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Steady buoyant droplets with circulation
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Numerical solutions are presented for the steady flow corresponding to a two-dimensional moving
droplet with circulation. Differences in the density of the droplet and surrounding fluid result in a
buoyancy force which is balanced by a lift force due to the Magnus effect. The droplet is assumed
to have constant vorticity in its interior, and its boundary may be a vortex sheet, as in a Prandtl—
Batchelor flow. Only symmetric solutions are calculated. For Atwood numbef (no density
difference the droplet is a circle. As the Atwood number is increased, the droplet shape begins to
resemble a circular cap with a dimpled base. There is a critical Atwood nufgheat which the
droplet develops two corners. FOERRA<A;,,, the solution is smooth; while fak;,, <A, we do not

find a solution. ©1998 American Institute of Physids$s1070-663(98)02908-(

I. INTRODUCTION tex sheets. Batchelbrshowed that in region of closed
_ ) streamlines the inviscid limit of a steady viscous flow must
A 2-D fluid droplet of densityp, surrounded by an un- p4ye constant vorticity. Prandti—Batchelor flows have thus
bounded fluid of different density, experiences a buoyancy paen proposed as the inviscid limit of the wake behind an
force Fq= _g(’?lfPZ) ay In Wh'c,h als t,he area of the drop-. obstacle. Analytical and computational studies of such flows
let. One possibility for balancing this buoyancy force is have been performed in Refs. 2, 5, and 6.

through the lift of the Magnus effect. If the droplet is moving Another context in which such a steady flow could occur
at speedJ in thex direction and has circulatiofi and if the ;o ;4 rotating flow containing a 2-D dropléte., a 3-D

ambient fJUid is irrotatiqnal, then this lift force i column of a second fluid of different densitidue, for ex-
- —l“U_pZy. Thus there is a balance between these tWOample, to different temperatureln this context the role of
forces if gravitational force is played by the centrifugal force. In any

TU=—ga(p;—py)lp;. (1.))  such application, the stability of these flows would be impor-

tant, which has not been considered here.

In this paper we numerically construct a new class of  The formulation and numerical method used here is a
steady, 2-D vortical flows for which there is a balance be'boundary integral method and follows closely the method
tween the buoyancy forde, and the lift forcef, . The fluids  ysed by Pullin and Grimshévor computation of interfacial
are incompressible and inviscid, and the outer fluid is asyayes. As in their investigation, we are only able to consider
sumed to be irrotational. Within this “flying droplet” the droplets with a left-right symmetry. In fact, no well-posed
vorticity —€) is assumed to be a uniform constant; while thenymerical method has been found for asymmetric solutions.

droplet boundary may consist of a vortex sheet of net circuthey also found extreme solutions consisting of circular caps
lation I's. The total circulation of the droplet is then iih singular corners.

I= —aQ+l“s.- ) . ) In the next section we present Eulerian and Lagrangian
The resulting solutions show several interesting featuresormylations of this problem. The Eulerian formulation is
In particular, as a function of the Atwood number easily solved for a small Atwood number as a perturbation

expansion; the Lagrangian is most convenient for numerical
solution. In particular, we find that the araaand total cir-
the droplet varies from a circle fok=0 to a shape that is culationI" may be fixed through a rescaling, so that the so-
approximately a circular cap with two corners at some exdution is only a function of the following three parameters:
treme valueA=A,,,. We are unable to produce meaningful Atwood numberA=(p,— p,)/(p1+ p,), vorticity value (,
solutions forA> Ay, . and the Froude numbafc. The droplet velocity is deter-
The motivation for considering a steady droplet with mined through the force balance equatiari). A numerical
constant interior vorticity is partly as a generalization of method for solution of this problem is described in the last
Prandtl—-Batchelor flows, which are flows of a single fluid subsection of Sec. II.
consisting of regions of constant vorticity surrounded by vor-  Results from the numerical study are described in Sec.
Il In particular, agreement is demonstrated between the nu-

A=(p1=p2)l(p1t+p2),

3Electronic mail: skao@math.cycu.edu.tw merical solution qnd the perturbation solu"tior?, which serves
BElectronic mail: caflisch@math.ucla.edu as a check on their accuracy. Several qualitative properties of
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the solution, such as the presence of stagnation points, atee Magnus effects;= —T'Up,y. Let the perturbed solution

discussed in Sec. IV in the case of zero interior vorticityto (2.1), (2.2) for p,# p, take the form(x,z are unit vectors
(2=0) through an additional solution method using confor-in the positivex andz directions

mal mapping. In Sec. V, the angle of the interfaces at the D= T=R
critical Atwood number is shown to be7Z3 (confirming ID={(r,0):r=R(O)},
numerical results in Sec. )ll Conclusions from this study

roo- R .
are described in Sec. VI. h=-3 QO+ VX (h12)=VX(V,2),
I - R R “
Il. PROBLEM FORMULATION U= — BHURHY X (452)= VX (V32), 2.4

