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Valuation of mortgage-backed securities

Valuation of mortgage-backed securities using
Brownian bridges to reduce effective dimension

Russel E. Caflisch, William Morokoff, and Art Owen

The quasi-Monte Carlo method for financial valuation and other integration problems
has error bounds of size O((log NY*N-"), or even O((log N)¥N-%2), which suggests
significantly better performance than the error size O(N~-1/2) for standard Monte
Carlo. But in high-dimensional problems, this benefit might not appear at feasible
sample sizes. Substantial improvements from quasi-Monte Carlo integration have,
however, been reported for problems such as the valuation of mortgage-backed
securities, in dimensions as high as 360. The authors believe that this is due to a
lower effective dimension of the integrand in those cases. This paper defines the
effective dimension and shows in examples how the effective dimension may be
reduced by using a Brownian bridge representation.

1. INTRODUCTION

Simulation is often the only effective numerical method for the accurate valuation of
securities whose value depends on the whole trajectory of interest rates or other variables.
Standard Monte Carlo simulation using pseudo-random sequences can be quite slow,
however, because its convergence rate is only O(N~1/2) for N sample paths. Quasi-Monte
Carlo simulation, using deterministic sequences that are more uniform than random ones,
holds out the promise of much greater accuracy, close to O(N-!) in optimal cases.
Randomized versions of quasi-Monte Carlo simulation can in some cases bring the typical
error close to O(N /%),

This dramatic improvement in convergence rate has the potential for significant gains
both in computational time and in range of application of simulation methods for finance
problems. An optimistic reading of the results suggests an effective squaring or even cubing
of the sample size N. Large improvements have in fact been found in a number of earlier
studies [1, 11, 18], which were all motivated by the results of Paskov [17] on mortgage-backed
securities.

Quasi-Monte Carlo simulation is not a magic bullet, however. The asymptotic error
magnitudes are the ones it is ‘close to’ above, multiplied by (log N)¥, where k depends on
the dimension s of the simulation. In high dimensions these powers of log N do not become
negligible at any computationally possible sample size. This loss of effectiveness has been
documented for a series of test problems in [6-8). When simulations are cast as integration
problems, the resulting integral is often of very high dimension (e.g. dimension 360 for a
mortgage of length 30 years), so any loss of effectiveness at high dimensionality can affect
them.

Our first goal in this paper is to reconcile two apparently conflicting truths. The first is
that quasi-Monte Carlo is not much better than Monte Carlo in high dimensions with
practical sample sizes. The second is that quasi-Monte Carlo has been seen to far surpass
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Monte Carlo in some high-dimensional examples. It is our view that success in high-
dimensional problems tells us more about the integrand than about the method of integra-
tion. Some high-dimensional integrands are indeed amenable to quasi-Monte Carlo
simulation. Integrands of low ‘effective dimension’, which we define in two ways below, are
of this type. Our second goal is to give an example of a financial simulation, in which one
can reduce the effective dimension of an integrand, thereby making quasi-Monte Carlo
much more effective.

The outline of this paper as follows. Section 2 gives a brief introduction to quasi-random
sequences and their properties, including the Koksma-Hlawka inequality which is the basic
estimate on integration error for quasi-Monte Carlo. The dependence on dimension and the
character of two-dimensional projections of quasi-random sequences is also discussed.
Section 3 introduces some useful decompositions of integrands, and uses them to define
two notions of the effective dimension of an integrand. The mortgage-backed security
problem is formulated in Section 4. Our main technical tool for formulating the problem
with reduced effective dimension is the Brownian bridge representation of a random walk,
which is described in Section 5. Computational results for the mortgage-backed security
problem are presented in Section 6. Conclusions are discussed in Section 7.

2. QUASI-RANDOM SEQUENCES: DISCREPANCY AND
INTEGRATION ERROR

2.1 Basic Properties

The origin of the improved accuracy of quasi-Monte Carlo methods is the improved
uniformity of quasi-random sequences. Figure 1 shows two plots, each of 4096 points in
two dimensions. The top is a pseudo-random sequence and the bottom is a quasi-random
(Sobol’) sequence. In the pseudo-random sequence there is clumping of points, which limits
their uniformity. The cause of this clumping is that, since points in a pseudo-random
sequence are (nearly) independent, they have a certain chance of landing very near to each
other. The constructions used for points in a quasi-random sequence, on the other hand,
prevent them from clumping together.

