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QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES*
WILLIAM J. MOROKOFF AND RUSSEL E. CAFLISCH

Abstract. Quasi-random (also called low discrepancy) sequences are a deterministic alternative to random
sequences for use in Monte Carlo methods, such as integration and particle simulations of transport processes. The
error in uniformity for such a sequence ofN points in the s-dimensional unit cube is measured by its discrepancy, which
is of size (log N) N-Ifor large N, as opposed to discrepancy of size (log log N) 1/2N-1/2 for a random sequence
(i.e., for almost any randomly chosen sequence). Several types of discrepancies, one of which is new, are defined
and analyzed. A critical discussion of the theoretical bounds on these discrepancies is presented. Computations
of discrepancies are presented for a wide choice of dimension s, number of points N, and different quasi-random
sequences. In particular for moderate or large s, there is an intermediate regime in which the discrepancy of a quasi-
random sequence is almost exactly the same as that of a randomly chosen sequence. A simplified proof is given
for Woniakowski’s result relating discrepancy and average integration error, and this result is generalized to other
measures on function space.
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1. Introduction. Since the beginning of the computer age, Monte Carlo methods have
been used to evaluate integrals, solve integral equations, and simulate physical processes [7].
These methods use a sequence ofpoints, usually a deterministic pseudo-random approximation
to a randomly chosen sequence, to sample the values of the integrand function or the possible
steps in a process. Over the years a number of techniques, such as variance reduction through
stratification, have been developed to improve the accuracy of these methods. An alternative
technique is to replace the pseudo-random sequence with a deterministic sequence having
better uniformity properties.

Uniformity of a sequence is measured by its discrepancy, which is the error in repre-
sentation of the volume of subsets of the unit cube by the fraction of points in the subsets.
Several different definitions of discrepancy can be formulated [8], [14], [17], including a sup
over rectangles or an L or L2 integral over rectangles using either all rectangles or only those
with one vertex at the origin. Integration error can be related to discrepancy either through
the Koksma-Hlawka inequality [8], 14], 17] or Woiniakowksi’s identity [26], which states
that the discrepancy is equal to the average integration error with respect to the Brownian
sheet measure. We present a critical discussion of the various definitions of discrepancy, one
of which is new, and a simplified proof of Woiniakowksi’s result is given, which allows the
result to be generalized to other measures on function space.

A quasi-random (or low discrepancy) sequence in the s-dimensional cube is a sequence
for which the discrepancy is roughly of size (log N) N-1 for large N, which is the minimum
size possible. These sequences are more uniform than random sequences because randomly
chosen points tend to clump, leading to discrepancy of size (log log N)I/2N-1/2. Evidence
of this clumping is shown in a planar projection of a pseudo-random sequence in Fig. 12;
while the top graph of Fig. 13 shows the uniformity that can be achieved with quasi-random
points. At the other extreme, regular lattices of points work well in low dimension, but in
high dimension they are not very useful. Points cannot be added to a lattice incrementally.
Instead, a given s-dimensional lattice can only be refined by increasing the number of points
by a factor 2s; i.e., the discrepancy of a lattice is of size O(1), except at special values of N
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at which the lattice is completely refined. Moreover for large s it is usually impossible to put
down enough lattice points to get good resolution.

Quasi-random sequences combine the advantage of a random sequence (points can be
added incrementally) with the advantage of a lattice (no clumping of points). Examples of
such sequences that will be considered below include the Halton sequence, Sobol’ sequence,
and Faure sequence. Bounds on the discrepancy of these sequences, as well as other analytic
properties, have been previously derived using number theoretic techniques [8], 14]-[ 17].
An alternative method for generating quasi-random sequences and bounds on integration
error using a dynamical systems approach is presented in [19].

The main portion of this paper consists of computations and critical discussion of the
discrepancy for these sequences over a large range of values of N and s. In particular for
large dimension s, the theoretical bound (log N) N-1 is only meaningful for extremely large
values of N; i.e., N O(eS).

In an attempt to directly understand the uniformity properties of quasi-random sequences
in high dimension, two-dimensional projections are presented for a variety of quasi-random
sequences. These can show considerable clumping in high dimension. Finally we present
timing results for the generation of the different quasi-random sequences.

