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Steady buoyant droplets with circulation
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Numerical solutions are presented for the steady flow corresponding to a two-dimensional moving
droplet with circulation. Differences in the density of the droplet and surrounding fluid result in a
buoyancy force which is balanced by a lift force due to the Magnus effect. The droplet is assumed
to have constant vorticity in its interior, and its boundary may be a vortex sheet, as in a Prandtl–
Batchelor flow. Only symmetric solutions are calculated. For Atwood numberA50 ~no density
difference! the droplet is a circle. As the Atwood number is increased, the droplet shape begins to
resemble a circular cap with a dimpled base. There is a critical Atwood numberAlim at which the
droplet develops two corners. For 0<A,Alim , the solution is smooth; while forAlim,A, we do not
find a solution. ©1998 American Institute of Physics.@S1070-6631~98!02908-0#
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I. INTRODUCTION

A 2-D fluid droplet of densityr1 surrounded by an un
bounded fluid of different densityr2 experiences a buoyanc
forceFg52g(r12r2)aŷ in which a is the area of the drop
let. One possibility for balancing this buoyancy force
through the lift of the Magnus effect. If the droplet is movin
at speedU in thex direction and has circulationG and if the
ambient fluid is irrotational, then this lift force isFl

52GUr2ŷ. Thus there is a balance between these t
forces if

GU52ga~r12r2!/r2 . ~1.1!

In this paper we numerically construct a new class
steady, 2-D vortical flows for which there is a balance b
tween the buoyancy forceFg and the lift forceFl . The fluids
are incompressible and inviscid, and the outer fluid is
sumed to be irrotational. Within this ‘‘flying droplet’’ the
vorticity 2V is assumed to be a uniform constant; while t
droplet boundary may consist of a vortex sheet of net cir
lation Gs . The total circulation of the droplet is the
G52aV1Gs .

The resulting solutions show several interesting featu
In particular, as a function of the Atwood number

A5~r12r2!/~r11r2!,

the droplet varies from a circle forA50 to a shape that is
approximately a circular cap with two corners at some
treme valueA5Alim . We are unable to produce meaningf
solutions forA.Alim .

The motivation for considering a steady droplet w
constant interior vorticity is partly as a generalization
Prandtl–Batchelor flows, which are flows of a single flu
consisting of regions of constant vorticity surrounded by v

a!Electronic mail: skao@math.cycu.edu.tw
b!Electronic mail: caflisch@math.ucla.edu
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tex sheets. Batchelor1 showed that in region of close
streamlines the inviscid limit of a steady viscous flow mu
have constant vorticity. Prandtl–Batchelor flows have th
been proposed as the inviscid limit of the wake behind
obstacle. Analytical and computational studies of such flo
have been performed in Refs. 2, 5, and 6.

Another context in which such a steady flow could occ
is in a rotating flow containing a 2-D droplet~i.e., a 3-D
column! of a second fluid of different density~due, for ex-
ample, to different temperature!. In this context the role of
gravitational force is played by the centrifugal force. In a
such application, the stability of these flows would be imp
tant, which has not been considered here.

The formulation and numerical method used here i
boundary integral method and follows closely the meth
used by Pullin and Grimshaw2 for computation of interfacial
waves. As in their investigation, we are only able to consi
droplets with a left-right symmetry. In fact, no well-pose
numerical method has been found for asymmetric solutio
They also found extreme solutions consisting of circular c
with singular corners.

In the next section we present Eulerian and Lagrang
formulations of this problem. The Eulerian formulation
easily solved for a small Atwood number as a perturbat
expansion; the Lagrangian is most convenient for numer
solution. In particular, we find that the areaa and total cir-
culationG may be fixed through a rescaling, so that the s
lution is only a function of the following three parameter
Atwood numberA5(r12r2)/(r11r2), vorticity value V,
and the Froude numberAc. The droplet velocityU is deter-
mined through the force balance equation~1.1!. A numerical
method for solution of this problem is described in the la
subsection of Sec. II.

Results from the numerical study are described in S
III. In particular, agreement is demonstrated between the
merical solution and the perturbation solution, which serv
as a check on their accuracy. Several qualitative propertie
1 © 1998 American Institute of Physics
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the solution, such as the presence of stagnation points
discussed in Sec. IV in the case of zero interior vortic
(V50) through an additional solution method using conf
mal mapping. In Sec. V, the angle of the interfaces at
critical Atwood number is shown to be 2p/3 ~confirming
numerical results in Sec. III!. Conclusions from this study
are described in Sec. VI.

