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Kinetic model for a step edge in epitaxial growth
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A kinetic theory is formulated for the velocity of a step edge in epitaxial growth. The formulation involves
kinetic, mean-field equations for the density of kinks and ‘‘edge adatoms’’ along the step edge. Equilibrium
and kinetic steady states, corresponding to zero and nonzero deposition flux, respectively, are derived for a
periodic sequence of step edges. The theoretical results are compared to results from kinetic Monte Carlo
~KMC! simulations of a simple solid-on-solid model, and excellent agreement is obtained. This theory provides
a starting point for modeling the growth of two-dimensional islands in molecular-beam epitaxy through motion
of their boundaries, as an alternative to KMC simulations.@S1063-651X~99!02806-8#

PACS number~s!: 81.15.Aa, 81.15.Hi, 81.15.Kk
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I. INTRODUCTION

Modeling epitaxial growth is extremely challenging du
to the wide range of length and time scales represented
problems of practical interest. In spite of the dramatic
crease in available computational power and improved
merical algorithms over the past decade, the only viable
proach remains construction of a hierarchy of models, e
of which is valid over a much narrower range. For examp
ab initio methods are capable of describing atomistic p
cesses in great detail, but are completely inappropriate
describing growth on macroscopic length and time sca
Similarly, kinetic atomistic models for epitaxial growt
~such as simple solid-on-solid models! have had success de
scribing growth processes on length scales of several th
sand angstroms, but still fall short of being able to descr
growth on the scales of interest for device applications.
understanding of the relevant physics on each scale
proves, the burden begins to fall more heavily on bridg
these length and time scales, i.e., developing methodolo
for transferring information from models at smaller scales
parameters in models that describe larger scales.

In this paper, we lay a foundation for one approach
connecting the atomistic and continuum scales in epita
growth. Specifically, we develop a theory for the velocity
a step edge whose direct inputs are kinetic rates from at
istic processes. We expect this theory to be applicable
only for determining the macroscopic velocity of a step ed
but also the velocity of the boundary of a two-dimension
island in layer-by-layer molecular-beam epitaxy~MBE!
growth. This velocity could then be used in either a simu
tion of step dynamics or, alternatively, in an ‘‘island dynam
ics’’ simulation of epitaxial growth such as that described
@1#, and therefore could provide a bridge between mic
scopic and macroscopic length and time scales.

The velocity of a step edge in crystal growth was det
mined in the classic paper of Burton, Cabrera, and Fr
~BCF! @2# for a system with small supersaturation. Modi
cations of the BCF theory to include deviations from eq
librium have been proposed earlier in@3–6#, but these all
rely fundamentally on the system being close to equilibriu
PRE 591063-651X/99/59~6!/6879~9!/$15.00
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For thin-film growth by MBE, the supersaturation is typ
cally quite large since there is almost no desorption. He
the growth is controlled by kinetic, rather than equilibrium
considerations, and an appropriate continuum model sho
reflect this.

The main purpose of this paper is to describe a mac
scopic theory for epitaxial growth and, in particular, dete
mine the velocity of a step edge based strictly on kinet
with no near-equilibrium assumptions. The theory reduce
that of @2# when the system is in equilibrium. This theory
formulated in terms of the density of kinks and ‘‘edge ad
toms’’ on the step edge, as illustrated in Fig. 1. Edge a
toms are defined to be those atoms which are bound to a
edge, but still have mobility along the step. The density
kinks and edge adatoms is determined using a mean-
theory for their interactions. Our analysis starts from the
netic exchange rates~phrased in terms of ‘‘diffusion coeffi-
cients’’ and ‘‘coordination numbers’’! for atoms on the sur-
face. These parameters specify details of the dynamic
epitaxial growth at a microscopic level, and are used here
the microscopic information that is needed for the mac
scopic model.

In some cases these rates can be obtained from ex
mental data, although their determination is often indir
and generally requires application of a theory whose ba
assumptions may not always be valid. For example, the
fusion coefficient of adatoms on a surface can be determ
indirectly by measuring the density of islands in submon
layer deposition experiments and applying basic nuclea
theory @7,8#. This assumes, of course, that basic nucleat

FIG. 1. Schematic drawing of an epitaxial surface, showing
step edge, adatoms, kinks, and edge adatoms.
6879 ©1999 The American Physical Society
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6880 PRE 59CAFLISCH, E, GYURE, MERRIMAN, AND RATSCH
theory is valid for the material system and parameter ran
of interest, which is not always the case. These kinetic ra
can also, in principle, be directly determined fromab initio
computations@9#. This is a promising approach and althou
such calculations are computationally demanding, t
method is more likely to produce reliable numbers since
indrect interpretation of experimental data is required.