Previous computational studies of quasi-random sequences (as well as scrambled quasi-
random sequences) and their discrepancy by Braaten and Weller [1], Bratley and Fox [2],
Bratley, Fox, and Niederreiter [3], Levitan [9], and Pages and Xiao [20] presented some useful,
but less complete, results..Some Of their results were due to transient effects, such as those
described below for the Tr discrepancy, and some of the multidimensional integration tests
were only performed for product functions. Sarkar and Prasad [22] have given a comparison
of Halton, scrambled Halton, and Faure sequences as applied to an absorption problem. In a
cogent article, Press and Teukolsky [21 discussed the Sobol’ sequences and computational
methods for generating them and showed how discontinuous integrand functions decrease the
effectiveness of Monte Carlo integration with quasi-random sequences. In two companion
papers 12], 13] we present computational studies and some analysis for quasi-Monte Carlo
methods applied to integration and simulation of some simple transport processes.

2. Discrepancy and integration error for quasi-random sequences. Given that pseudo-
random sequences work well in Monte Carlo integration, it seems reasonable to ask if other
deterministic sequences might also work. More precisely, it seems that the independence of
random numbers plays a secondary role to their uniformity in Monte Carlo calculations; so
sequences with better uniformity properties may lead to smaller errors. In order to develop
this idea it is necessary to define a uniform sequence and some measure of its uniformity. The
following is based on Niederreiter’s development of the topic in 14].

Let I denote the s-dimensional unit cube. An infinite sequence {xn in I is called
uniformly distributed if for all Jordan measurable subsets o of I

lim
1

Xj(xn) m(or)
N--- N

n=l

holds, where ,’j is the characteristic function of or, and rn (J) is the volume of or. Thus in the
limit of an infinite number of points, every region in I has proportionally the right number
of points. From this definition it follows that a sequence {xn is uniformly distributed if for
all Riemann integrable functions f defined on I it holds that

1N f,E f(xn) f(x)lim dx
N---cx - n---1
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It follows from the Central Limit Theorem that a sequence of independent, random points
chosen from the interval I with probability density one is indeed a uniformly distributed
sequence with probability one.

Practically, it is only possible to deal with a finite number of integration nodes, so it is
necessary to define some measure of uniformity for finite point sets. Such a quantity is known
as discrepancy. For a set J

_
I and a sequence of N points {Xn in Is, define

N

RN(J) - E 2(j(xn) m(J)

Various kinds of discrepancies can be defined then by restricting d to a certain class of sets
and taking a norm of RN over this class. If E is the set of all subrectangles of U, then the L
and L2 norms are defined as

(1) DN sup RN(J) I,
JE

(2) TN (RN(J(x, y)))2 dx dy
,y) 12s xi Yi

Here J(x, y) indicates the rectangle with opposite corners at (x, y). If E* is the set of subrect-
angles with one coruer at 0, then the star discrepancies are defined as

(3) Dv sup IRN(J)l,
JE*

(4) T (RN(J(x)))2 dx

Here J(x) is the rectangle with a corner at 0 and a corner at x. It should be noted that this is
not the standard notation as used by Niederreiter 14] and others. In the past, TN has denoted
what is here referred to as T. The new notation is necessary because the L2 discrepancy
over all rectangles TN had not been previously defined nor used. To be consistent with the
sup discrepancy, it makes sense to relabel the original L2 discrepancy over rectangles with a
corner at zero as T, and call the new L2 discrepancy Tv. Another kind of discrepancy, JN,
is obtained by taking the sup over all convex sets. No L2 analog exists for this class. The
infinite sequence {x, being uniformly distributed is equivalent to limN--, DN 0, where

DN refers to the discrepancy of the first N terms of the sequence. The statement is true for all
of the above discrepancies.