The uniformity of a sequence of points in the s-dimensional unit cube I* = [0, 1}’ can be
measured in terms of its discrepancy. This is defined by considering the number of points in
rectangular subsets of the cube. For a set J € I and a sequence of N points (x,,)f:;l in I*,
define

N
R(U) =5 3 i) = m().
n=1

Here X; is the characteristic function of the set J, and m(J) is its volume. If E* is the set of
subrectangles with one corner at (0, .. ., 0), then the star discrepancy is defined as

Dy, = sup |Ry(J)|. 2.1
JeE

Some other discrepancies do not treat the origin differently from the other corners of I°,

and there are L? counterparts to the L™ definition given above. See Niederreiter [10] for

some of these other definitions and Hickernell [4] for some more recent generalizations.
The importance of discrepancy can be seen from the Koksma-Hlawka inequality for
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Projection of 4096 pseudo-random points
4096 points of Sobol sequence
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integration error. For the integral of a function f on the s-dimensional unit cube, the
simulation-based estimate of the integral is

1 N
In() =3 2 0n) @2
. n=1
and the integration error is
ex (N =3 1t )-| e @3)
N - N s n I’ . .

The Koksma-Hlawka inequality says that
lev(NI < V(N)Dy, 249

where V(f) is the variation of /.
In one dimension, the variation is V(f) = j& |df|. The definition in higher dimension is
more complicated. Define for all k < s and all sets of k integers 1 <# < -+ < ir < 5 the

quantity
3

—_— dt;,...de,.
at,... oty i lk

=1, jiL ek

vOfia, .0l = j
I*
The variation of f (in the sense of Hardy and Krause) is defined as

5

vin=Y > VO

k=1 1<ij < <ig<s

The Koksma-Hlawka inequality (2.4) should be compared with the formula for root-mean-
square error of Monte Carlo integration using a random sequence. If the sequence (x,) is

uniformly distributed on I, then

E[eN(f)Z]I/Z = a,(f)N—l/Z’ (2.5)

in which E is the usual expectation and o(f) is the square root of the variance of f given by
} 12

o= (] v - ex) 6

with f = [, fdx.
The error magnitudes (2.4) and (2.5) are similar in that the bound is a product of one

term depending on properties of the integrand function and a second term depending on
properties of the sequence. The Koksma—Hlawka inequality is an absolute bound, which is
more satisfying theoretically than (2.5), an equality in expectation which holds only prob-
abilistically. For practical purposes the preference is reversed. Each factor in (2.4) is
incredibly hard to compute, whereas the Monte Carlo variance can be estimated from the
same data used to compute f- " Furthermore, the Koksma—Hlawka bound is an inequality
that is only tight for a worst-case function f, whose fluctuations are exquisitely matched to
the discrepancies in the sequence (xx), while the Monte Carlo variance estimates the error
for the actual f being sampled.
The infinite sequence (x,)%%, is said to be quasi-random if

v Dy < c(logN)kN‘l,
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in which the constant ¢ and the logarithmic exponent & may depend on the dimension s. For
integration by quasi-random sequences, the Koksma-Hlawka inequality says that the
integration error is size O{(log NYN ~1), which for large N is much more accurate than
standard Monte Carlo simulation.

Examples of quasi-random sequences have been constructed by Halton, Faure, Sobol’,
Niederreiter, and others. For a comprehensive discussion, see the monograph of Nieder-
reiter [10].

Although the variation of f requires s derivatives of f, we have found in practice that only
a minimal amount of smoothness of f is needed for effectiveness of quasi-Monte Carlo
integration. For problems in which 1 is discontinuous, however, the improvements of quasi-
Monte Carlo integration are diminished.

The effectiveness of quasi-Monte Carlo in high-dimensional problems was studied in
[7, 8]. There it was shown that the faster convergence rate for quasi-Monte Carlo is generally
lost for problems of high dimension. The simplest evidence for this conclusion is seen in the
discrepancy as a function of N for various values of the dimension s. For small dimensions,
the discrepancy appears to be O(N 1), ignoring logarithmic factors, for all N. For large
dimensions, the discrepancy behaves initially like O(N~!/2) as for a random sequence,
taking on an apparent O(N~!) rate only for very large values of N.

The transition value of N appears to grow exponentially with the dimension. This has not
been rigorously proved, but for quasi-random sequences based on nets as described below,
it is in keeping with the definition of nets. In high dimensions, unless one uses a very large
number of points, quasi-random sequences are no more uniform than random sequences.
Thus the Koksma-Hlawka bound does not imply any advantage for quasi-Monte Carlo
with moderate values of N and large dimension 5. On the other hand, we have found almost
no problems for which quasi-Monte Carlo is worse than standard Monte Carlo.

It is difficult to evaluate the uniformity of a sequence in a high-dimensional space. A
necessary but not sufficient condition for uniformity is uniformity of low-dimensional
coordinate projections of the sequence. The Sobol’ sequence used in the computations
below (based on the sequence generated by FINDER) has excellent one-dimensional projec-
tions, and in the 360-dimensional case we test, many, but not all, of its two-dimensional
projections are very uniform. In Section 3 we show how such partial uniformity is sufficient
for the task of integrating functions of low effective dimension.