A. Eulerian formulation

We shall consider the steady state of a two-dimensional P1==9p1y+Py,
inviscid, incompressible droplet of one fluid surrounded bya p__— _ +p
. . I ; 2 gp2yTFs.
second fluid under the influence of gravitational acceleration. ) o N
Assume that there is constant vorticity in the interior and thafn (2-4, Vi is the stream function in fluid such thatu;
the droplet boundary is a vortex sheet. Let subscripts 1 and Z (9¥i/dy),—(dW¥;/dx)), i=1,2. Itis given by

represent fluid properties inside and outside the boundary, 1

respectively, and the gravity acceleratigract in the nega- Wi=y+ 4 r2Q,

tive y direction. Denote the density, pressure, and velocity (2.5
fields by p; ,P;,u; for i=1,2. The constant values of inner

vorticity and vortex sheet circulation are denoted-b2 and Wo=yptUy—S—logr.

I'g, respectively.
The governing equations in Eulerian coordinates are th? I
following: 0

The Euler equation&.1) and(2.2) are equivalent to the
owing form of Bernoulli's law for a fluid without vortic-

R ity and one with constant vorticity:
pi(Ui-V)Ui+ VPi=—gpy (Xy)é&dD,

Vou=0 @D py(FusP-4r20%-Qyy)+Pi=b; r<R(6), (2.9
u;=0,
V2y,=0, (2.7)

P.=P, (X,y)edD, 2.2 & 3
Ui-n=0 ' p23|ug|?+Py=h, r>R(6), (2.9

i .

N 2, _

In (2.1) and(2.2), gD is the boundary of the droplef,is the V=0, 2.9
unit vector in the positivey direction, anch is the unitnor- 5 _ 5 _ _ r=R(9 21
mal vector ondD. There is a freedom in the position of the 1 P2=0(p1p2)y (6). (210
center of mass of the droplet, which is fixed by setting it to 0;¥ ;=¥ ,=0. (2.1)

i.e., [p(x,y)da=(0,0).
A particular simple solution of this system wigh =p,
is the following:

Subtracting the two Bernoulli's equations (8.6), (2.8) on
r=R(#), and settingB=b;—b, (using ¥;=0 on the
boundary, we get

ID={(x,y):x*+y?=1}, 1 R\
rQb Epl[ lﬁlr"‘zﬂ +R lﬂle]
U]_: - = y
’ L I R +U sing i
r . T 5P| | Yar— 5 R T+ U sin
U2=ﬁ 0, (23)
02 2 +(R Y429+ U cos 0)?| +9(p1—p2)y=B. (2.12
P,=- +— pir?-— ,
! 9Py g M1 gm? P1 Note thatI',() are constants, and that the area and center of
2 1 02 the droplet are fixed as
P2=—0p2Y—g2p2 2t 5 P2 1 (2=
r= 71 8 - f R2(6)d6=, .13
0

inwhichI'=—Q+Tg is the total circulationr, 8 are vari-
ables in the polar coordinates, and are unit vectors. We 2
shall use this as a basic solution from which to construct a J R(#)(cos 6,sin §)d6=(0,0). (2.149
perturbation expansion. 0

When the densities are different, the droplet experiences The remaining equations af.7), (2.9), (2.11), (2.12),
a buoyancy forcé=g=—g(p;—p,)7y. We shall allow the (2.13, and (2.14 for functions ¢;, ,, R and constants
flow outside the droplet to move at spdédn thex direction  U,B. To solve this system analytically, expand around the
so that the buoyancy fordg, is balanced through the lift of special solution ap,=p,; i.e.,
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p1=p2te,
R:1+ 6R1+ 62R2+‘ .

U= thiot €irt E€ipte, =12 (2.15
U=0+eU,+€’Up+---
B=Bg+eB;+e?By+-+-

The functlonSz,/le, U, and Ry, j=0,1,2,..., can be ex-

panded in the angular variabl using the equation¥?y;
=0 fori=1,2, as follows:

©

P1:(r,0)= Z a;, rk coskf+b rk sinke,
] ] ]
k=1

oi(r,0)= >, cyr ¥ cosk@+dyr *sinks, (2.19
k=1

Ri(6)= 2, ej coskd+f;, sinke.
k=1
The resulting solution, up t®(e?) terms, is
1
B=3 po(Q2—(T/7)?) + eQ?8— €2p,d?,

R(#)=1+ €%e, cos X,
1
i(r,0)=—Q/4— € 5 Qe,r? cos &,
2.17)

sin 6+ €2
2

Yo(r,0)=edyr 1 e,r 2 cos ¥,

U:_Edl,

622492772/( szg) di=gm/(I'py).