The importance of discrepancy as an error bound for Monte Carlo integration can be
seen from the Koksma-Hlawka inequality, which in one dimension for smooth functions f of
bounded variation reads

(5) e(f)
1 N

f(x) dx - f(Xn)
n=l

< V(f) Dv,

where Dv is the discrepancy of the sequence {Xn and V (f) fd Idfl is the variation of f.
Inequality (5) can be extended to higher dimensions; however, the definition of variation

must be modified. Assume for the moment that f is sufficiently smooth on I so that

dt
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exists. Define for all k _< s and all sets of k integers < < i2 < < ik _< s the quantity

V (k) (f; il ik) k dti ...dtik

Similarly define D*N(i ik) to be the star discrepancy of the orthogonal projection of the
sequence {Xn on to the appropriate k-dimensional subspace of Is. Then

f, f(x) dx -- f(Xn)
n=l k=l l<il<i2<...<ik<_s

V(k)(f;i,.. ik) *DN(ll ik).

It is possible to obtain a similar bound involving Tt(i ik) and an L2 version of V
defined by

W(k)(f il ik)
Oti, -.Otik tj=l

This requires a stronger condition on the integrand f than just being of L1 bounded variation.
The resulting bound is

1 N

f(x) dx -- f(Xn)
n=l k=l l<_il<i2<...<ik<_s

W(k)(f; i ik) T(i ik).

This argument may be made rigorous for a broader class of f known as functions of bounded
variation in the sense of Hardy and Krause. See 14] for details.

It is easy to see that D > D*N(il ik) for all k < s. If the variation of f in the sense
of Hardy and Krause is defined as

k=l 1_<il <i2<...<ik<_S

then inequality (5) follows immediately. This relationship does not follow when the T
discrepancy is used; in fact, in our computational tests, Tv < Tv(il ik).

The inequality (5) shows that if sequences exist with lower discrepancy than random
sequences, better than random convergence may be possible. Several such low discrepancy
sequences are discussed in the next section. However, first it is helpful to examine some of
the basic properties of discrepancy.

For a random sequence it can be shown from the law of iterated logarithms that

with probabilityone (see [14, p. 971]). This is true for any dimension s. Calculations carried
out in 6 show that E(T) Cs/N, where E(.) is the expectation, taken to be an integral
over the space pN of possible values of the s coordinates of the N random points. Cs is
a constant depending on dimension. Both of these estimates show N-5 type convergence,
which corresponds to the standard Monte Carlo error behavior for integration with random
nodes.
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Various relationships exist among the different notions of discrepancy, which allow a
sequence to be termed low discrepancy without specifying the measure. Perhaps the simplest
relationship is

D*N < DN < 2 D*N

This is clear from the fact that E* is a subset of E, while any set in E can be written as a
combination of 2 sets in E*. From the basic fact that L norms are larger than L2 norms, it
follows that

Tv < D*N

The relationship between T and TN is discussed in 5; in general, the star discrepancy is
larger. In 16] Niederreiter establishes the relationship

C DN < Tv
In his book with Kuipers [8] he also shows that the isotropic discrepancy over convex sets
satisfies

JN < 4S(DN)-

This bound is improved in 13] under the assumption suggested by Press and Teukolsky [21].
Otherproperties ofdiscrepancy include the lowerbound established by Roth and discussed

in [8];

Tv > Cs
s-1

(log N)T

N

Halton [6] showed the existence of infinite sequences in any dimension which satisfy

DN=O((lgN)S)"N
This bound is regarded as the best possible. This is an important result because it offers hope
that the standard Monte Carlo N-1/2 convergence can be improved considerably. Sequences
with this property are the topic of the 4.

3. Average integration error. A direct relation between the integration error e(f) and
the L2 discrepancy has been derived by Woiniakowski [26]. He showed that (Tv)z is equal
to the average integration error, i.e.,

(6) (T)2 E(e(f)2)

in which e(f) denotes the integration error on the left side of (5) above. The average is
taken with respect to the "Brownian sheet" measure, which is a generalization of Brownian
motion with s-dimensional "tirne." In particular the measure is concentrated on functions that
are roughly "half-differentiable" (i.e., they have HOlder exponent nearly equal to ), so that
they have infinite variation. This shows that the Koksma-Hlawka inequality (5) is a vast
overestimate, at least for this class of functions.