The one- and two-dimensional projections of (x,) are easily graphed. Three-dimensional
projections can be investigated, with some difficulty, with dynamic graphics tools, such as
XGobi [21]. The graph at the bottom of Figure 1 shows a ‘good’ pairing of dimensions using
Sobol’s second and third dimensions with his recommended starting values. A ‘bad’ pairing
of dimensions is presented in Figure 2, which shows two higher dimensions (following
Sobol’s convention for associating dimension with generating polynomial) based on the
polynomials x” + x>+ x*+ x>+ 1 and x" +x*+ x*+ x> + x> + x+ 1 and the starting
values (1, 3,5,11,3,3,35 and (1, 1, 7, 5, 11, 59, 113), respectively. (The polynomials cor-
respond to dimensions 27 and 32 respectively in FINDER, but the starting values are
different.) Although this nonuniformity could go away if these starting values were
changed, we have found that this type of nonuniformity is fairly typical of some of the
two-dimensional projections of high-dimensional Sobol’ and Halton sequences.

The bad behavior seen in the second plot of Figure 2 can be explained in terms of filling
in holes. If 8192 (2!%) points are used, the plot looks almost identical to what is shown for
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Figure 2. Two-dimensional projection of a Sobol’ sequence.

4096, However, the next 8192 points fall only where the gaps appear. Thus by N = 16,384,
the projection plot is almost perfectly uniform. The problem is that the cycle for filling in

such holes can be too long.

2.2 (t, m, s)-nets and (t, s)-sequences
The quasi-random points we consider are, or are based on, (¢, m, s)-nets and (¢, s)-
sequences. The definitive reference on this topic is Chapter 4 of the monograph by Nieder-
reiter [10].

An elementary interval in base b is a set of the form

S
= ii_af'{"l s
J—g[bkj, % )gz

for nonnegative integers @; and k;, with a; < b%. For t > 0, a sequence of N = b™ points x,
is a (t,m, s)-net in base b if every elementary interval J in base b of volume 5™ has
Ry(J) = 0. Given m, s, and b, the smaller ¢ is, the better.

An infinite sequence (x,)22, is a (7, s)-sequence in base b if each finite sequence
Gen) A48, with 4 > 0, is a (¢, m, s)-net in base b for all m > 0.

The net property becomes relevant for m > ¢, that is, N > b'*1, Below this value of N, any
sequence of points in /%, even identical points, are consistent with the net property. The
smallest N at which the net property constrains some fully s-dimensional elementary

1
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subinterval (one with all k; > 0) is 5. The asymptotic rate for the discrepancy of nets
should therefore start at around N = b**.

The most widely used constructions of (¢, 5)-sequences are due to Sobol’, Faure, and
Niederreiter. The Sobol” sequences are (¢, 5)-sequences in base b = 2. For s = 360 the value
of t is quite large for Sobol’ sequences, in the thousands, according to Niederreiter (per-
sonal communication, 1996). The Faure sequences are (0, s)-sequences inbase b where b 2 s
is a prime number. For s = 360, the smallest value of b is 361.

For Faure sequences the net property starts to be relevant at N = 361, but the asympto-
tics are not relevant until N = 36138 > 10%2, For Sobol’ sequences the net property starts
to be relevant at N = b* and the asymptotics are relevant at N = ***. Even if ¢ is as small
as 1000, these two values are larger than 10°® and 10*” respectively.

Recent constructions of Niederreiter and Xing (1996) hold the promise of (¢, s)-sequences
in base 2 with ¢ = s, a significantly smaller value than previously known possible. Even here
though, this suggests that the net property becomes relevant at N = 2361 5 10'% and the
asymptotics become relevant at N = 272 > 10216,

Despite the impractically large values of N mentioned above, quasi-Monte Carlo works
well on some high-dimensional integrands, using realistic sample sizes. The reason is that
low-dimensional views of the quasi-Monte Carlo points can have small discrepancy and
some integrands are dominated by low-dimensional structure, as described in Section 3. For
example, the points in Figure 1 appear to be a (1, m, 2)-net with a much smaller value of ¢
than holds for all 360 dimensions of the points.

2.3 Scrambled (t, m, s)-nets and (t, s)-sequences

A scrambled net is a hybrid of quasi-Monte Carlo and Monte Carlo methods, in which a
sequence (x,) is randomized. These are defined and analyzed in a sequence of papers by
Owen [14-16]; see also Hickernell [3]. The randomization is carefully constructed in the
base b so that (£, m, s)-nets map onto (¢, m, s)-nets, (¢, 5)-sequences onto (1, s)-sequences,
and each x, individually has the uniform distribution on I*. As a result Iy(f) becomes a
random variable with mean / and at least quasi-random accuracy.

By replicating the randomization, one can estimate the sampling variance statistically
from the same data used to estimate the integral. The variance of Ix(f) is o(N~") for any f
with [ f(x)2dx < oo.