II. PROBLEM FORMULATION

A. Eulerian formulation

We shall consider the steady state of a two-dimensio
inviscid, incompressible droplet of one fluid surrounded b
second fluid under the influence of gravitational accelerat
Assume that there is constant vorticity in the interior and t
the droplet boundary is a vortex sheet. Let subscripts 1 an
represent fluid properties inside and outside the bound
respectively, and the gravity accelerationg act in the nega-
tive y direction. Denote the density, pressure, and veloc
fields by r i ,Pi ,ui for i 51,2. The constant values of inne
vorticity and vortex sheet circulation are denoted by2V and
Gs , respectively.

The governing equations in Eulerian coordinates are
following:

r i~ui–“ !ui1“Pi52gr i ŷ ~x,y!¹]D,
~2.1!

“–ui50,

P15P2 ~x,y!P]D,
~2.2!

ui–n50.

In ~2.1! and~2.2!, ]D is the boundary of the droplet,ŷ is the
unit vector in the positivey direction, andn is the unit nor-
mal vector on]D. There is a freedom in the position of th
center of mass of the droplet, which is fixed by setting it to
i.e., *D(x,y)da5(0,0).

A particular simple solution of this system withr15r2

is the following:

]D5$~x,y!:x21y251%,

u152
r

2
Vû,

u25
G

2pr
û, ~2.3!

P152gr1y1
V2

8
r1r 22

G2

8p2 r1 ,

P252gr2y2
G2

8p2 r2

1

r 2 1
V2

8
r2 ,

in which G52Vp1Gs is the total circulation,r ,u are vari-
ables in the polar coordinates, andr̂ ,û are unit vectors. We
shall use this as a basic solution from which to construc
perturbation expansion.

When the densities are different, the droplet experien
a buoyancy forceFg52g(r12r2)p ŷ. We shall allow the
flow outside the droplet to move at speedU in thex direction
so that the buoyancy forceFg is balanced through the lift o
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
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the Magnus effect,Fl52GUr2ŷ. Let the perturbed solution
to ~2.1!, ~2.2! for r1Þr2 take the form~x̂,ẑ are unit vectors
in the positivex andz directions!

]D5$~r ,u!:r 5R~u!%,

u152
r

2
Vû1“3~c1ẑ!5“3~C1ẑ!,

u25
G

2pr
û1U x̂1“3~c2ẑ!5“3~C2ẑ!, ~2.4!

P152gr1y1 P̃1 ,

P252gr2y1 P̃2 .

In ~2.4!, C i is the stream function in fluidi such thatui

5(]C i /]y),2(]C i /]x)), i 51,2. It is given by

C15c11
1

4
r 2V,

~2.5!

C25c21Uy2
G

2p
log r .

The Euler equations~2.1! and~2.2! are equivalent to the
following form of Bernoulli’s law for a fluid without vortic-
ity and one with constant vorticity:

r1~ 1
2uu1u22 1

4r
2V22Vc1!1 P̃15b1 r ,R~u!, ~2.6!

¹2c150, ~2.7!

r2
1
2uu2u21 P̃25b2 r .R~u!, ~2.8!

¹2c250, ~2.9!

P̃12 P̃25g~r12r2!y r5R~u!, ~2.10!

C15C250. ~2.11!

Subtracting the two Bernoulli’s equations in~2.6!, ~2.8! on
r 5R(u), and setting B5b12b2 ~using C i50 on the
boundary!, we get

1

2
r1H S c1r1

R

2
V D 2

1R22c1u
2 J

2
1

2
r2H S c2r2

G

2p
R211U sin u D 2

1~R21c2u1U cosu!2J 1g~r12r2!y5B. ~2.12!

Note thatG,V are constants, and that the area and cente
the droplet are fixed as

1

2 E
0

2p

R2~u!du5p, ~2.13!

E
0

2p

R~u!~cosu,sin u!du5~0,0!. ~2.14!

The remaining equations are~2.7!, ~2.9!, ~2.11!, ~2.12!,
~2.13!, and ~2.14! for functions c1 , c2 , R and constants
U,B. To solve this system analytically, expand around
special solution atr15r2 ; i.e.,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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r15r21e,

R511eR11e2R21¯

c i5c i01ec i11e2c i21¯ , i 51,2
~2.15!

U501eU11e2U21¯

B5B01eB11e2B21¯ .