The Brownian sheet measure is a measure on function space. It is a natural generalization
of the simple Brownian motion b(x) to multidimensional "time" x. Denote x’ (Xi)i_.Its
in which x xi and (with the usual abuse of notation) denote f(x’) f(x)’, also
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denote the finite difference operator Di f(x’) f(x’ + Aii) f(x’) in which i is the ith
coordinate vector The Brownian sheet is based at the point x’ 0, i.e., x (1 1), and
has f(x’ 0) f(1 1) 0. For any point x’ in I and any set of positive lengths Ai
(with x + Ai < 1), the multidimensional difference D1 Dsf(x) is a normally distributed
random variable with mean zero and variance

(7)

This implies that

E((DI Dsf(x))2) At... As.

(8) E(df(x)df(y)) ,(x y)dxdy

f’--" 0in which df is understood in the sense of the Ito calculus 10] Moreover f(x’) 0 if x
for any i, and for any x in Is, f(x) is normally distributed with mean zero and variance

(9) E(f(x)2) xi.
i=1

The Brownian sheethas the same covariance properties as the product ofindependentBrownian
motions .(x) I-I,S.=l xibi(xi), but f g: . since the product is not normally distributed.

The derivation of (6) in [26] was simply a calculation ofeach side ofthe equation. Here we
present a new derivation that follows naturally the properties of the Brownian sheet measure.
First rewrite the integration error E(f) using integration by parts, following the steps of the
proof of the Koksma-Hlawka inequality 14]. Note that

(10) dR(x)

_
(x xn) dx

n=l

in which R(x) RN(J(x)) as defined in 2. Also R(x) 0 if xi 0 and f(x) 0 if xi 1
for any i, which implies that the boundary terms all disappear in the following integration by
parts:

e(f) f(x)dx f(Xn)
n=l

n--1

f (lf(.
The quantity dfin this identity is defined here through the Ito calculus, even though V (f) oo
with probability one.

It follows from (8) that the average square error is

(11)

ft,, R(x)R(y)E(df(x)df(y))

R(x)2dx
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One unnatural feature of the Brownian sheet measure used above is that the functions f
0 (i.e. xi 1) for all This restriction canare all required to vanish on the boundaries x

be removed by a generalization of the Brownian sheet that puts the values on the boundaries
0 to be generalized Brownian sheets.x
First set f(x’ 0) f(1 1) 0. Then on the s coordinate lines emanating from

the origin, let f be given by s independent Brownian motions. Next on the two-dimensional
boundaries, where all but two of the xi are zero, define f by the Brownian sheet property with
the given boundary conditions on the two sides. Continue this procedure until all boundaries
and finally the interior have been defined. The resulting measure still satisfies the equation
(8) and has the following covariance:

(12) (E(f(x’)f(y’)) -Imin(x, f/)+ II min(x, y)+...+min(x, y).
i=1 j=l ij,i=l i=1

In particular note that

(13) E(df(x’)f(y’)) 0

if x’ is an interior points of I and f/= 0 for some i.
Now compute the average integration error as before. The boundary terms do not vanish

but are all independent of each other. Use integration by parts to find that the integration error
is

e-If f(x)dR(x)

i=l Stqxi=l
f(x)dR(x)

since R(x) 0 if xi 0 for any i. The first term and the sum are independent according to

(13); also integration by parts can be performed on each term in the sum. The result is similar
to the covariance equation (12); i.e.,

(14)

E(eZ) =/, fi, R(x)R(y)E(df(x)df(y))

in which T,(il i,) is the L discrepancy for the sequence projected onto the boundary
xj 1 forj i ik.

The point 0 still plays a special role in this measure. A still more uniform measure
would be to center the Brownian sheet at a random point y inside Is. In this case the first
term in E(e2) is just the L2 discrepancy TN (without *), but there are correlations between
the boundary terms and the interior, as well as between different boundary terms, so that no
simple equation results.
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4. Low discrepancy sequences. Numerous sequences have been shown to have
(.9 ((log N)S/N) behavior for their discrepancies. Included among these are sequences of
the form

Xn ([notl] [ns])

where the oti are irrational numbers, which are linearly independent over the rationals, and
[. denotes the fractional portion of the number. Another sequence that has been suggested
involves using a pseudo-random generator. If X (Pl Ps) is a random point, then the
next term in the quasi-random sequence is given by .172 (/92 Ds,/gs+l), where Ps+l is the
next number produced by the generator. Various techniques have been applied to determine
the discrepancy bounds for these sequences.