Although our kinetic, mean-field approach to epitax
growth seems quite natural, we know of only one refere
in which something similar is proposed. In@10#, Voronkov
derived a related theory for the velocity of a step on a cry
surface that is far from equilibrium. Rather than starti
from microscopic exchange rates, his analysis depends
the ‘‘effective supersaturation’’ at the step, which is difficu
to obtain directly. His results include a formula for step ed
velocity in terms of effective supersaturation, but he does
provide a full model for the evolution of the epitaxial su
face, as we formulate below. In addition, he assumed tha
attachment to the step is directly from the vapor above
epitaxial surface, whereas we have included the adatom
sity on the terraces adjacent to the step.

This paper is organized as follows. The epitaxial grow
model is derived in Secs. II and III. The former section co
tains only equations derived from macroscopic argume
while all of the relations that depend on the kinetic mea
field approximation are reserved for the latter section. T
model is phrased in terms of a general set of diffusion co
ficients and coordination numbers. Detailed balance imp
certain relations among the diffusion coefficients, as
scribed in Sec. IV. In Sec. V, we determine specific para
eters which correspond to those in an atomistic solid-
solid ~SOS! model. Equilibrium solutions are derived in Se
VI and kinetic steady-state solutions are derived in Sec. V
KMC results presented in these sections confirm the vali
of this theory for the SOS model. Since the equilibrium s
lutions are consistent with those of BCF, the predicted d
ferences between equilibrium and the kinetic steady-state
lutions show the significance of the kinetic effects; this
discussed in Sec. VIII, along with the application of th
theory to a continuum description of epitaxial growth.

II. MODEL OF THE STEP EDGE: MACROSCOPIC
EQUATIONS

In epitaxial growth, adatoms are deposited on a terr
and diffuse until they attach to a step edge or collide w
another adatom. The adatom diffusion equation is

] tr2DT¹2r52t21r1F2M ~2.1!

in which r is the adatom density,DT is the adatom diffusion
coefficient on a terrace,F is the deposition flux rate,M is the
loss due to nucleation, andt21 is the desorption rate, which
will be omitted in the subsequent discussion.

We definef 1 to be the net flux of adatoms to the ste
edge from the upper terrace, andf 2 the net flux from the
lower terrace. In terms off 6 , the boundary conditions fo
the diffusion equation are

vr11DTn•“r152 f 1 , ~2.2!
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vr21DTn•“r25 f 2 , ~2.3!

in which r1 andr2 are the limiting values ofr at the edge
from the upper terrace and the lower terrace, respectiveln
is the normal pointing into the lower terrace, andv is the
normal velocity of the boundary in the directionn. The term
vr6 on the left is due to the motion of the boundary a
would not be present if the boundary were not moving. A
though this term is typically quite small in epitaxial growt
without it mass is not exactly conserved.

Edge adatoms diffuse along a step edge until they att
to a kink site, at which point we consider them to be part
the step. The diffusion equation for the edge-adatom den
w is

] tw2DE]s
2w5 f 11 f 22 f 0 ~2.4!

in which DE is the edge diffusion coefficient,s is the arc-
length variable along the edge, andf 0 is the net flux of edge
adatoms to kinks. In Eq.~2.4!, the flux termsf 6 serve as
sources of edge adatoms as described in the next sectio

As a step edge moves by atoms attaching to a kink,
kink moves along the edge. Since the step edges are
dimensional, there are two kinds of kinks~cf. Fig. 1!: those
that move to the left, which we call left-facing kinks wit
densitykl , and those that move to the right, which we c
right-facing kinks with densitykr . We denote the total den
sity of kinks ask5kr1kl . For simplicity we assume the
atomistic hopping rates~i.e., the diffusion coefficients de
scribed below! are the same for left- and right-facing kink
In particular, this implies that the macroscopic speed is
same for left- and right-facing kinks, so that the velociti
are2w andw for left- and right-facing kinks, respectively
The resulting convective flux of kinks with respect to a
length s is w(kr2kl ). In addition, as described in the ne
section, there are two processes for the net gain or los
kink pairs; the net gain in kink pairs due to ‘‘nucleatio
breakup’’ is denoted byg and the net loss in kink pairs du
to ‘‘creation/annihilation’’ is denoted byh. Note thatg andh
include both gain and loss terms. In the kinetic steady s
that is of most interest for MBE growth, there is a net ga
from nucleation/breakup and a net loss from creati
annihilation, which is the reason for takingg.0 to corre-
spond to net gain andh.0 to correspond to net loss. There
fore, the kink densityk evolves according to the convectiv
equation

] tk1]s@w~kr2kl !#52~g2h!. ~2.5!