The functionsc1 j , c2 j , and Rj , j 50,1,2,..., can be ex
panded in the angular variableu, using the equations¹2c i

50 for i 51,2, as follows:

c1 j~r ,u!5 (
k51

`

ajkr k cosku1bjkr k sin ku,

c2 j~r ,u!5 (
k51

`

cjkr 2k cosku1djkr 2k sin ku, ~2.16!

Rj~u!5 (
k51

`

ejk cosku1 f jk sin ku.

The resulting solution, up toO(e2) terms, is

B.
1

8
r2~V22~G/p!2!1eV2/82e2r2d1

2,

R~u!.11e2e2 cos 2u,

c1~r ,u!.2V/42e2
1

2
Ve2r 2 cos 2u,

~2.17!

c2~r ,u!.ed1r 21 sin u1e2
G

2p
e2r 22 cos 2u,

U.2ed1 ,

e254g2p2Y H S V21
G2

p2DG2r2
2J d15gp/~Gr2!.

Thus the shape of the droplet]D5$(x,y)(u)u0<u,2p% is
obtained~up to O(e2)) as

x~u!5R~u!cosu.S 11
e2

2
e2D cosu1

e2

2
e2 cos~3u!,

~2.18!

y~u!5R~u!sin u.S 12
e2

2
e2D sin u1

e2

2
e2 sin~3u!.

~2.19!

Note that in general theO(e) term in (x,y) has the form
R1(u)5a cosu1b sinu. The constraint that the center o
mass is 0 implies that thisO(e) term is zero.

B. Lagrangian formulation

We shall work in the complexz5x1 iy plane. Describe
the boundary of the droplet]D by the complex single-valued
function Z(a)5X(a)1 iY(a), which encloses a connecte
regionD of fluid of constant vorticity2V. The parametri-
zation is in the clockwise direction, 0<a,2p. The velocity
field (u1 iv)(z) due to the constant vorticity inside the dro
let for z¹]D was derived by Pullin in Ref. 6
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
~u2 iv !~z!5
V

4p R
]D

Z̄82 z̄

Z82z
dZ8. ~2.20!

For ZP]D, we define the velocityq(Z)5(u1 iv)(Z) as the
average of the limiting values of (u1 iv)(z) obtained where
z→Z(a) from either side of]D. That is,

q1~Z!5 lim
z→Z from inside

~u1 iv !~z!,

q2~Z!5 lim
z→Z from outside

~u1 iv !~z!,

q~Z!5 1
2~q1~Z!1q2~Z!!. ~2.21!

By ~2.20! and applying the Plemejl formula, we obtain

q̄~Z!5
2V

4p
PVE

0

2p Z̄~a8!Za~a8!da8

Z2Z~a8!
1

i

4
VZ̄

ZP]D. ~2.22!

The velocity field due to the vortex sheet]D is given by the
Birkhoff–Rott equation

q̄~Z!5
1

2p i
PVE

0

2p g~a8!da8

Z2Z~a8!
zP]D ~2.23!

in which g(a)5(q̄12q̄2)(Z(a))•Za(a) is the sheet
strength with *0

2pg(a)da5Gs . Combining Eqs. ~2.22!,
~2.23!, and taking into account the uniform velocityU at
infinity, we have

q̄~a!5
1

2p i
PVE

0

2p g82V i Z̄8Za8 /2

Z~a!2Z8
da81

V i

4
Z̄~a!1U.

~2.24!

The quantities with primes in the integral term in~2.24! are
functions of the integration variablea8.

To derive the equation forg~a!, we use the Bernoulli
equations~2.6!, ~2.8!.

1

2
uu1u21

P1

r1
1gy2C1V5B1 ~x,y! inside ]D,

~2.25!

1

2
uu2u21

P2

r2
1gy5B2 ~x,y! outside ]D ~2.26!

in which Bi5bi /r i . By taking Eqs.~2.25! and~2.26! on ]D
and eliminating the pressure terms by the boundary condi
P15P2 , we obtain

g ReF q

Za
G1AS g2

4uZau2 1q̄q12gyD5B. ~2.27!

Here A5(r12r2)/(r11r2) is the Atwood number, andB
5A(B11B2)1(B12B2). The boundary conditionui–n50
yields

ImF q

Za
G50. ~2.28!

Next we nondimensionalize the problem by settingZ
5LZ̃, g5(L2/T)g̃, q5(L/T)q̃, U5(L/T)Ũ, V5Ṽ/T, B
5(L2/T2)B̃, G5(L2/T)G̃ and A5(L/gT2)Ã, where all
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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variables with ‘‘̃ ’’ are the dimensionless quantities. Th
length scaleL is chosen so that the area of the droplet
fixed, as in the Eulerian formulation

E
0

2p

ỹ dx̃5p

or
1

2
ImH E

0

2p

Z̃Z̃
¯

a daJ 5p. ~2.29!