Thus the shape of the dropléb ={(x,y)(6)|0< <2} is
obtained(up to O(€?)) as

1"2
QZ+?

2 2
X(0)=R(#)cosbH=| 1+ % e, |cosf+ % e, c0Y30),
(2.18
62 62
y(0)=R(6)sin 92(1— > ez)sin 0+ 5 € sin(36).
(2.19

Note that in general th©(e) term in (X,y) has the form
R;(#)=a cos#+bsin . The constraint that the center of
mass is 0 implies that thi®(e) term is zero.

B. Lagrangian formulation

We shall work in the complex=x+iy plane. Describe
the boundary of the dropléD by the complex single-valued
function Z(a) =X(a) +i1Y(a), which encloses a connected
regionD of fluid of constant vorticity— (). The parametri-
zation is in the clockwise direction,<Oa<<27. The velocity

field (u+iv)(z) due to the constant vorticity inside the drop-

let for z¢ 9D was derived by Pullin in Ref. 6

q(a)=

S.-S. Kao and R. E. Caflisch 1893
z2'-7
(u—iv)(2)=-— fﬁ 71— dz'. (2.20

ForZ e gD, we define the velocitg(Z)=(u+iv)(Z) as the
average of the limiting values ofit+iv)(z) obtained where
z—Z(«) from either side oD. That is,

g.(2)= lim (u+iv)(2),

z—Z from inside

lim (u+iv)(2z),
z—Z from outside

A(2)=301(2) +92(2)). (2.2
By (2.20 and applying the Plemejl formula, we obtain

-0 2r Z(a')Z (' )da' i
2= _PVL Z-2(a’) 4

0x(2)=

Oz

ZedD. (2.22

The velocity field due to the vortex she#d is given by the
Birkhoff—Rott equation

1 27 y(a')da'
fo Z—-Z(a')

in which y(a)=(q;,—q,)(Z(a))-Z,(a) is the sheet
strength with [3"y(a)da=Ts. Combining Egs.(2.22,

(2.23), and taking into account the uniform velocity at

infinity, we have

qA2)=5= zedD (2.23

1 2r y'—QIZ'ZL2 Qi
2_’77'i Vf() Wda +TZ(6¥)+U.
(2.29

The quantities with primes in the integral term(24) are
functions of the integration variable’.

To derive the equation fo(a), we use the Bernoulli
equationg2.6), (2.8).

(x,y) inside dD,
(2.25

1 5 P,
> [uy] +E+gy_W19:Bl

(x,y) outside D

= u |2+E+gy=B (2.26
2172 P2 2 ’

in which B;=Db; /p;. By taking Eqs(2.25 and(2.26) on ¢D

and eliminating the pressure terms by the boundary condition

P,=P,, we obtain

vRe[q

Here A=(p1—p2)/(p1+py) is the Atwood number, an8
=A(B;+B,)+(B;—B5). The boundary condition;-n=0
yields

2

Y
+A W+qq+29y

(2.27

(2.28

Next we nondimensionalize the problem by setting
=LZ, y= -(L%T)y, q=(L/T)§, U=(L/T)U, Q=Q/T, B
=(L2/TY)B, T'=(L¥T)T and A=(L/gT?)A, where all
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o

variables with are the dimensionless quantities. The Z(a)=sin a+i cosa,
length scalel is chosen so that the area of the droplet is