Additional relations between the kink densitiesk, kr , and
kl are implied by the geometry of the step edge. Conside
crystal with lattice constanta, and a step edge that is near
parallel to one of the primitive~i.e., lowest index! crystallo-
graphic directions. Lete0 be the corresponding crystallo
graphic axis, andn the unit normal to the macroscopicall
curved step edge. Letu denote the angle betweene0 andn.
Along the step edge, the densities of right- and left-fac
kinks satisfy

kr1kl 5k, ~2.6!



e
te

fe
g
a

st
dg

th

ng

th
s
e
s

th

io

s

for
.

sed
kink

n-

si-

if-

f-

the

e
s
of

t be
o be
is-
ha-
ni-

as

e
s, or

at
le-
be
me
ur
re-
lo

hat
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kr2kl 52a21tanu. ~2.7!

The flux f 0 of edge adatoms to kinks can be determin
by macroscopic considerations, as follows: Denote the s
edge asG, separating the upper terraceV1 from the lower
terraceV2 . Neglect deposition fluxF and desorption for the
moment, since they are spatially distributed and do not af
the form of f 0. As mentioned above, we do not consider ed
adatoms to be part of the step edge. Conservation of m
then says that any loss of adatoms on the terraces mu
due to either growth of the step edge or accumulation of e
adatoms; i.e.,

2
d

dtEV1øV2

rdA5a22E
G
vds1

d

dtEG
wds. ~2.8!

On the other hand, the only way for adatoms to leave
terraces is through the fluxesf 6 , so that

d

dtEV1øV2

rdA52E
G
~ f 11 f 2!ds. ~2.9!

In addition, the rate of change of arc length of a movi
curve is equal to the product of the normal velocityv and the
curvaturek, from which it follows that

d

dtEG
wds5E

G
w t1wkvds. ~2.10!

Combining these, we obtain

2a22E
G
vds5

d

dtEV1øV2

rdA1
d

dtEG
wds

52E
G
~ f 11 f 2!ds1E

G
~w t1wkv !ds

5E
G
~2 f 01wkv !ds. ~2.11!

By properly restricting the integral to a short segment of
boundary G, this identity implies that the integrand
2a22v and2 f 01wkv in the first and last integrals must b
the same, which shows that the flux rate for edge adatom
kinks is

f 05v~wk1a22!. ~2.12!

Finally, as derived in@4#, the normal velocityv for a step
edge must satisfy

v5awkcosu ~2.13!

since the velocity of the edge is due to the growth of
upper terrace by motion of the kinks.

To summarize, the adatom density satisfies the diffus
equation~2.1! with boundary conditions~2.2! and~2.3!. The
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equations for edge-adatom densityw and kink densityk are
Eqs. ~2.4! and ~2.5!. Constitutive laws for these equation
include the macroscopic conditions~2.6! and~2.7! for kr and
kl , as well as Eq.~2.12! for f 0. The velocityv for the step
edge is determined by the Eq.~2.13!. All of these equations
are macroscopic. Additional constitutive equations
M , f 6 , w, g, andh will be determined in the next section

III. MODEL OF THE STEP EDGE: MEAN-FIELD
INTERACTION TERMS

In the preceding section, macroscopic analysis was u
to derive equations for the adatom, edge adatom, and
densities. Here we formulate expressions forM , f 6 , w, g,
and h in terms of diffusion coefficients and geometric co
stants, which we will refer to as ‘‘coordination numbers.’’

Consider an interaction processP involving transitions
from stateA to stateB. Let cP be the ‘‘coordination number’’
which counts the number of paths through which this tran
tion can occur. Although transition fromA to B through dif-
ferent paths may occur at different rates~and even involve
several different atomistic processes!, we may form a single
effective rateaAB for all transitions fromA and B. It is
convenient to replace the transition rate by an effective ‘‘d
fusion coefficient,’’ which is defined asDAB5a2aAB in
which a is the lattice constant. Although the diffusion coe
ficient DBA may differ fromDAB , the coordination numbers
for the process and its inverse must be the same; hence
notationcP .

We will use diffusion coefficients (DAB) rather than tran-
sition rates (aAB) in the remainder of this paper since th
most significant transitions involve the motion of atom
along terraces and step edges which result in diffusion
adatoms and edge adatoms. The transition rates migh
more natural for some of the other processes, but can als
misleading since some of them may involve several atom
tic processes each with their own rate. So in order to emp
size the generality of our model and achieve notational u
formity, we use effective diffusion coefficients, defined
above to have the correct units of (length)2/time.