The time scaleT is then chosen so that the total circulation
21; i.e.,

G̃521. ~2.30!

Defining c5L/gT2, which equals the square of the Frou
number, and dropping ‘‘˜ ’’, the resulting nondimensiona
system is

q̄~a!5
1

2p i
PVE

0

2p g82V i Z̄8Za8 /2

Z~a!2Z8
da81

V i

4
Z̄~a!1U,

~2.31!

g ReF q

Za
G1AS cS g2

4uZau2 1q̄qD12yD5B, ~2.32!

ImF q

Za
G50, ~2.33!

1

2
ImH E

0

2p

ZZ̄adaJ 5p, ~2.34!

E
0

2p

g da85211Vp, ~2.35!

E
0

2p

~Re~Z~a!!, Im~Z~a!!!da5~0,0!. ~2.36!

By Eq. ~2.36!, the center of the mass of the droplet is alwa
on the origin.

C. Numerical method

The nonlinear system~2.31!–~2.36! in Lagrangian vari-
ables is numerically solved by the collocation method. F
lowing Pullin and Grimshaw,2 we assume that the droplet
symmetric about the imaginary axisx50. We have been
unable to find a well-posed numerical method for nonsy
metric shaped droplets. This may be surprising at first,
the same limitation has been found in previous studies
water waves2 and of Prandtl–Batchelor flows.5

The basic unperturbed solution to Eqs.~2.31!–~2.36! for
A50 is given by
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
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Z~a!5sin a1 i cosa,

g~a!5
V

2
1

G

2p
,

q~a!52
V i

4
Z~a!1

G i

4pZ̄~a!
, ~2.37!

U50,

B5S V

2
1

G

2p D S V

4
2

G

4p D .

We shall fix the total circulation by settingG521, and ex-
press the solution to~2.31!–~2.36! in Fourier expansion
around the known solution in~2.37!; i.e.,

Z~a!5sin a1 i cosa1X1 sin a1 i (
j 51

N21

Yj cos~ j a!,

~2.38!

g~a!5
V

2
2

1

2p
1 (

j 51

N21

Cj cos~ j a!.

Note that our ansatz in~2.38! always satisfies~2.36!.
Note that omitting the higher wave number sine modes
~2.38! is equivalent to a choice of the parameterization of
boundary curve.

Now insert ~2.38! into ~2.31!–~2.35!. There are 2N11
unknowns $Yj ,Cj , j 51,2,...,N21;X1 ,B,U%. Equation
~2.31! serves as a definition ofq̄, and~2.35! is automatically

TABLE I. Comparison of analytical and numerical results for coefficien
X1 ,Y1 ,Y2 for various values ofV and A with c51. The ‘‘error’’ here
equals max(uanalytical X1-numerical X1u,uanalytical Y1-numerical Y1u).

V50.0 numerical analytical
A X1 Y1 Y2 X152Y1 error

0.0025 0.009 715 20.009 621 0.001 877 0.009 790 1.687624

0.0050 0.038 318 20.036 904 0.013 879 0.039 356 2.452423

0.0100 0.147 406 20.128 469 0.083 501 0.159 019 3.055022

0.0200 0.528 120 20.345 601 0.254 297 0.649 123 3.035221

V560.5

0.0025 0.002 805 20.002 797 0.000 158 0.002 823 2.625225

0.0050 0.011 140 20.011 018 0.001 217 0.011 350 3.328424

0.0100 0.043 404 20.041 599 0.008 504 0.045 861 4.262323

0.0200 0.164 832 20.141 507 0.046 575 0.187 207 4.570022

V561.0

0.0025 0.000 896 20.000 895 0.000 016 0.000 901 5.791226

0.0050 0.003 574 20.003 561 0.000 128 0.003 621 5.983025

0.0100 0.014 148 20.013 951 0.000 967 0.014 630 6.790624

0.0200 0.054 722 20.051 883 0.006 468 0.059 719 7.836323

0.0400 0.209 660 20.173 321 0.033 411 0.248 933 7.561222

V561.5

0.0025 0.000 420 20.000 419 0.000 004 0.000 422 2.392526

0.0050 0.001 677 20.001 674 0.000 028 0.001 696 2.218325

0.0100 0.006 672 20.006 628 0.000 219 0.006 852 2.244324

0.0200 0.026 193 20.025 524 0.001 588 0.027 971 2.447123

0.0400 0.099 902 20.090 828 0.009 499 0.116 596 2.576822

0.0800 0.428 225 20.299 830 0.045 280 0.507 823 2.079921
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



is
th
e

o
e-

t
e-

n

-
ys-
the
on-
ns

1895Phys. Fluids, Vol. 10, No. 8, August 1998 S.-S. Kao and R. E. Caflisch
satisfied. Evaluating~2.32!, ~2.33! at N points ak21/25(k
2 1