fixed, as in the Eulerian formulation Q T
Y(a)=5+5=
2 27’
f o dx ri
y e a>=— ) ——— (2:37
0 al Za 47TZ(a)
1 2= U= 0’
or Elm{ fo zz, da}—w. (2.29 . Q+ rviao r
2t 2\ 3 an)
The time scald is then chosen so that the total circulation is\ye shall fix the total circulation by setting=—1, and ex-
—1;ie, press the solution td2.31)—(2.36) in Fourier expansion
around the known solution if2.37); i.e.,
r=-1. (2.30 N-1
Z(a)=sin a+i cosa+X; sin a+i Z Y; cogja),
Defining c=L/gT?, which equals the square of the Froude (2.398
number, and dropping ™', the resulting nondimensional o 1 Nt
system is G 2—+ 2 Cj codja).
, o . Note that our ansatz if2.38 always satisfieg2.36).
qla)==— 1 JZ’T Y —QIZ'Z,/2 o + &E(a)+u Note that omitting the higher wave number sine modes in
2i 0 Z(a)=2' (2.38 is equivalent to a choice of the parameterization of the
(2.3)  boundary curve.
Now insert(2.38 into (2.31)—(2.35. There are Rl+1
q v unknowns {Y;,C;,j=1,2,..N—1;X;,B,U}.  Equation
% Re{z— +A c(m +qq|+2y|= (2.32 (2.3 serves as a definition of, and(2.35 is automatically
i — TABLE |I. Comparison of analytical and numerical results for coefficients
Im 0, (2.33 ) ,
Z, X1,Y1,Y, for various values of) and A with c=1. The “error” here
equals maxénalytical X,-numerical X,|,|analytical Y,-numerical Y,|).
1 2 — 0=0.0 numerical analytical
5 Im f ZZda=m, (2.39 A X, Y, Y,  X,=-Y, eror
0.0025 0.009715 —0.009621 0.001877 0.009790 1.68%6
0.0050 0.038318 —0.036904 0.013879 0.039356 2.4524
2m da'=—140 23 0.0100 0.147406 —0.128469 0.083501 0.159019 3.0550
0 yda = U (2.39 0.0200 0.528120 —0.345601 0.254297 0.649123 3.0352

0=*x05

w 0.0025 0.002805 —0.002797 0.000158 0.002823 2.6252
(Re(Z(a)), IM(Z(a)))da=(0,0). (230 00050 0011140 —0011018 0001217 0011350 3.3284
00100 0.043404 —0.041599 0008504 0.045861 4.2623

0.0200 0.164832 —0.141507 0.046575 0.187207 4.57Q0

By Eg. (2.36), the center of the mass of the droplet is always

on the origin.

0=*x1.0

, 0.0025  0.000896 —0.000895 0.000016 0.000901 5.7932
C. Numerical method 0.0050 0.003574 —0.003561 0.000128 0.003621 5.9830

The nonlinear syster© 31-(2.38 in Lagrangian vari. 9010 9011348 “0018SEL oumoosy oouishn ora
ables is numerlca”y solved by the collocation method. F0|'0.0400 0.209660 —0.173321 0.033411 0.248933 7.5612
lowing Pullin and Grimshavf,we assume that the droplet is

symmetric about the imaginary axis=0. We have been Q=x15
unable to find a well-posed numerical method for nonsym-0.0025  0.000420 —0.000419 0.000004 0.000422 2.3925
metric shaped droplets. This may be surprising at first, bu.0050  0.001677 —0.001674 0.000028 0.001696 2.2183
the same limitation has been found in previous studies o? 0100  0.006672 —0.006628 0.000219 0.006852 2.2443

0.0200 0.026193 —0.025524 0.001588 0.027971 2.4471
water wave$and of Prandti-Batchelor flows. 0.0400 0.099902 —0.090828 0.009499 0.116596 2.5768

The basic unperturbed solution to E¢B.3)—(2.36) for  gogo0 0428225 —0.299830 0.045280 0.507823 2.0799
A=0 is given by

Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 10, No. 8, August 1998

Omega=0.0

1 1
-1.5 -1 -0.5 0 0.5 1 1.5
A=.0025:.0025:.0200 from the most circular to the most flat one

FIG. 1. The stationary profiles of the droplet@t=0.0 at variousA.
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Omega=1.0, -1.0

N 1 ] 1
-15 -1 -0.5 0 0.5 1 1.5
A=.01:.01:.06 from the most circular to the most flat one

FIG. 3. The stationary profiles of the droplet@t= +1.0 at variousA.

satisfied. Evaluatind2.32), (2.33 at N points ay_1,=(k
— 7N for k=1,2,...N, plus (2.3, results in a total of
2N+ 1 equations. The principal-valued integral (31 is
evaluated by summing over]-’:j(q-r/N), i=1,2,...,, for -
eache,_q,. Newton's iterative scheme is used to solve thisalrnOSt up to the critical valug . .

closed N+ 1 linear system, and the iteration stops when the The probl_em was solved for various valuesfohnd),
absolute value of the difference between two successive i€nd for a typical value oN=128. We check that the com-
erative solutions is less then 10 The initial guess for the putation provides consistent solutions to the nonlinear sys-

Newton iteration was generated by a continuation method®M by showing the numerical so,lu'u_ons converge as the
For A=0, the solution is just the simple circular droplet de- mesh size shrinks. Since Newton’s iterative scheme con-

scribed above. Once a solution was computer Aorthat verges quadratically, it takes usually three to four iterations

7
solution is used as an initial guess for the computatioA at to reach the 107 error bound.
=A+ SA. If the iteration fails to converge, then the incre-

ment in the Atwood numbergA, was halved, untilbA was
as small as 10%/28. This allowed us to perform computation

Omega=0.5,-0.5 Omega=1.5,-1.5

0.5

-1t 4

-1.51-

-1.5

0

1
0.5

1

1.5

1

4
t

-15

-1

0

0.5

1

1.5

A=.0125:.0050:.0325, an& .034375 from the most circular to the most flat one

FIG. 2. The stationary profiles of the droplet@t= +0.5 at variousA.