If the probability for occurrence of a stateA is denoted as
p(A), then the total rate for transitions fromA to B is
cP(DABa22)p(A). Most of the significant processes involv
interactions between two or more adatoms, edge adatom
kinks, so thatp(A) should be a two~or more! particle prob-
ability density function. The mean-field assumption is th
this density can be approximated by a product of sing
particle density functions. This approximation should
valid if the particle densities are small and there is so
mixing in the system. This is the main assumption in o
model and its accuracy will be tested by comparison of
sults from our theory to those from kinetic Monte Car
simulations.

First consider the rate of island nucleation. Assuming t
the critical cluster size for adatoms on a terrace is one~i.e.,
clusters of size two or larger are stable islands!, then the loss
term M due to island nucleation is

M52cMDTa2r2. ~3.1!
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The coordination numbercM measures the number of way
that two adatoms can hop together to form a cluster a
given location as shown in Fig. 2. For the general mo
formulated here, this figure~as well as Figs. 3, 4, and 5! is
only a caricature of the processes, but for the cubic S
model developed later, this figure correctly describes th
processes. The corresponding inverse process, the break
small clusters, is ignored. Note that the termr2 is justified
through the mean-field approximation.

Next consider the fluxesf 6 , which result from an ex-
change of atoms between the terraces and an edge. The
written in terms of diffusion coefficients and coordinatio
numbers as

f 15cf 1~DTE
1 ar12DET

1 w!a22, ~3.2!

FIG. 2. Illustration of the nucleation process. For a fixed adat
~center!, this shows thecM512 ways that a second adatom c
attach to nucleate a new island.

FIG. 3. Illustration of the kink velocityw. This shows the num-
ber of ways that an adatom can hop to a fixed kink site:cw152 for
an edge adatom~top!; cw252 for an adatom from the upper terrac
~middle!; cw351 for an adatom from the lower terrace~bottom!.
a
l

S
se
p of

are

f 25cf 2~DTE
2 ar22DET

2 w!a22. ~3.3!

In these equations,DTE
1 is the diffusion coefficient for the

transition from the upper terrace~T! to an edge (E), andDET
1

is the diffusion coefficient for the inverse transition fro
edge to terrace. The coordination number for transitions
tween the edge and the upper terrace iscf 1 . Transitions to

FIG. 4. Illustration of the rateg for nucleation/breakup of kink
pairs. This shows the number of ways that an atom can hop
fixed edge adatom:cg152 for an edge adatom~top!; cg254 for an
adatom from the upper terrace~middle!; cg352 for an adatom from
the lower terrace~bottom!.

FIG. 5. Illustration of the rateh for creation/annihilation of kink
pairs. This shows the number of ways that an adatom can fill in
empty site between two kinks:ch152 for an edge adatom~top!;
ch253 for an adatom from the upper terrace~middle!; ch351 for
an adatom from the lower terrace~bottom!.
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and from the lower terrace have diffusion coefficientsDTE
2

andDET
2 , and coordination numbercf 2 .

The kink velocity w is determined by three processe
transitions between an edge~E! and a kink (K), transitions
between the upper terrace (T1) and a kink (K), and transi-
tions between the lower terrace (T2) and a kink (K). The
rates for these three processes are denoted byw1 , w2, and
w3, respectively, formulas for which are derived next. T
three processes are illustrated in the upper, middle, and lo
diagrams of Fig. 3.

First consider transitions between edge adatoms an
given kink. The attachment rate iscw1DEKwa21 in which
aw is the probability for an edge adatom to be at a particu
site adjacent to the kink, the coordination numbercw1 counts
the number of relevant adjacent sites, andDEKa22 is the
transition rate to go from an adjacent site to the kink. T
detachment rate iscw1DKEa22. Note that since this calcula
tion is performed with reference to a given kink, as is app
priate for a calculation of velocity, there is no factor ofk.

The attachment rate for adatoms from the upper terrac
a given kink iscw2DTK

1 r1 in which a2r1 is the probability
for an adatom to be at a particular site on the upper terr
adjacent to the kink, the coordination numbercw2 counts the
number of relevant adjacent sites, andDTK

1 a22 is the transi-
tion rate to go from an adjacent site to the kink. The deta
ment rate iscw2DKT

1 a22.
Similarly, the attachment and detachment rates for an a

tom from the lower terrace to the kink arecw3DTK
2 r2 and

cw3DKT
2 a22, respectively.

