored detachment from kinkD() and from straight edges
can show thap, =p_. Then the adatom, edge adatom, and(p) since these are insignificant in a typical MBE growth.
kink densities are In equilibrium, on the other hand, detailed balance requires
that each process and its inverse process must balance. As
p=(Dg/Dy)a lg, (7.3 the deposition flud- is decreased, the growth is slower so
that D¢ and Dg can become significant. Equati@i.5) re-
mains valid untilF is so small that the value of Eq7.5
becomes as small as that of E§.3). This shows the con-
nection between the equilibrium and kinetic steady-state re-
_(16 13,-1 sults and that the present theory is capable of describing the
K=(15Peggd 0 (79 ransition between them.

¢=(16a/3)k?, (7.4

In the equation fok, Py4cis the edge Peclet number, de- VIIl. CONCLUSIONS
fined as
The theory developed above determines the velocity of a
/.3 step edge in epitaxial growth, as well as the density of edge
Peage=(a°LF)/De, (7. adatoms and kinks along the edge with no near-equilibrium
assumptions. The difference between the kink density in
which is the ratio of the total fluX=LF to an edge from equilibrium versus kinetic steady state shows the significance
deposition and the diffusive flux 3Dg along the edge. The of the kinetic considerations. As shown above, a virtue of the
exponent 1/3 in Eq(7.9 is related to the critical size for present theory is that it is valid in both the equilibrium limit
formation of a left-right kink pair. If the critical size welje  and the kinetic steady-state regime. Therefore, it can be used
(i.e., if j+1 edge adatoms were required to form a stableo describe epitaxial growth for systems that are near as well
kink pair), then the exponent would bé(j +2). as far from equilibrium. Thus it should prove to be a power-
Figure 7 shows a comparison of the theoretical and comful model for investigating a wide range of epitaxial phe-
putational results for kink densityfor F=1. In this figure, nomena.
the value ofD+ is 10, while D¢ varies between T0and The model developed above is also quite general, since
10°. The figure shows excellent agreement between the preéhe macroscopic mechanisms should apply to almost any
dictions of the present theory and the results of the kinetikkind of epitaxial growth. Details of the specific kinetic
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mechanisms at the atomistic scale are inserted into the maapplicable to the motion of island boundaries during layer-

roscopic model through the diffusion coefficiesand co-  by-layer MBE growth, where kinetic considerations are

ordination numbers. known to be important. We believe that this model is an
As described above, this theory involves the arglgith  important first step in bridging the atomistic and continuum

one of the principal crystallographic axes and therefore is  |ength scales in epitaxial growth and will ultimately allow

restricted to boundaries that are nearly perpendicular to thgyr simulations of continuum models that include realistic

fundamental crystallographic directions. Extension to an argjnetic effects.

bitrary boundary curve is effected by definimgto be the

angle with the closest crystal direction. This is probably not

valid for angles neatr/4, i.e., at the corners of a growing ACKNOWLEDGMENTS
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