2)p/N for k51,2,...,N, plus ~2.34!, results in a total of
2N11 equations. The principal-valued integral in~2.31! is
evaluated by summing overa j85 j (p/N), j 51,2,...,2N, for
eachak21/2. Newton’s iterative scheme is used to solve th
closed 2N11 linear system, and the iteration stops when
absolute value of the difference between two successiv
erative solutions is less then 1027. The initial guess for the
Newton iteration was generated by a continuation meth
For A50, the solution is just the simple circular droplet d
scribed above. Once a solution was computer forÃ, that
solution is used as an initial guess for the computation aA
5Ã1dA. If the iteration fails to converge, then the incr

FIG. 1. The stationary profiles of the droplet atV50.0 at variousA.

FIG. 2. The stationary profiles of the droplet atV560.5 at variousA.
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
e
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ment in the Atwood number,dA, was halved, untildA was
as small as 1022/28. This allowed us to perform computatio
almost up to the critical valueAlim .

The problem was solved for various values ofA andV,
and for a typical value ofN5128. We check that the com
putation provides consistent solutions to the nonlinear s
tem by showing the numerical solutions converge as
mesh size shrinks. Since Newton’s iterative scheme c
verges quadratically, it takes usually three to four iteratio
to reach the 1027 error bound.

FIG. 3. The stationary profiles of the droplet atV561.0 at variousA.

FIG. 4. The stationary profiles of the droplet atV561.5 at variousA.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. The tangential velocity vs arclength of]D at V50.0 for A50.005, 0.010, 0.015, 0.02. The bottom of the droplet corresponds to zero arclength
the sign of arclength changes from negative to positive clockwise along]D.
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III. RESULTS

A. Agreement between the Eulerian and Lagrangian
formulations

To demonstrate the validity of both the analytic and n
merical results, we perform a comparison of the~analytical!
Eulerian and~numerical! Lagrangian solutions. In order t
make this comparison, we first cast the analytical solut
into Lagrangian form. Since the parametersu in the Eulerian
formulation, anda in the Lagrangian formulation are differ
ent, we must first establish their relationship. The bound
of the droplet]D is described by two parameterization
$(x,y)(u)u0<u,2p% for the Eulerian and$(X,Y)(a)u0
<a,2p% for the Lagrangian formulation, where

x~u!5cosu1 (
k>1

ak cos~ku!, ~3.39!

y~u!5sin u1 (
k>1

bk sin~ku!, ~3.40!

X~a!5sin a1X1 sin a, ~3.41!
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
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Y~a!5cosa1 (
k>1

Yk cos~ka!. ~3.42!

The relations among the coefficientsX1 , ak , Yk , andbk for
k>1 are derived by setting

~x,y!~u!5~X,Y!~a!. ~3.43!

In the particular solution withr15r2 (e50), the parameters
are related by

a5
p

2
2u. ~3.44!

Thus forr1Þr2 we can assume that

a5
p

2
2u1e f 1~u!1e2f 2~u!1¯ . ~3.45!

Replacinga in ~3.41!, ~3.42!, by ~3.45!, and using the solu-
tions derived in~2.18!, ~2.19! leads to

f 150,
ig. 5.
FIG. 6. The tangential velocity vs arclength of]D at V561 for A50.01:0.01:0.06. The bottom of the droplet corresponds to zero arclength, as in F
The arclength for the plot forV51 is shifted by 3p.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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f 2522e2 sin u cosu,
~3.46!

X152Y15e2e2 ,

Y25O~e3!.

Next, note that the nondimensional form of Eq.~2.12! is
the same except thatg is replaced bygT2/L5c21. By
choosingc51, the asymptotic solution obtained in Sectio
2.1 is nondimensionalized by settingg51. To relatee5r1

2r2 and the Atwood numberA, we nondimensionalizee as
ẽ5e/r25(r12r2)/r252A/(12A).