The precise improvement over Monte Carlo depends on properties of f. If f is well
approximated by sums of characteristic functions of elementary intervals of large volume,
then V(In(f)) decreases rapidly. In particular, if f is sufficiently smooth that
h(x) = 8 (x)/8x° is Lipschitz-continuous, |A(x) — A(x")| < Bllx — X ||® for some B > 0, and
B € (0, 1], then V(Ix(f)) = O(N 3(log N):‘l) for scrambled nets on N points. This pro-
vides for errors of O(N~3/*(log N)©~D72) in probability, a better rate than that achieved by
unscrambled nets. The extra N~1/2 factor of accuracy may be attributed to cancellation of
some integration errors, which does not happen with deterministic sequences.

The asymptotic rate can be expected to commence at N = b"*3, as for unscrambled nets,
though with realistic sample sizes, significant benefits can be seen on integrands of lower
effective dimension.
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3. INTEGRAL DECOMPOSITIONS AND EFFECTIVE DIMENSION

Suppose that we can write

M
J@) =) ful). G.1)

m=0

Then f =M /., and Iv() = M Iv(f), and en(f) = 2 M en(f) in obvious
notation.

In decompositions like equation (3.1) we will customarily arrange that fo(x) = f is con-
stant in x and that f,, = 0 for m > 1, Then

M
en(f) =Y en(fm), (3.2)
m=1

because Iy(fy) = f o If [fm(2) fi(x)dx = O for m # k, the decomposition (3.1) is said to be
orthogonal.

In simple Monte Carlo simulation, the x, are taken independently from the uniform
distribution on {0, 1’. For an orthogonal decomposition, o?(f) = 2311:1 o*(f,n). Many
Monte Carlo methods have the effect of changing the sampling variance of f to

1 M
NZ rmaz(fm) (33)
m=1

for some ‘gain’ constants I', 2 0. Getting every I, < 1 implies an improvement over
simple Monte Carlo. Even when the I',, are not all smaller than 1, a method in which I,
is small whenever o, is large can be very effective.

A case in point is antithetic sampling. Write f =fy +fi + /3, where fo(x) =1,
NHx) = %[f(x) +f( -=x)]-f, and fo(x) = i[f(x) —f(1 = x)]. Here 1 — x is interpreted
componentwise. This is an orthogonal decomposition into constant, even (symmetric), and
odd (antisymmetric) parts. Antithetic sampling involves taking the points x, and
x, =1 —x, in pairs, for 1 <n< %N. One can show that in antithetic sampling I', = 0
and I'} = 2. Antithetic sampling can be anywhere from half as good as simple Monte Carlo
(when f; = 0) to infinitely better than simple Monte Carlo (when f; = 0). When it is thought
that o2 > o?, as for nearly linear functions, antithetic sampling becomes attractive.

In an analysis of variance (ANOvA) decomposition, M = 2° — 1, and there is one term in
(3.1) for each subset of the s components of x. The empty set corresponds to fp. The term for
each subset is a function only of the components within the subset. It is convenient to
replace the labels 0,..., M by subsets u C {1,...,s}. Thus f(x) = Y, fu(x). The ANOVA
decomposition is an orthogonal one, so o*(f) = ¥, 02, where o2 = 0*(f,). See Owen [12]
for definitions, Takemura [22] for some history of this decomposition, and Hickernell (4] for
some recent generalizations.

Let g/(x) = 3=, Su(x) for 0 <t < s Then g, describes the part of / that is exactly -
dimensional and }"4_, g4 describes the part that is at most z-dimensional. The variance of
g:is 0*(g) = X\, 02. If, for example, 0*(g1) = 0.990%(), then we can conclude that 99%
of the variance of f is due to the components of X taken one at a time. In such a case we
might say that / is effectively one-dimensional. Likewise, if a2(g1) + 0%(g2) + 0%(g3) is close
enough to o2 we might consider f to be effectively three-dimensional. For such an f, a set of
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points with good uniformity in every triple of variables will produce an accurate integral
estimate, even if the points are not particularly uniform in some quadruples of variables.

Definition 3.1. The effective dimension of f, in the superposition sense, is the smallest
integer ds such that 3y, <4c 02 (/i) = 0.9902( /).

This notion of effective dimension differs from the one implicitly used in [17], which we
state formally as:

Definition 3.2. The effective dimension of f, in the truncation sense, is the smallest integer
dr suchthat 3, 50 0%(fi) 2 0.990%(f).

The threshold 0.99 is an arbitrary choice, and one might well prefer other values in some
settings. For each d = 1, ..., s, we can define how d-dimensional f is, in the senses above,
by the ratios 3 1< 92/02 and Yoy 4 02/0>. Clearly the fraction of variance that is d-
dimensional is higher in the superposition sense than in the truncation sense.

To distinguish the two definitions, consider the function f = Y";_, 2’x;. For this function
ds(f) = 1 and dr(f) = s. In general, arranging for all ds-dimensional projections of (x,)¥_,
to have low discrepancy ensures an accurate simulation. Alternatively, arranging for the
first dr components of (x,) _ to have low discrepancy will suffice. The dimension ds does
not depend on the order in which the input variables are indexed, while dr does.