The sequences that have generated the most attention, and which have been studied in the
current research, are those based on the p-adic expansion of the integers. For any integer n,
let (n)p akak-1 ao be the base p expansion of n with 0 < ai < p. Define

Sp(n)
ao al alem+ +...+
p - pk+l

Then 0 < Sp(n) < for all n, and the sequence Sp(n) is a one-dimensional uniformly
distributed sequence. For p 2 this is known as the van der Corput sequence. An s-
dimensional generalization of this sequence {Xn }, known as the Halton sequence, is given
by

3gn (Sp, (n) Sps (n)),

where (pl p) are relatively prime integers, usually taken to be the first s primes. Several
authors have derived bounds for the discrepancy of the Halton sequence. Meijer 11 shows
that

(15) D*N<CsH(IgN)SN +0 ( (lg N)s-1)N
where

(16) Cff 2 log pkk=l

An unfortunate aspect of this bound is that the constant in the leading term grows super-
exponentially with dimension. The difficulties of the Halton sequence in high dimension are
discussed further in 6 and in [13].

The Sobol’ [23] and the Faure [4] sequences are also based, at least indirectly, on p-adic
expansions of the integers. Niederreiter [17], [18] has developed and expanded a general
theory of (t, s)-sequences, which encompasses the theory behind both of these sequences.
The Sobol’ sequence is an example of a (t, s)-sequence with p 2 independent of s, and with
growing with s. The Faure sequence is another example, but it requires that 0 by setting
p p(s), where p(s) is the smallest prime greater than or equal to s. In each case there is
a discrepancy bound equivalent to (15). For Sobol’ the coefficient of the (log N)SN-1 term
takes the form

2
Cs-- s!(log 2)

Sobol’ [23] gives the bound for t(s) in the bound for the Sobol’ sequence as

s log s s log s
K < (s) < -t- O(s log log s),

log log s log 2
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which shows that t (s) grows super-linearly. Like the Halton bound, this constant grows super-
exponentially with s, although it is not nearly as large as the Halton constant. For the Faure
sequence, the coefficient can be written

log p(s)

This has the desirable property that limso Cs 0. As Faure’s calculations show [4], CsF
is smaller than both Cs and C, and it goes to zero as dimension increases while the others
go to infinity. Because of this smaller bound, it has been claimed that the Faure sequence is
superior. A comparison of these sequences in actual computation is made in 6 below.

The actual construction of these sequences is rather complicated, and it is best to check
the papers of Sobol’, Faure, and Niederreiter for a complete description. Press and Teukolsky
[21 and Bratley and Fox [2] give detailed descriptions of the implementation of the Sobol’
sequence. For periodic integrands, the method of good lattice points, described in 14], also
offers promise, although this has not been studied in the current work.

5. Theoretical bounds on discrepancy. The Halton, Sobol’, and Faure sequences dis-
cussed in 4 are now studied in detail. First the nature of the error bounds for discrepancy of
these sequences is examined. Then actual calculations of the L2 discrepancies are presented
as a means of comparison and as a method of predicting performance in integration. This
is followed by a discussion of certain properties of the sequences that are revealed through
studying the two-dimensional orthogonal projections. Finally some computational aspects of
the sequences are examined, and recommendations are made for their use.

As described in 4, the Halton, Sobol’, and Faure sequences all have discrepancy bounds
of the form

D,N<_C (lg N)s ((log N)s-1 )N
+(.9

N

The difficulty with basing any conclusions on this bound for discrepancy is illustrated
through the following considerations. Only the bound for the Faure sequence will be con-
sidered, as it is the smallest. Let bF(N) cF(1og N)N-1 denote the leading term of the
bound on the Faure sequence including the constant given above. The best way to examine the
behavior of discrepancy with respect to N is to consider a log log plot. Thus let x log N,
which gives

log(b,(N)) log(CsF) + s log x -x.