A=.0175:.0175:.Oé75 from the most circular fo the most flat one

FIG. 4. The stationary profiles of the droplet@t= =1.5 at variousA.
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Omega=0.0

tangential velocity

0.05

_0.05 s N L . L . L
-4 -3 -2 -1 o] 1 2 3 a4
arclength

FIG. 5. The tangential velocity vs arclengthdd at () =0.0 for A=0.005, 0.010, 0.015, 0.02. The bottom of the droplet corresponds to zero arclength, and
the sign of arclength changes from negative to positive clockwise albng

Ill. RESULTS

Y(a)=cosa+ Y, codka). 34
A. Agreement between the Eulerian and Lagrangian (@) “ kgl  cotka) (342

formulations

o ) The relations among the coefficierXs, a,, Y\, andb, for
To demonstrate the validity of both the analytic and nu-~ 1 gre derived by setting

merical results, we perform a comparison of thealytica)

Eulerian and(numerical Lagrangian solutions. In order to X, ¥)(0)=(X,Y)(a). (3.43
make this comparison, we first cast the analytical solutio
into Lagrangian form. Since the parametéris the Eulerian
formulation, ande in the Lagrangian formulation are differ-
ent, we must first establish their relationship. The boundary

r|n the particular solution witlp, = p, (e=0), the parameters
are related by

o
of the dropletdD is described by two parameterizations: a=5- 0. (3.44
{(x,y)(8)|0<6#<2m} for the Eulerian and{(X,Y)(«)|0
< a<2m} for the Lagrangian formulation, where Thus forp,# p, we can assume that
— aw
X(6)=cos 6+ k; ay cogkd), (3.39 a=—0+efy(0)+ €2f(0)+--- . (3.4
o . Replacinge in (3.41), (3.42, by (3.45, and using the solu-
= + b ko), 3.4 . > )
y(f)=sin 6 k; i Sin(k6) (3.40 tions derived in(2.18, (2.19 leads to

X(a)=sin a+X; sin a, (3.41) f1=0,

Left: Omega=—1; Right: Omega=1
T T T T

tangential velocity

4 (=] 8 10 12 14
arclength

b

FIG. 6. The tangential velocity vs arclength @ at 3= =*1 for A=0.01:0.01:0.06. The bottom of the droplet corresponds to zero arclength, as in Fig. 5.
The arclength for the plot fof)=1 is shifted by 3r.
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Atw = 0.02. Dot line is the unit circle. compared the numerically computed veloditywith the ex-
15} ' ' ' ' ' ] act analytical result) = — ed;, and obtained agreement to
all significant precision.

B. Discussion
0.5F
Here we present the stationary profiles of the droplet and

the corresponding velocity fields derived by our numerical
results. In Figs. 1 to 4, we plot the shape of the droplet at
various A up to A;,, beyond which the iteration scheme
fails to converge, fol2=0.0, 0.5, =1.0, and*+ 1.5, and
the circles mark the stagnation points. The tangential veloc-
ity for =0, £1 for some choseA’s is shown in Figs. 5
and 6.
These results show that the stationary shape of the drop-
let is nearly independent of the sign@f but the direction of
'1'5'1-5 : o5 : o5 : " the interior velocity field changes sign & changes sign.
) I-Omegal=—0.0, 0.5, ;0, 1.5 from the most flat to most circular one This is consistent wit{2.17), which shows that the leading
order terms in the shape of the droplet dependdnOn the
FIG. 7. Stationary shapes for variolf3| at A=0.02. other hand, the leading order term for the interior velocity is
proportional to(}.
Larger values of()| result in largerA;,,’'s, which means
that the vorticity supports the boundary and hence the droplet
(3.496 is less deformed at the samde as shown in Fig. 7. Exami-
nation of the tangential velocity shows that the two corners
on the profiles aA= Ay, are stagnation points.
Y,=0(€d). Stagnation point¢and stagnation streamlines emanating
from the stagnation pointsletermine the geometric charac-
Next, note that the nondimensional form of £8.12 is  ter of the flow. ForA=0 (i.e., p;=p,) the flow is purely
the same except thay is replaced bygT?/L=c~%. By rotating without stagnation points. For the special c&se
choosingc=1, the asymptotic solution obtained in Section =0, the analysis of the next section and the numerical results
2.1 is nondimensionalized by setting=1. To relatee=p,;  of Fig. 5 show theA dependence of the stagnation points.
—p» and the Atwood numbeh, we nondimensionalizeas  For smallA, there is a single stagnation point in the exterior
‘€=elpy,=(p1—p2)p=2AI(1—A). flow. At a particular value ofA, this stagnation points hits
Using these values, we compare the results of the anahe droplet boundary. For largés values it splits into two
Iytical and numerical solutions. In Table |, there is a com-stagnation points on the boundary, which are at the droplet
parison of the values aok;,Y;,Y, for the analyticallwith corners at the critical values ¢f.
error O(A®)] and numerical solutions for a range of values For nonzero(), the determination of the stagnation
of A and (), showing excellent agreement. We have alsopoints is less complete, since there are no exact analytic re-