We combine these three processes to get the kink velo
w, which is a times the net rate of attachment and deta
ment. The result is

w5w11w21w3 ~3.4!

in which

w15cw1~DEKw2DKEa21!,

w25cw2~DTK
1 ar12DKT

1 a21!, ~3.5!

w35cw3~DTK
2 ar22DKT

2 a21!.

Next, consider the gain and loss of kinks. This occurs
two ways: In the first process, which we call nucleatio
breakup, a left-right kink pair~facing away from each othe
and consisting of two atoms! can nucleate by two atom
coming together along the edge, and it can break up by
atom moving away. The net gain of kinks due to nucleati
breakup is denoted 2g, in which g is the net rate of gain o
kink pairs. In the second process, which we call creati
annihilation, a right-left kink pair~facing toward each othe
and separated by a single atomic vacancy along the edge! can
form due to detachment of a single atom from a strai
edge, and the kink pair can be destroyed by an atom fillin
the vacant spot. The net loss of kink pairs due to creat
annihilation is denoted 2h, in which h is the net rate of loss
of kink pairs. The signs are chosen so thatg andh are posi-
tive in epitaxial growth. These processes involve transitio
:
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between the adatoms on the upper and lower terracesT1

andT2), edge adatoms (E), atoms at a kink (K), and atoms
in the bulk~B! by which we mean those that are in a straig
step edge.

First considerg: Nucleation of a kink pair occurs by a
atom moving next to an existing edge adatom. The mov
atom can be either an edge adatom or an adatom from
upper or lower terrace. The net gain rates for these proce
are denotedg1 ,g2, andg3, respectively. They are illustrate
in the upper, middle and lower diagrams in Fig. 4, resp
tively.

The nucleation rate due to collision of two edge adato
is cg1DEKw2a21 in which w is the density of edge adatom
aw is the probability of an edge adatom in a site adjacen
the first edge adatom,cg1 is the number of such sites, an
a22DEK is the hopping rate. Breakup of a kink pair, resultin
in two edge adatoms, occurs at ratecg1DKEkrkl a21, in
which akrkl is the density of kink pairs,cg1 counts the
number of ways that they can break up into two edge a
toms, anda22DKE is the hopping rate for this transition.

We combine these expressions with similar expressi
for nucleation and breakup involving an edge adatom and
adatom to obtain

g5g11g21g3 ~3.6!

in which

g15cg1~DEKw22DKEkrkl !a21,

g25cg2~DTK
1 ar1w2DKT

1 krkl !a21, ~3.7!

g35cg3~DTK
2 ar2w2DKT

2 krkl !a21.

Finally, considerh which is the net rate of annihilation o
kink pairs due to two processes: The first process is the
nihilation of a kink pair which faces each other and is se
rated by a single site. The kink pair is annihilated and
step edge is completed by an adatom moving into the
between the kinks. The second, inverse process is the
ation of a kink pair by removal of a single atom from
straight edge. The atom that fills in the gap or is remov
from the straight edge can be either an edge adatom, o
adatom from the upper or lower terrace. These three p
cesses are denoted byh1 , h2, andh3, respectively, and they
are illustrated in the upper, middle, and lower diagrams
Fig. 5, respectively.

Suppose that the atom that moves is an edge ada
Then the annihilation rate isch1DEBwkrkl , in which akrkl

is the density of kink pairs facing toward each other a
separated by a single site,aw is the probability of an edge
adatom in a given site adjacent to the kink pair,ch1 counts
the number of such sites, andDEBa22 is the hopping rate for
the edge adatom. The rate of creation of kink pairs
ch1DBEa23 in which a21 is the density of sites from which
an atom can detach~this neglects the presence of edge ad
toms and kinks, which is a higher-order correction!, ch1
counts the number of ways that an atom can detach to f
an edge adatom, andDBEa22 is the hopping rate from the
bulk to the edge.
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We combine these expressions with the corresponding
pressions for attachment and detachment of adatoms to
tain

h5h11h21h3 ~3.8!

in which

h15ch1~DEBwkrkl 2DBEa23!,

h25ch2~DTB
1 ar1krkl 2DBT

1 a23!, ~3.9!

h35ch3~DTB
2 ar2krkl 2DBT

2 a23!.

To summarize, we have derived in this section expr
sions for the kink velocityw, the fluxesf 1 and f 2 , and the
creation and loss termsM , g, andh.