If /" is nearly one-dimensional in the superposition sense, then Latin hypercube sampling
will be an extremely effective simulation technique. In Latin hypercube sampling [5], the jth
component of x, is x,; = [;(n) — uy]/N, where &; is a (uniform) random permutation of
the integers 1 through N and the u,; are independent U[0, 1] random variables. Latin
hypercube sampling stratifies each individual dimension, but imposes no higher-dimen-
sional stratification. In fact, a Latin hypercube sample is a scrambled (0, 1, 5)-net in base
N. Stein [20] shows that Latin hypercube sampling is essentially equivalent to having
I', =0 for subsets u of cardinality ju] =1 and I', = 1 for |4| > 1. The variance contribu-
tion of each f;, with ju| = 1 is o(N~!) and, if that f; is smooth, the variance contribution is in
fact O(N—3). We use Latin hypercube sampling below to investigate the fraction of the
variance that comes from one-dimensional parts of an integrand.

Some orthogonal array sampling schemes [12, 13, 23] balance all margins up to order ¢,
randomize the higher ones, and have I'y = 1j».. These should be effective on integrands
that are, or are nearly, of effective dimension ¢ or less, in the superposition sense.

For nonrandomized quasi-Monte Carlo methods, the decomposition (3.1) does not lead
to a variance interpretation, but we may still write

M M
len(NI< Y lew(fl < Y Dy Vulhi)s 3.4

)21 lul21

where D}, , is the discrepancy of the |u|-dimensional points obtained by keeping only those
omponents (x,,) — in u, and V,(f,) is the variation of f, taken as a |u|-dimensional
function. We believe that many successes of quasi-Monte Carlo methods on high-dimen-
sional problems can be attributed to a low effective dimension of the integrand, in one or
both of the senses above. In such cases, arranging for small values of D, , to coincide with
the few large values of o2 and large values of D} ,, if any, to coincide with small values of o2
(which ordinarily implies small V(f,)) should produce accurate results.
As N increases, more and more of the terms in equation (3.4) should switch from the
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Monte Carlo rate N=1/2 to a quasi-Monte Carlo rate N~!(log N)*. While this is taking
place, there may be an appearance of an asymptotic rate better than N -2 1f, however,
the very highest dimensional term is nonzero, then one can expect that the errors are
bounded below by a small multiple of N~1/2 until N reaches the sometimes astronomical
sample sizes b'** as described in Section 2.2.

Scrambled net sampling can be analyzed in terms of a square wavelet decomposition
applied to each term in the ANOVA decomposition [15]. The result is that the contribution of
f. decreases very rapidly after N = b, This explains how the scrambled net variance is
o(N~1). Large gains can be expected if /” has sufficiently low dimension in the superposition
sense.

Classical Monte Carlo techniques often replace the integrand f by another one with the
same integral and a smaller variance. The ANOVA decomposition above suggests two more
ways to improve integration: reducing the effective dimension in either of the two senses
above. In high-dimensional problems, reducing both sorts of effective dimension pays off. It
is, for example, easier to arrange low discrepancy for all three-dimensional projections of 16
variables than for all three-dimensional projections of 360 variables. We believe that the
Brownian bridge discretization in Section 5 succeeds for these reasons on the mortgage-
backed securities problem introduced in Section 4.

4. MORTGAGE-BACKED SECURITIES

Consider a security backed by mortgages of length M months with fixed interest rate i,
which is the current interest rate at the beginning of the mortgage. The present value of the
security is then

. .
PV = E[v] = E[Z ukmk], (4.1)
k=1

in which E is the expectation over the random variables involved in the interest rate
fluctuations. The variables in the problem are as follows.

u, = discount factor for month k,
my, = cash flow for month £,
i, = interest rate for month k,
wy = fraction of remaining mortgages prepaying in month k,
rr = fraction of remaining mortgages at month &,
¢x = (remaining annuity at month k)/c,
¢ = monthly payment,

& = an N(0, o) random variable.

1
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Valuation of mortgage-backed securities

This notation follows that of Paskov [7], except that our ¢, corresponds to his aar—k+1.
Several of these variables are easily defined:

k-1
we=[Ja+ip™",
=0

mie = cref(1 — we) + wieer],
k-1

ne=[]00-w),
Jj=1
M—k _
=) (1+i)7.
j=0
Following Paskov, we use models for the interest rate fluctuations and the prepayment rate
given by

i =Ky et [P
= Ky bt i, 42)
wy = K, + K; arctan(Ka i + Ky),

in which K, K3, K3, K4 are constants of the model. The constant Ky = e~7/2 is chosen to
normalize the log-normal distribution, i.e. so that E[it] = i;. The initial interest rate io is an
additional constant that must be specified.