Using these values, we compare the results of the a
lytical and numerical solutions. In Table I, there is a co
parison of the values ofX1 ,Y1 ,Y2 for the analytical@with
error O(A3)# and numerical solutions for a range of valu
of A and V, showing excellent agreement. We have a

FIG. 7. Stationary shapes for variousuVu at A50.02.
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compared the numerically computed velocityU with the ex-
act analytical resultU52ed1 , and obtained agreement t
all significant precision.

B. Discussion

Here we present the stationary profiles of the droplet a
the corresponding velocity fields derived by our numeri
results. In Figs. 1 to 4, we plot the shape of the droplet
various A up to Alim , beyond which the iteration schem
fails to converge, forV50.0, 60.5, 61.0, and61.5, and
the circles mark the stagnation points. The tangential ve
ity for V50, 61 for some chosenA’s is shown in Figs. 5
and 6.

These results show that the stationary shape of the d
let is nearly independent of the sign ofV, but the direction of
the interior velocity field changes sign asV changes sign.
This is consistent with~2.17!, which shows that the leading
order terms in the shape of the droplet depend onV2. On the
other hand, the leading order term for the interior velocity
proportional toV.

Larger values ofuVu result in largerAlim’s, which means
that the vorticity supports the boundary and hence the dro
is less deformed at the sameA, as shown in Fig. 7. Exami-
nation of the tangential velocity shows that the two corn
on the profiles atA5Alim are stagnation points.

Stagnation points~and stagnation streamlines emanati
from the stagnation points! determine the geometric chara
ter of the flow. ForA50 ~i.e., r15r2! the flow is purely
rotating without stagnation points. For the special caseV
50, the analysis of the next section and the numerical res
of Fig. 5 show theA dependence of the stagnation poin
For smallA, there is a single stagnation point in the exter
flow. At a particular value ofA, this stagnation points hits
the droplet boundary. For largerA values it splits into two
stagnation points on the boundary, which are at the dro
corners at the critical values ofA.

For nonzeroV, the determination of the stagnatio
points is less complete, since there are no exact analytic
t
FIG. 8. The angle between the tangential vector along]D and the positivex-axis vs. arclength forV50, V51. As in Fig. 5, the bottom of the drople
corresponds to zero arclength. The arclength for the plot forV51 is shifted by 3p.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sults available. The numerical results of Fig. 6, howev
show the same type of behavior of nonzeroV as in theV
50 case.

Figure 8 shows the angle between the tangential ve
along]D and the positivex axis, denoted byb, at A5Alim

for V50 andV51. The sharp jump ofb on the corners of
the boundary indicates the existence of the singularity~the
larger jump in the center of the curve is a resetting of
angle by 2p!. the angle jumps from negative to positive f
V50, and from negative to negative~or positive to positive!
for VÞ0, corresponds to the difference between
mushroom-cap solution of Fig. 1 and the lozenge shape
Fig. 3. The corner angle is analytically shown to be 2p/3
.2.0944 in Sec. V for allV and c. Computations of the
angle for a number of values ofV and c are presented in
Table II, showing excellent agreement~4% accuracy in all
cases! with the analytic result.

Finally, the dependence of the solution on the Frou
numberAc is very mild. Figure 9 forV50, A50.01 shows
a typical example. The solutions forc close to 1~including
c→0! are all almost identical. Only for large variations inc
(;30) are there corresponding changes in the droplet sh

Additional features of the flow are presented in Fig
10–18, which plot the exterior velocity field at various p

TABLE II. Angle of the stagnation points atA5Alim from numerical results
for various cases.

Angle for c51
N564 N596 N5128 N5256

V50 (Alim52.00022) - 1.7366 2.1410 2.0833
uVu50.5 (Alim53.43822) 1.8710 2.0491 2.1305
uVu51.0 (Alim56.00022) 2.1096 2.0929 2.1233
uVu51.5 (Alim58.75022) 1.9891 2.0934 ¯

Angle for V50
N596 N5128 N5256

c51 (Alim52.00022) 1.7366 2.1410 2.0833
c516 (Alim51.50022) 1.9735 1.9249 2.0245
c532 (Alim51.26622) 1.9936 2.1029 ¯

c548 (Alim51.00022) 1.9829 2.1285 2.0983
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rameter values. The vorticity density on the droplet bound
is plotted in Fig. 19. There is a pair of points where the sh
strengthg is not differentiable. They correspond to the co
ner points of the corresponding limiting profiles. These a
same points at which the tangential velocity is nondiffere
tiable, as seen in Figs. 5 and 6.