IV. EQUILIBRIUM AND DETAILED BALANCE

Before finishing the derivation of the epitaxial grow
model, we need to consider the consistency conditions
quired for detailed balance. Here we derive the equilibri
values of adatom, edge adatom, and kink densities and
obtain the consistency conditions on the diffusion coe
cients.

At equilibrium, detailed balance implies thatf 1 , f 2 and
each of the three terms ing, h, andw must vanish. In ad-
dition, r is constant in equilibrium, so thatr15r2 and as-
suming that the step edge is parallel to a fundamental cry
direction implies thatkr5kl 5k/2. The equationsg15g2
5g350 and w150 imply w25w350. Of the remaining
nine equations, three provide equations forr, w, andk, and
six are consistency conditions for the diffusion coefficien

From thew1 , g1, and f 1 equations, we obtain the fol
lowing equations forr, w, andk in equilibrium:

r5~DET
1 /DTE

1 !~DKE /DEK!a22, ~4.1!

w5~a/4!k2, ~4.2!

k52~DKE /DEK!1/2a21. ~4.3!

The equations forg2 ,h1 ,h2 then imply

~DTK
1 /DKT

1 !~DET
1 /DTE

1 !~DKE /DEK!51, ~4.4!

~DEB /DBE!~DKE /DEK!251, ~4.5!

~DTB
1 /DBT

1 !~DET
1 /DTE

1 !~DKE /DEK!251. ~4.6!

The remaining equations forf 2 , g3, andh3 then imply

~DET
2 /DTE

2 !5~DET
1 /DTE

1 ! ~4.7!

~DKT
2 /DTK

2 !5~DKT
1 /DTK

1 ! ~4.8!
x-
b-

-

e-

en
-

tal

.

~DBT
2 /DTB

2 !5~DBT
1 /DTB

1 !. ~4.9!

This concludes the derivation of the mean-field kine
model for epitaxial growth. Equations~2.1!–~2.7!, ~2.12!,
~2.13!, and ~3.1!–~3.9! define the model in general form
Equations~4.4!–~4.9! are detailed balance conditions that r
strict the possible values of the diffusion coefficients. In d
riving these consistency conditions, we have also derived
equilibrium solutions, Eqs.~4.1!–~4.3!, for this model.

V. THE CUBIC SOLID-ON-SOLID MODEL

In the previous sections, we formulated a general mo
for epitaxial growth, involving diffusion coefficients and co
ordination numbers. Now we determine these parameters
an atomistic cubic solid-on-solid~SOS! model and use them
in our continuum model which we will now refer to as th
continuum SOS model. We then make specific predictio
for the behavior of this model. The cubic SOS model we u
is nearly identical to the model described in@11,12#. While
not intended to describe any specific material system,
model nevertheless contains all the basic mechani
present in epitaxial growth of many real materials. Th
model has two parameters,ES and EN , which describe the
energy barrier for adatom hopping on a terrace and the
ditional barrier for hopping with a single nearest neighb
The total barrierEb for hopping is then given byEb5ES
1nEN , where n is the total number of in-plane neare
neighbors@11,12#.

The dynamics of this model involve the following fou
diffusion coefficients~which, for this simple model, are hop
ping rates multiplied bya2!: DT is the diffusion coefficient
for an adatom on a terrace,DE is the diffusion coefficient for
an edge adatom along an edge,DK is the diffusion coeffi-
cient for an atom from a kink, andDB is the diffusion coef-
ficient for an atom from a straight edge. These are given

DT5a2ne2ES /kBT, DE5DTe2EN /kBT,

DK5DTe22EN /kBT5DE
2/DT , ~5.1!

DB5DTe23EN /kBT5DE
3/DT

2 ,

in which n is an attempt frequency, typically of orde
1013 sec21, T is temperature, andkB is the Boltzmann fac-
tor.

In terms of these diffusion coefficients, the diffusion c
efficients for individual transitions are

DTE
6 5DTK

6 5DTB
6 5DT , DET

6 5DEK5DEB5DE ,

~5.2!

DKT
6 5DKE5DKB5DK , DBT

6 5DBE5DBK5DB .

All hops are assumed to be to a nearest-neighbor site
one exception: at a kink, an atom can hop between the k
and its diagonal neighbor along the edge. Diagonal h
were included because they allow atoms to hop around
ners and across kinks, resulting in compact islands in kin
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Monte Carlo simulations of this model. Step-edge asymm
try, with different hopping rates from the upper and low
terraces to the edge, could easily be included but is omi
here for simplicity.