In this study we do not divide the cash flow of the security among a group of tranches, as
in [17], but only consider the total cash flow. Nevertheless, the results should be indicative of
a more general computation involving a number of tranches.

The expectation PV can be written as an integral over R with Gaussian weights

g() = (2mo?) V2 E 1, 4.3)

This is transformed into an unweighted integral by a mapping § = G(x) with G'(x) = g(£),
which takes a uniformly distributed variable x to an N(0, o) variable & The formula for PV
is

PV = [ w6 s . 0

- J{O - W(Gx1), .., Gluag)) dxy ... dxyy. (4.4)

Note that, in quasi-Monte Carlo evaluation of an expectation involving a stochastic process
with M time steps, the resulting integral is M-dimensional.

The parameter values ip, Ki, Kz, K3, K4, o used in [17] are proprietary, and not known to
us. In the numerical study below, we have used two sets of values for them. The first set,
chosen to be plausible to us, turned out by inspection to be very nearly a linear function of
the Gaussian increment random variables &,. We refer to this set of parameters as the
‘nearly linear example’. For this case, the parameters are

(io. K1, K2, K3, Ky, 0%) = (007, .01, —.005, 10, .5, .0004). 4.5)
In the second example, the ‘nonlinear example’, the parameters are
(i0, K1, K3, K3, K4, 6%) = (.007, .04, .0222, ~1500.0, 7.0, .0004). (4.6)
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6. NUMERICAL RESULTS

6.1 Nearly Linear Example

The value PV for this example was calculated to be 131.78706. The mean length of a
mortgage in this case is 100.9 months and the median length is 93 months. The Monte
Carlo variance of PV is 41.84 and the variance in antithetic sampling is 0.014. This suggests
that the function is very nearly an odd function of the Gaussian increments. In fact, solving
41.84 =0} + 03, with 0.014 =207, provides the rough estimates o? =0.007 and
03 =41.833, so that the odd or antisymmetric part of this integrand provides about
99.98% of the variation.

Similarly the variance in Latin hypercube sampling is about 0.0155, from which we find
that roughly (41.84 — .0155)/41.84 = 99.96% of the variation comes from one-dimensional
structure. This function is effectively one-dimensional in the superposition sense, and it is
nearly antisymmetric. The percentages quoted above are based on ratios of sampling
variances and may not be exact, but both of these findings agree with what we found by
numerical inspection: this function is very nearly linear in the Gaussian increment vari-
ables. Application of Latin hypercube sampling to the antithetic integrand leads to only a
slight decrease in variance compared to the nonantithetic case, which we interpret to mean
that the multidimensional part of the integrand is not predominantly odd.

We now describe the accuracy of various integration methods for this problem as a
function of N, the number of paths. For each of these results, we present the root-mean-
square of the error among 25 computations. For Monte Carlo methods the 25 computa-
tions are statistically independent, at least to the level possible using pseudo-random
numbers. The Sobol’ calculations for each of the 25 runs and for each value of N was
computed using different nonoverlapping sub-sequences of the Sobol’ sequence. Because
they are not a sample from any population, the root-mean-square error presented is the
difference between the values obtained and a ‘gold standard’ obtained from using the
quadratic terms of a Taylor series expansion of the integrand about the origin in the
Gaussian coordinates as a control variate and N ~ 3.2 million. The results are plotted in
terms of error versus N, both in log base 10.

In these plots, for the antithetic computations, N refers to the number of times the
antithetic integrand 1 [/(x) + f(1 — x)] is evaluated. This corresponds to 2N function evalu-
ations. Plotting the antithetic runs versus 2NV would be more appropriate when function
evaluation is the dominant cost and plotting versus N when generating the x, is the
dominant cost. We don’t attempt to plot CPU time on the axis, as this can depend on how
efficiently a method is implemented.

First, we perform straightforward Monte Carlo evaluation, with results plotted in
Figure 3. The top curve shows results from Monte Carlo using standard pseudo-random
points, with the error decreasing at the expected rate of N~!/2. The second curve shows a
dramatic improvement using the 360-dimensional Sobol’ sequence (generated with part of
the code FINDER). In a separate calculation (not plotted), it was found that if only the first
50 dimensions (using the standard discretization) were taken to be quasi-random and the
rest pseudo-random, the size of the error decreased slightly compared with the purely
random case, and the apparent convergence rate remained N~/2, So, in the truncation
sense, the dimensionality is not below 50.

The third curve in Figure 3 shows the results of combining the quasi-random sequence
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5 Near linear model
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Figure 3. Error versus N (log base 10) for the nearly linear problem, in the original
representation.

with antithetic sampling. This leads to a sizeable reduction in the error size as the dominant
antisymmetric part has been removed. However, the improved convergence rate, character-
istic of low-dimensional quasi-Monte Carlo methods, also disappears. Finally, reference lines
for Latin hypercube sampling and antithetic random Monte Carlo are shown. These both
effectively remove the one-dimensional linear elements of the integrand, with antithetic
variates killing it off exactly, while this error decreases like O(N~%/2) for the Latin hypercube
case, leaving the remaining errors to converge at the standard N~/ rate. The quasi-random
error, while outperforming simple random Monte Carlo on the one-dimensional elements,
still can only achieve the O(N~') rate in the optimal case. Both Latin hypercube and
antithetic random outperform the antithetic quasi-random sequence slightly. This may be
because the quasi-random sequence is performing at worse than the Monte Carlo level on the
higher-dimensional part of the integrand.