These results bear similarity to the results of Pullin a
Grimshaw2 for nonlinear interfacial gravity waves in a two
layer Boussinesq fluid, in which the upper layer consists o
flow of constant vorticity and the lower layer is irrotationa
They found that the most extreme wave was consistent w
the appearance of one or more stagnation points on the w
profile. The result that the droplet boundary is less deform
for larger values of the interior vorticity was also found b
Moore, Saffman, and Tanveer5 when they studied the Batch
elor flows in the cases of the Sadovskii vortex and the ro
tional corner flow. The semicircular shape of the solution
V50.0 atAlim also resembles the cap of the ‘‘mushroom
solution in the steady wave problem found by Pullin a
Grimshaw.3,4

IV. SOLUTION FOR V50

Here we present additional analysis of the ‘‘flying dro
let’’ problem in the special caseV50; i.e., for irrotational
flow inside the droplet. In this case, the problem can be c
veniently formulated as conformal mapping problem. Usi
this formulation, several qualitative properties of the soluti
are easily obtained: First, forV50 the solution is indepen
dent of the parameterc. Second, the flow has three possib
forms with either a single stagnation point in the exter
flow, a single stagnation point on the droplet boundary,
two stagnation points on the boundary.

A. Conformal mapping formulation for V50

If V50, the droplet problem can be written in Euleria
variables as the following equation for the potentialsf1 and
f2 inside and outside ofD, respectively,

¹2f150 inside D,

¹2f250 outside D, ~4.1!
e
FIG. 9. The stationary shape forV50.0, A50.010 at variousc. Only the most left profile is at the correctx coordinate, while the other profiles ar
successively shifted by 1.0 unit in the positivex direction.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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with

n–“f15n–“f250,

r1
1
2u¹f1u21p152r1gy1b1 ,

r2
1
2u¹f2u21p252r2gy1b2 , ~4.2!

on the boundary ofD and with

f2→~2p!21Gu2w–x ~4.3!

as uxu→`.
The solution inside the droplet is

f150,

FIG. 10. The velocity field forV50, A50.0050.

FIG. 11. The velocity field forV50, A50.0125.
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
p152r1gy1b1 , ~4.4!

so that the equations forf5f2 become

¹2f50 in Dc

n•¹f50 on ]D

u¹fu252gey1b on ]D

f→~2p!21Gu2w–x as uxu→` ~4.5!

in which e is the nondimensionalized density parameter fro
Sec. II A,

e52A/~12A!5
r12r2

r2
. ~4.6!

FIG. 12. The velocity field forV50, A50.020.

FIG. 13. The velocity field forV51, A50.02.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



p

1900 Phys. Fluids, Vol. 10, No. 8, August 1998 S.-S. Kao and R. E. Caflisch
Define the area ofD as a; the Jakowski lift theorem then
says that

w5~U,0!,

UGr252g~r12r2!a, ~4.7!

as in ~1.1!
This problem can be rewritten using a conformal ma

ping z(z)5x1 iy taking the exterior of the unit circleuzu
.1 to the exterior ofD. For a given shapeD, this conformal
map is fixed by requiring that real direction inz goes to the
real direction inz at infinity, i.e.,

z5z0z as uzu→`. ~4.8!

FIG. 14. The velocity field forV51, A50.04.

FIG. 15. The velocity field forV51, A50.06.
Downloaded 29 Apr 2002 to 128.97.70.205. Redistribution subject to A
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in which the real parameterz0 must be determined. Setz
5reia. Then the equations forf are

¹2f50 r .1, ~4.9!

f r50 r 51, ~4.10!

fa
25~2gey1b!~yr

21ya
2 ! r 51, ~4.11!

f→~2p!21Ga1ruz0 cosa r→`. ~4.12!

The solution of~4.9!, ~4.10!, ~4.12! is

f5~2p!21Ga2~r 1r 21!u cosaz0 . ~4.13!

Equation ~4.11! then becomes part of the equations fory
which are

FIG. 16. The velocity field forV521, A50.02.

FIG. 17. The velocity field forV521, A50.04.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



nn

b

in

n
tio
n

for-

r-
s at

t

.
n

let,
gle

1901Phys. Fluids, Vol. 10, No. 8, August 1998 S.-S. Kao and R. E. Caflisch
¹2y50, r .1,

~2gey1b!~yr
21ya

2 !5~~2p!21G12uz0 sin a!2 r 51,

y→z0r sin a, r→`.

In addition x can be solved using the Cauchy–Riema
equations

xr5ya , ~4.14!

xa52yr . ~4.15!