-1t

f,=—2e, sin 6 cos 4,

Xj_: _Yj_: 6282,

al F—Omega=o mega=1 _

2F q .
1F =
a1
g of 1
-1} N
-2 >3 =
-3 J .
" § L L " L : L s .
-4 —2 o 2 4 6 8 10 12 14

arclength

FIG. 8. The angle between the tangential vector alébgand the positivex-axis vs. arclength fof0=0, Q=1. As in Fig. 5, the bottom of the droplet
corresponds to zero arclength. The arclength for the plof)ferl is shifted by 3r.
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TABLE II. Angle of the stagnation points &= A;r, from numerical results  rameter values. The vorticity density on the droplet boundary

for various cases. is plotted in Fig. 19. There is a pair of points where the sheet
Angle forc=1 strengthy is not differentiable. They correspond to the cor-

N=64 N=96 N=128 N=256 ner points of the corresponding limiting profiles. These are

same points at which the tangential velocity is nondifferen-

Q=0 (Ajn=2.000,) - 17366  2.1410  2.0833 : -
|0|=05(A;,=3.438,)  1.8710 20491 21305 table, as seen in Figs. 5 and 6. _
|Q|=1.0 (A;,=6.000_,) 21096 20929 21233 These results bear similarity to the results of Pullin and
|Q|=1.5 (Ajm=8.750.,) 1.9891 2.0934 Grimshavé for nonlinear interfacial gravity waves in a two-
Angle for Q=0 layer Boussinesq fluid, in which the upper layer consists of a

N=96 N=128 N=256 flow of constant vorticity and the lower layer is irrotational.
They found that the most extreme wave was consistent with

zfie(?gm :_2'10(5)8&)) 1;322 i';gig i'ggig the appearance of one or more stagnation points on the wave
= Jim = L 2 . . . . ;
=32 (Ap—1.266 ) 1.9936 21029 profile. The result that the droplet boundary is less deformed

c=48 (Aj,=1.000.,) 1.9829 21285 20083 for larger values of the interior vorticity was also found by
Moore, Saffman, and Tanv€arhen they studied the Batch-
elor flows in the cases of the Sadovskii vortex and the rota-
) ) ) tional corner flow. The semicircular shape of the solution for
sults available. The numerlca_l results of Fig. 6 however —g o atA;,, also resembles the cap of the “mushroom”
show the same type of behavior of nonzéloas in theQ)  gqytion in the steady wave problem found by Pullin and

=0 case. _ Grimshaw*
Figure 8 shows the angle between the tangential vector

alongdD and the positivex axis, denoted by3, at A=A, _

for Q=0 andQ=1. The sharp jump oB on the corners of IV. SOLUTION FOR ©=0

the boundary indicates the existence of the singuldthg Here we present additional analysis of the “flying drop-
larger jump in the center of the curve is a resetting of thdet” problem in the special cas@ =0; i.e., for irrotational
angle by 2r). the angle jumps from negative to positive for flow inside the droplet. In this case, the problem can be con-
0 =0, and from negative to negativer positive to positive  veniently formulated as conformal mapping problem. Using
for Q+#0, corresponds to the difference between thethis formulation, several qualitative properties of the solution
mushroom-cap solution of Fig. 1 and the lozenge shape ddre easily obtained: First, fd2 =0 the solution is indepen-
Fig. 3. The corner angle is analytically shown to be/2  dent of the parametar. Second, the flow has three possible
=2.0944 in Sec. V for al) and c. Computations of the forms with either a single stagnation point in the exterior
angle for a number of values & andc are presented in flow, a single stagnation point on the droplet boundary, or
Table 1, showing excellent agreemef@% accuracy in all two stagnation points on the boundary.