A scrambled (0, 360)-sequence in base 361, with N a small multiple of 361, behaves like
Latin hypercube sampling. When N nears 3612 = 130321, some bivariate sources of vari-
ance disappear. For intermediate multiples of 361, some of the bivariate effects are reduced
by a multiple N/3612. On this function, the results for the scrambled (0, 360)-sequence were
essentially that same as for Latin hypercube sampling, and thus they are not plotted in
Figure 3. When applied to the antithetic integrand, the scrambled sequence showed a slight
improvement over the antitl}etic Latin hypercube sampling; however, no significant gains
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are achieved in either case with antithetic sampling, because of the increased computation
time required.

Our results are consistent with the results of Paskov [17, 18] and Ninomiya and Tezuka
{11]. They contradict the observation that the effectiveness of quasi-Monte Carlo is lost in
high dimensions. However, we argue below that the improvement is almost entirely due to
improved integration of the one-dimensional parts of the integrand.

Next we consider the Brownian bridge version of the integrand. The reformulated
integrand has the same mean and the same variance as the original, but more of the
structure is packed into the first few dimensions. This should help the Sobol’ sequence
because it would only need to have small discrepancy among the first few dimensions. This
encoding decreases the variance in Latin hypercube sampling from 0.0155 to 0.00963,
suggesting that the Brownian bridge encoding has made the integrand even more inherently
one-dimensional.

Figure 4 shows the results from Sobol’ sequence integration in the Brownian bridge
representation, with and without antithetic sampling. Also shown are reference lines for
simple Monte Carlo, which is not affected by the change of representation, and for Latin
hypercube sampling with the Brownian bridge. Again antithetic sampling does not
substantially improve Latin hypercube sampling here. For the Brownian bridge Sobol’
sequence without antithetic sampling, the results are essentially the same as for the

Near linear model
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Figure 4. Error versus N (log base 10) for the nearly linear problem, in the Brownian
bridge representation.
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standard representation. This is because, for the dominant linear one-dimensional elements,
the Brownian bridge representation simply rearranges the weights on the elements, but the
sum remains constant. Because the errors associated with each one-dimensional projection
of the Sobol’ sequence are nearly identical, no improvement is seen.

In the Brownian bridge formulation, the Sobol’ sequence with antithetic sampling is
much better than either antithetic variables or Latin hypercube sampling. This suggests that
it must be capturing some higher-dimensional antisymmetric structure, most probably
among the first few variables.

The theory of scrambled (0, 360)-sequences in base 361 predicts that they will not be
much better than Latin hypercube sampling until N = 3612 = 130321, which is beyond the
range we explore here. But by packing most of the structure into the first few dimensions of
the integrand, we can consider methods in which scrambled nets are used on the most
important dimensions and something else is used on the rest. Such methods have been
proposed before: Spanier [19] describes a scheme in which quasi-Monte Carlo methods are
used on the first few dimensions of an integrand and simple Monte Carlo is used on the rest,
and Owen [13] considered augmenting a randomized orthogonal array with further dimen-
sions taken from Latin hypercube samples.

We considered using a scrambled (0, 32)-sequence in base 32 for the first 32 dimensions
and Latin hypercube sampling on the last 328 dimensions. For N = 32" one gets a
scrambled (0, m, 32)-net in base 32 for the first 32 dimensions and Latin hypercube sam-
pling for the rest. This will integrate the one-dimensional part of the function and much of
the m-dimensional structure (superposition sense) of the first 32 dimensions, with the rest of
the structure being integrated at the Monte Carlo rate. But (0, 32)-sequences can be stopped
early or extended as necessary, whereas Latin hypercube sampling requires a prespecified
number N of runs. As a compromise, we ran a scrambled (0, 32)-sequence for the first 32
dimensions and took repeated independent Latin hypercube samples of size 1024 for the
last 328 dimensions. Such a simulation can be conveniently stopped at any multiple of 1024
runs. The results are shown on Figure 4, labelled as RQR-BB for randomized quasi-random
with Brownian bridge. All pairs of two variables among the first 32 variables start to
become balanced at sample size N = 322 = 1024, and, similarly, all triples of variables
among the first 32 variables start to become balanced at sample size N = 323 = 32768.
This leads to results which are similar to the antithetic Sobol’ with Brownian bridge results.
However, the convergence rate for the scrambled net in the Brownian bridge representation
appears to be larger, leading to greater accuracy at large N.