Next we determine the coordination numbers for t
model. First consider nucleation in which one adatom h
to a neighboring site of another adatom. To avoid duplicat
in counting, pick a site for the atom that does not hop a
count the ways in which an atom hops to it. As illustrated
Fig. 2, there are two possible routes from each of the f
diagonal sites and one possible route from each of the
sites that are next nearest neighbors in the horizontal or
tical directions. ThereforecM512.

Next consider the kink velocityw. To be specific, con-
sider a right-facing kink. As shown in Fig. 3, there are tw
sites from which an edge adatom can hop to the kink, on
the right of the kink and one directly attached to the kink~the
latter joins the kink by a diagonal hop!, so thatcw152. From
the lower terrace, there is only a single position, diagona
opposite the corner of the kink, from which an adatom c
hop to the kink, so thatcw351. Finally, from the upper
terrace, an adatom can hop to the kink either from the
~on top of the end of the kink! or from below~opposite the
site to the right of the kink!, so thatcw252. Together these
show that

w52DEw1DTa~2r11r2!25DKa21. ~5.3!

Next consider the nucleation and breakup of kink pa
which are described by the termg and illustrated in Fig. 4.
For a given edge adatom, there are two ways~from the right
or from the left! in which a second edge adatom can hop
it, so thatcg152. From the lower terrace, there are also tw
ways ~from the right or left! in which an adatom can hop t
it, so thatcg352. Finally, from the upper terrace, there a
four ways~one from each of the sites to the right or left a
two ways from directly on top of the edge adatom!, so that
cg254. It then follows that

g52w@a21DEw1aDT~2r11r2!#28a21DKkrkl .
~5.4!

Similarly, as shown in Fig. 5,ch152, ch253, andch351 so
that

h5@2DEw1aDT~3r11r2!#krkl 26DBa23. ~5.5!

VI. THERMODYNAMIC EQUILIBRIUM

Using the specific diffusion coefficients and coordinati
numbers for the continuum SOS model from the preced
section, we now formulate predictions from the model in tw
particular regimes: equilibrium and kinetic steady states. T
analytic results from the model are directly compared to
results of KMC simulations to provide validation for th
model and, in particular, the mean-field approximation.

Equilibrium values for the adatom, edge adatom, and k
densities were derived in Sec. IV. Here we specialize th
results to the continuum SOS model described in the pre
ing section. The detailed balance results~4.1!–~4.3! together
-
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with the specification of the diffusion coefficients~5.2! result
in the following formulas:

r5~DE /DT!a21w, ~6.1!

w5~a/4!k2, ~6.2!

k52~DK /DE!1/2a21. ~6.3!

The detailed balance requirements~4.4! and ~4.7!–~4.9! fol-
low directly from Eq.~5.2! for the diffusion coefficients. The
two remaining conditions~4.5! and~4.6! are then equivalen
to the detailed balance requirement that

DK
2 5DEDB , ~6.4!

which is a direct consequence of Eqs.~5.1!.
The three equations~6.1!–~6.3! are consistent with the

equilibrium density values derived in Appendix A of@2#,
except that@2# includes the effects of kinks of size large
than one, resulting in

k52ADK /DE~11ADK /DE!21a21. ~6.5!

This is the same ask in Eq. ~6.3! in the limit of small values
of DK /DE .

For partial validation of this step edge model, we ha
performed computations for the motion of a periodic ser
of step-edges, using standard kinetic Monte Carlo techniq
to simulate the atomistic~SOS! model. Computations were
performed for a range of values of diffusion coefficien
(DT ,DE) ~or equivalently, binding energiesES andEN) and
terrace widthsL. Since the kink density is significantly large
than the adatom and edge-adatom densities, we use
compare with the prediction of Eq.~6.3! or Eq. ~6.5!.

Figure 6 shows a comparison of the simulation results
the prediction of Eq.~6.5! for the equilibrium kink density

FIG. 6. Kink densityk vs time t for equilibrium with F50 as
determined from KMC computations (•, with error bars! and BCF
theory ~solid line!.
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with F50, DT51012, and the ratioDE /DT varying between
101.5 and 103.5. The agreement is excellent, with the diffe
ences between theory and simulation well within one st
dard deviation of the simulation results. Agreement with
leading-order formula~6.3! is also good, but not quite a
close as that for Eq.~6.5!. These results demonstrate th
accuracy of the growth model in the equilibrium regime.
particular, they confirm that our model is consistent w
BCF theory for equilibria with small kink densities. This
also a first test of the validity of the mean-field approxim
tions used in the model.