casey with the analytic result. . . _

Finally, the dependence of the solution on the FroudeA' Conformal mapping formulation for =0
number./c is very mild. Figure 9 fof)=0, A=0.01 shows If A=0, the droplet problem can be written in Eulerian
a typical example. The solutions farclose to 1(including variables as the following equation for the potentiélsand
c—0) are all almost identical. Only for large variationsdn ¢, inside and outside dD, respectively,

(~30) are there corresponding changes in the drop!et s_hape. V2¢4,=0 inside D,
Additional features of the flow are presented in Figs.
10-18, which plot the exterior velocity field at various pa- V2¢,=0 outsideD, 4.0

Omega=0.0; A=.010

—-0.2F

—0.4|

—-0.6

—0-5; -1 o 1 2 3 4 s 6 7 8

FIG. 9. The stationary shape fé2=0.0, A=0.010 at various. Only the most left profile is at the corregt coordinate, while the other profiles are
successively shifted by 1.0 unit in the positixelirection.
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Omega=0.0, A=0.0050

6 T T T T

FIG. 10. The velocity field fo2=0, A=0.0050.

n'V¢l:n'V¢2:0,

p13|V ¢1|?+p1=—p1gy+by,

p23|V $o|>+po=— pogy+b,,
on the boundary ob and with
dr—(27) T H—w-x

as|x|— .
The solution inside the droplet is
$1=0,
Omega=0.0, A=0.0125
6 T T T

T T T T

FIG. 11. The velocity field fo) =0, A=0.0125.

S.-S. Kao and R. E. Caflisch

Omega=0.0, A=0.020

1899

FIG. 12. The velocity field fo) =0, A=0.020.

(4.4

(4.5

(4.6

P1=—p19y+by,
so that the equations fap= ¢, become
V2¢=0 in D°®
n-V¢=0 on ¢D
4.2 ¢
|V#|?=2gey+b on oD
4.3 ¢—(2m) To—w-x as |x|—x
in which e is the nondimensionalized density parameter from
Sec. Il A,
e=2A/(1-A)=21P2
p2
Omega=1, A=.02
6 T T T T T T

-6

PAV AP
PP

NN N TS S

N w oo

(SRS
SRR

FIG. 13. The velocity field fod=1, A=0.02.
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Omega=1,A=.04 Omega=-1,A=.02

-4 S B J
\\\\\\\\ [N I
\\\\\\\\\ [N - P

OF = ~~~~~~~ RERSENEN ' ' A i
\\\\\ PSRN - (AP
[ ~ N wa S EAE AT A s
.~ [N AA A A b p oo m

\\\\ P O i de e e

[ 2 P

DF T T s e s s ss 1

-6 1 L 1 L 1 1 L

FIG. 14. The velocity field fod=1, A=0.04. FIG. 16. The velocity field fo2=—1, A=0.02.

in which the real parameter, must be determined. Set

Define the area ob asa; the Jakowski lift theorem then . '
=re'®. Then the equations fap are

says that
w=(U,0), V=0 r>1, (4.9
Ul p,=—g(p1—p2)a, 4.7 =0 r=1, (4.10
as in(L.1) $a=(2gey+b)(yi+ys) r=1, (4.1
This problem can be rewritten using a conformal map- b—(2m) Watruzy cosa . 412

ping z({)=x+iy taking the exterior of the unit circl|
>1 to the exterior oD. For a given shapB, this conformal  The solution 0f(4.9), (4.10, (4.12) is
map is fixed by requiring that real direction ihgoes to the b=(2m) Ta—(r+r-Yu cosaz 413

real direction inz at infinity, i.e.,
Equation (4.11) then becomes part of the equations for

z=27y{ as |{|—». 4.8 :
of ¢ (4.8 which are
Omega=1,A=.06 Omega=-1,A=.04
6
4+
Rt di I N T T T S S SN
R N T T TR TR NN
et N N N N T T TR
I NNN NN NS N s s
PR NN
/;‘ - R N T T
L N
\\\\\\\\\ ~~ N Ll ' P S
\\\\\\\\ B s ettt i it e g i g o P v A Y Y Y s s s s
\\\\\\\\\ R i gt e i L T S N
| N [ T T T T NP |
4t |
-6