We were able to achieve still better results than those shown here by approximating the
integrand by a quadratic function about the origin in the Gaussian coordinates and using
this function as a control variate with antithetic random Monte Carlo. The quadratic terms
were calculated by evaluating all 360 * 361 /2 second derivatives of the integrand.

6.2 Nonlinear Example

We next consider the nonlinear example and display the same error curves. The mean value
of PV for this problem is 130.712365. This value was obtained by averaging 200 independent
Cranley-Patterson randomizations of 2!° fixed paths, generated by using the Sobol’ se-
quence with the Brownian bridge ordering. These randomizations are due to Cranley and
Patterson [2], and Tuffin [24] appears to be the first to realize their utility on nets. The
certainty of this answer can be estimated by considering a six standard deviation range,
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5 Nonlinear model
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Figure 5. Error versus N (log base 10) for the nonlinear problem, in the original
representation.
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Figure 6. Error versus N (log base 10) for the nonlinear problem, in the Brownian bridge
representation.
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which was determined to be (130.712348, 130.712382). The error curves in Figures 5and 6

are based on using this value as the exact solution.
The mean length of a mortgage in this case is 76.5 months and the median length is 58

months. The variance of PV in this value is 18.54 and the variance in the antithetic
computation of this value is 1.127. Thus the function is about 97.7% antisymmetric. The
variance under Latin hypercube sampling is 1.087, so that the function is only about 94.1%
one-dimensional. This may seem like a lot of one-dimensional structure, but, compared
with the previous example, the proportion of higher-dimensional structure is greatly
increased.

As in the nearly linear example, antithetic sampling and Latin hypercube sampling in
combination do not work better than separately. For this integrand as for that one, they
each appear to remove the same source of error. In fact, for the nonlinear example, both

give almost exactly the same errors.
Figure 5 shows the error reference line
sampling. Both Latin hypercube sampling and the rando:

360, as well as their antithetic counterparts, give roughly

thetic Monte Carlo sampling. For simplicity, these error curves have therefore not been
and those for Sobol’

included in this graph. Superimposed are errors and lines for Sobol’
with antithetic sampling. In this case the Sobol’ sequence is seen to catch up with the
antithetic random sampling, but little is gained by combining antithetic sampling with the
quasi-random sequence. The Sobol’ sequence outperforms Latin hypercube sampling on
this, probably because the one-dimensional parts of it are no longer so dominant.

Figure 6 shows the errors from the Brownian bridge representation of the integrand.
Reference lines are shown for Monte Carlo, antithetic sampling, and Latin hypercube
sampling. In this case also, Latin hypercube sampling does a bit better after the Brownian
bridge transformation, suggesting that the function has become somewhat more one-
dimensional. As before, combining Latin hypercube sampling with antithetic sampling
does not do much good.

The Sobol’ sequences perform especially well on the nonlinear function,
ampling. In terms of equation (3.4), this may be due
matched with their greater

s from Monte Carlo and antithetic Monte Carlo
mized (0, 360)-sequence in base
the same accuracy as the anti-

in the Brownian

bridge representation with antithetic s
to good equidistribution among the leading Sobol dimensions,

importance to the integrand.

7. CONCLUSIONS

Our main conclusions are as follows.
® Quasi-Monte Carlo methods provide significant improvements in accuracy and compu-
tational speed for problems of small to moderate dimension.

@ While the effectiveness of quasi-Monte Carlo can be lost on problems of high dimension,
this does not happen if the integrand is of low effective dimension in the superposition

sense.

@ Some problems that have a large nominal dimension can be reformulated to have a
moderate-sized effective dimension, so tl;at the effectiveness of quasi-Monte Carlo is

increased.
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® The Brownian bridge representation reduces the effective dimension for problems like
the mortgage-backed security problem described here.

Instead of straightforward use of high-dimensional quasi-random sequences, our recom-
mendations are:

® First analyze the problem, mathematically or numerically, to determine the most im-
portant input dimensions.

® Where possible, reformulate the problem to concentrate the variation in fewer dimen-
sions.

® When a small number of dominant dimensions can be identified or induced, apply quasi-
random or randomized quasi-random (when sample-based error estimates are desired)
sequences to those dimensions.

® For the remaining dimensions use pseudo-random or Latin hypercube sampling.

® Consider applying classical variance reduction techniques, such as antithetic sampling,
control variates, stratification, and importance sampling in conjunction with the above.

We believe that high-dimensional integration problems can range in difficulty from
completely intractable to quite simple. In some cases it is possible to turn the former into
the latter by carefully engineering the integrand. It is too early to say whether such manage-
able integrands are rare or dominant in financial applications. However, the results here
indicate that, for the valuation of securities which depend on a single stochastic factor
modelled as a Gaussian process with nonstochastic drift and volatility, the Brownian bridge
representation may be extremely effective in reducing the dimension of the simulation.
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