Now nondimensionalize the conformal mapping pro
lem as

y5Ly8, z05Lz08 ,

u5~L/t !u8, b5~L2/T2!b8,

g5~L/t2!g8, e5g821e8,

G5~L2/T!G8, a5La8, ~4.16!

in which

G851, u85pe8.

Then ~4.7! implies that the nondimensionalized area is

a85p

and in the dimensionless variables the conformal mapp
equation becomes~dropping primes!

¹2y50 r .1,

~2ey1b!~yr
21ya

2 !5~~2p!2112pez0 sin a!2 r 51,

y→z0r sin a r→`. ~4.17!

Note that in this formulation the parameterc ~squared
Froude number! does not appear, since the gravitational co
stantg has been removed through the nondimensionaliza
of e. Thus in the caseV50, the solution does not depend o

FIG. 18. The velocity field forV521, A50.06.
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c. This can also been seen directly from the Lagrangian
mulation of Sec. II using the variableq5q21(g/2zu).

B. Stagnation points

In conformal mapping formulation, one can easily cha
acterize the stagnation points of the flow. They are point
which “f50 for r .1 ~in the outer fluid! or u“fu5ufau
50 for r 51 ~on the boundary!.

In dimensionless variables

f5~2p!21a2pez0~r 1r 21!cosa ~4.18!

with

f r52pez0~12r 22!cosa,

fa5~2p!211pez0~r 1r 21!sin a, ~4.19!

and for r 51

u“fu25fa
25~2pez0 sin a1~2p!21!2. ~4.20!

Thus we get the following characterization:

~i! For ez0,(2p)22 there is exactly 1 stagnation poin
at a52p/2, (r 1r 21)5(2p2ez0)21 which is in the
exterior flow.

~ii ! For ez05(2p)22 there is 1 stagnation point onr
51 at a52p/2, which is the bottom of the droplet

~iii ! For ez0.(2p)22 there are exactly 2 stagnatio
points onr 51.

V. INTERIOR ANGLE OF THE DROPLET FOR
CRITICAL A

When a corner develops in the boundary of the drop
as observed at the critical Atwood number, the interior an

FIG. 19. The vorticity density vs arclength for differentV’s.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of the droplet and the angle of the droplet with the exter
stagnation streamline is exactly 2p/3. Numerical results
showing this result were presented in Table II and discus
in Sec. III. An analytic proof is presented here; it is a mo
fication of the proof for the angle of Stokes wave of great
height.

For V50 the argument for angle 2p/3 is exactly the
same as the Stokes argument, since the pressure insid
droplet is constant, as in the water wave problem.

For VÞ0 the pressure is not constant and may bring
its own singularities. So a different argument is require
Suppose that the pressurePi and the perturbation stream
functionc i contain fractional powers atx50, the stagnation
point. Sincec1 andc2 are harmonic, then

c15Imag~c1zm1!,

c25Imag~c2zm2!.

We wish to show thatm15m253/2. Assuming thatmi,2,
then the dominant terms in the Bernoulli equations~2.6! and
~2.8! are r i uui u2 and P̃i . This implies thatP̃i'bi uzu2mi22.
The pressure jump condition~2.10! then implies thatm1

5m2 . Assume that there is a single stagnation streamlin
the exterior region, then~2.11! says thatc i is smooth on the
three streamlines~one stagnation streamline and the tw
branches of the bubble boundary!. This implies thatmi

53/2.

VI. CONCLUSIONS

The solutions found above represent a new class
steady flows for a droplet in an inviscid, incompressible 2
fluid. In these flows there is a balance between the buoya
force due to gravity and the lift force due to circulation a
translation. These flows are of Prandtl–Batchelor type in t
the vorticity is constant in regions of closed streamlines.
ter nondimensionalization, the solution is found to depend
three parameters: the Atwood numberA, the interior vortic-
ity 2V, and Froude numberAc. WhenA50 the solution is
just a circular droplet with purely rotating flow. For th
simple caseV50, the solution does not depend on the p
rameterc.
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As the Atwood numberA increases~or decreases! from
0, the droplet boundary remains smooth until a critical va
of A is reached at which the boundary develops two corn
The angle of this corner is 2p/3, according to a modification
of the Stokes wave angle argument.

Only symmetric solutions have been investigated he
As pointed out in Ref. 3, nonsymmetric solutions could po
sibly appear through bifurcation off solution branches
symmetric shapes.

Stability of these flows would be important for any a
plication but has not been investigated, since it is outside
scope of the present work. Nonzero vortex sheet strength
the droplet boundary should make the problem strongly
stable. On the other hand, the overall rotation may help
bilize the flow.
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