FIG. 15. The velocity field fod=1, A=0.06. FIG. 17. The velocity field fo)=—1, A=0.04.
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Omega=-1,A=.06 Omega=1 Omega=0
6 T T T T T Ll T
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! PFRORSTR SN 3 %-0.1
SIIIIIIIiIIIiIIIIIiiIiIiiiIICC 3 3
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CooIITIIToIInIIIIIIIIIIIIIIN ) %93 10
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,,,,,,,,, PR 4 NN N m o~ m .~
STIIIiIIillt e NITIIIIIIIN g § 05| A=020
,,,,,,,,,, NN 05
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Tl T e T arclength arclength
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Omega=-1
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L LLlIlLIiIIIIIILLE I
------------------------------- §-05
Hoooooooiiiiiiiiiiiiiiiiiiiny 8
------------------------------- o -1
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£
FIG. 18. The velocity field fox2=—1, A=0.06. 5 2
4 2 0 2 4
arclength
V2y= 0, r>1, FIG. 19. The vorticity density vs arclength for differefits.

(2gey+b)(y2+y2)=((2m) T +2uzy sina)? r=1,
c. This can also been seen directly from the Lagrangian for-

Y= 2ol sihva, - F=ee. mulation of Sec. Il using the variablg=q,+ (y/2z,).

In addition x can be solved using the Cauchy—Riemann

equations B. Stagnation points
Xt =Ya (4.14 In conformal mapping formulation, one can easily char-
X,=—y (4.15 acterize the stagnation points of the flow. They are points at
. .

which V¢=0 for r>1 (in the outer fluid or |V ¢|=|¢,|
Now nondimensionalize the conformal mapping prob-=0 for r=1 (on the boundarny

lem as In dimensionless variables
y=Ly’, zp=Lz, d=(2m) La—mezo(r+r Y)cosa (4.18
u=(L/t)u’, b=(L¥T?b’, with
g=(L/t?)g’, e=g' ¢, ¢ =—mezo(1—1"?)cos e,
r=(L2T)I’, a=La’, (4.16 b= (2m) '+ mezo(r+rYsin a, (4.19
in which and forr=1
['=1, u'=me. |V ¢|%2= @2 =(2mezq sin a+(2m) " 1)2 (4.20
Then(4.7) implies that the nondimensionalized area is Thus we get the following characterization:
a'=mw () For ezo<(2mr) 2 there is exactly 1 stagnation point

ata=—7/2, (r +r 1) =(2m?ez,) ! which is in the
exterior flow.

ii or €zp=(2m) "~ there is 1 stagnation point on
(i) F (27) 2 th is 1 i i
V2y=0 r>1, =1 ata=— /2, which is the bottom of the droplet.
(i) For ezo>(2m) 2 there are exactly 2 stagnation
points onr=1.

and in the dimensionless variables the conformal mapping
equation become@ropping primeps

(2ey+b)(y2+y2)=((2m) 1+ 2mezy sina)?® r=1,

y—2Zor Sina  r—oo, (4.1

Note that in this formulation the parameter(squared \C/:'Rlllfll_chEAFiloAR ANGLE OF THE DROPLET FOR

Froude numberdoes not appear, since the gravitational con-
stantg has been removed through the nondimensionalization ~When a corner develops in the boundary of the droplet,
of e. Thus in the cas€ =0, the solution does not depend on as observed at the critical Atwood number, the interior angle
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of the droplet and the angle of the droplet with the exterior  As the Atwood numbeA increasegor decreasesrom
stagnation streamline is exactlyn23. Numerical results O, the droplet boundary remains smooth until a critical value
showing this result were presented in Table Il and discussedf A is reached at which the boundary develops two corners.
in Sec. lll. An analytic proof is presented here; it is a modi- The angle of this corner is72/3, according to a modification
fication of the proof for the angle of Stokes wave of greatesbf the Stokes wave angle argument.

height. Only symmetric solutions have been investigated here.

For Q=0 the argument for angle®3 is exactly the As pointed out in Ref. 3, nonsymmetric solutions could pos-
same as the Stokes argument, since the pressure inside tibly appear through bifurcation off solution branches of
droplet is constant, as in the water wave problem. symmetric shapes.

For QO #0 the pressure is not constant and may bring in  Stability of these flows would be important for any ap-
its own singularities. So a different argument is required:plication but has not been investigated, since it is outside the
Suppose that the pressuRe and the perturbation stream- scope of the present work. Nonzero vortex sheet strength on
function ¢; contain fractional powers at=0, the stagnation the droplet boundary should make the problem strongly un-
point. Sinceyr, and ¢, are harmonic, then stable. On the other hand, the overall rotation may help sta-

¥, =Imag c,z™), bilize the flow.

Yr=Imag c,zM).

We wish to show thatn;=m,=3/2. Assuming tham;<2, = ACKNOWLEDGMENTS
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