VII. KINETIC STEADY STATE FOR STEP FLOW

Finally consider a kinetic steady state consisting of a
riodic sequence of steps, separated by distanceL and moving
at velocity v along one fundamental crystallographic dire
tion. For nonzero deposition fluxF, we find a kinetic steady
state, in whichr5r(x2vt), w and k are constants, andu
50.

In steady state~and neglecting desorption and nucleatio!,
the flux to the boundaries must equal the total deposi
flux, which implies

v5a2~ f 11 f 2!5a2LF. ~7.1!

The remaining steady-state equations are

05 f 11 f 22 f 0 , 05g2h. ~7.2!

Here we neglect the slowest processesDK and DB and
assume thatak!1. For the model formulated in Sec. V, on
can show thatr15r2 . Then the adatom, edge adatom, a
kink densities are

r5~DE /DT!a21w, ~7.3!

w5~16a/3!k2, ~7.4!

k5~ 16
15 Pedge!

1/3a21. ~7.5!

In the equation fork, Pedge is the edge Peclet number, d
fined as

Pedge5~a3LF !/DE , ~7.6!

which is the ratio of the total fluxf 5LF to an edge from
deposition and the diffusive fluxa23DE along the edge. The
exponent 1/3 in Eq.~7.5! is related to the critical size fo
formation of a left-right kink pair. If the critical size werej
~i.e., if j 11 edge adatoms were required to form a sta
kink pair!, then the exponent would bej /( j 12).

Figure 7 shows a comparison of the theoretical and co
putational results for kink densityk for F51. In this figure,
the value ofDT is 1012, while DE varies between 104 and
107. The figure shows excellent agreement between the
dictions of the present theory and the results of the kin
-
e

-

-

n

e

-

e-
ic

Monte Carlo simulation, with differences that are less th
one standard deviation of the KMC results. Validation of t
present theory shows the validity of the mean-field appro
mation, which was the main step in its derivation.

Equation~7.5! is our main result, showing the differenc
between the kinetic steady-state kink density and the equ
rium kink density~6.3!. In deriving this result, we have ig
nored detachment from kinks (DK) and from straight edges
(DB) since these are insignificant in a typical MBE growt
In equilibrium, on the other hand, detailed balance requ
that each process and its inverse process must balance
the deposition fluxF is decreased, the growth is slower s
that DK and DB can become significant. Equation~7.5! re-
mains valid untilF is so small that the value of Eq.~7.5!
becomes as small as that of Eq.~6.3!. This shows the con-
nection between the equilibrium and kinetic steady-state
sults and that the present theory is capable of describing
transition between them.

VIII. CONCLUSIONS

The theory developed above determines the velocity o
step edge in epitaxial growth, as well as the density of e
adatoms and kinks along the edge with no near-equilibri
assumptions. The difference between the kink density
equilibrium versus kinetic steady state shows the significa
of the kinetic considerations. As shown above, a virtue of
present theory is that it is valid in both the equilibrium lim
and the kinetic steady-state regime. Therefore, it can be u
to describe epitaxial growth for systems that are near as
as far from equilibrium. Thus it should prove to be a powe
ful model for investigating a wide range of epitaxial ph
nomena.

The model developed above is also quite general, si
the macroscopic mechanisms should apply to almost
kind of epitaxial growth. Details of the specific kineti

FIG. 7. Kink densityk, normalized byL1/3, vs edge diffusion
coefficientDE for kinetic steady state, for various values of terra
width L. Parameter values are fluxF51 and adatom diffusionDT

51012. Results are shown from the kinetic theory~solid line! and
KMC computations withL525 ~squares!, L550 (s), and L
5100 (n).
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mechanisms at the atomistic scale are inserted into the m
roscopic model through the diffusion coefficientsD and co-
ordination numbersc.

As described above, this theory involves the angleu with
one of the principal crystallographic axese0, and therefore is
restricted to boundaries that are nearly perpendicular to
fundamental crystallographic directions. Extension to an
bitrary boundary curve is effected by definingu to be the
angle with the closest crystal direction. This is probably n
valid for angles nearp/4, i.e., at the corners of a growin
island. On the other hand, we expect that the details of
dynamics at corners are not too significant; as in a kin
Wulff shape@13#, the corners grow so fast that their motio
is limited ~i.e., determined! only by the dynamics away from
corners. For this reason, we believe that this theory shoul
oc

tt.
c-

e
r-

t

e
ic

be

applicable to the motion of island boundaries during lay
by-layer MBE growth, where kinetic considerations a
known to be important. We believe that this model is
important first step in bridging the atomistic and continuu
length scales in epitaxial growth and will ultimately allo
for simulations of continuum models that include realis
kinetic effects.
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