This function has a maximum, which can be found by setting the derivative

d log(bSF(N)) s

dx x

equal to zero. Then the maximum occurs at x s, or when N es. Because the general trend
of discrepancy for a uniform sequence should be to decrease with increasing N, it follows
that the bound cannot be a useful measure of performance until after its maximum has been
attained. Thus in high dimensions, the bound gives no information until a very large number
of points is used. Moreover, in order to get the same rate of decay of error as with random
numbers, N e2s points are required. The bound has a rate of convergence of N-’95 only
when N e2. Even in low dimensions, an extraordinary number of points is required for

performance.the bound to indicate near
Not only is the convergence rate predicted by the bound somewhat questionable, but the

actual value of the bound is rather large, and grows with dimension, despite the fact that
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CF goes to zero. Figure shows the growth as a function of dimension of log(b.(N)) at
N e where it attains its maximum. As discrepancy is bounded by one, and thus the log
of discrepancy must be negative, a large positive value for the log of the bound is another
indication that for N near the maximum, the bound is not accurate.

16
Faure Sequence Discrepancy Bound Behavior

14-

12-

10-

8-

6-

4

2

0

-2
2 10 12 14 164 6 8

Dimension

FIG. 1. Maximum value ofdiscrepancy bound.

It should be noted that for fixed N, bF(N) is also an increasing function of s until it
achieves its maximum at a value of s which is somewhat larger than N (asymptotically in
N, the maximum occurs at s Ne/2). Thus for fixed N the leading order term does go to
zero as dimension increases, but only after passing through a large maximum whose value is
super-exponential in N.

It should also be noted that the influence of the terms other than the leading order one has
been neglected here. The effect of including these extra terms on the converge rate in N is
minor, at most a factor oflog(N)/(log(N) 1). However, the leading order constant Cs may
be an underestimate. This further illustrates the inadequacies of the discrepancy bound.

Figure 2 shows a plot of log bF(N) as a function of log N for dimensions 4 and 16. Also
plotted is the actual value of log Tv for each sequence. The calculation of this quantity is
described in the next section. These graphs show that even in the lower dimension, the bound
does not accurately predict the behavior of the L2 discrepancy in slope or in magnitude. Of
course the bound was derived for Dv and not TN, and the two measures of discrepancy do not
necessarily have the same convergence properties. However, both measure the uniformity of a
sequence and thus the convergence of Tv should be related to how well the sequence performs
in practice. The difference becomes even greater as dimension increases, as illustrated by
the plot for 16 dimensions. This may be somewhat deceptive because D increases with
dimension, while TN decreases; however, both are still bounded by one. No bound has been
specifically derived for Tv, but it is worthwhile to consider this quantity, because as described
next, it seems to indicate what one can expect from actual calculations.
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-6

-8
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Faure Sequence in 4 Dimensions

15

6 8 10 12
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-15

-20
0

log2(N)

Faure Sequence in 16 Dimensions

b16

2 4 6 8 10

log2(N)

FIG. 2. L2 discrepancy TN and leading term ofboundfor Faure in 4 and 16 dimensions.

6. Calculation of L2 discrepancy. In his review article on quasi-Monte Carlo methods
and sequences 14], Niederreiter discusses only the L2 star discrepancy Tr based on rectangles,
which have one corner at the point 0. An explicit formula for this quantity was first derived by
Wamock [25] and subsequently used by Braaten and Weller [1 and Sarkar and Prasad [22].
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The result obtained for a given sequence {Xn of N terms is

1NN(Tr)2

N---5 (1 max(xn,i, Xm,i))
n=l m=l i=1

2-s+l N

-Xn,i) + 3
N

n=l i=1

If the sequence is random, such that each coordinate of each term is an independent random
number, then by integrating over the space IsN, the expected value of (T)2 for a random
sequence can be found to be

N

While useful in theoretical discussions due to its relationship with Dv, Tr suffers as a
means of comparing sequences and predicting performance because of the strong emphasis
it puts on points near 0. If xj (0 0) is a point of the N term sequence, then the
dominant term in the calculation of (Tr)2 comes from the double sum when n rn j. This
term contributes 1/N2 to the sum, which tends to dominate all other terms in the sum. Thus

Tr . A similar result is obtained if the sequence contains a point with all coordinates near
zero. If this point is excluded from the sequence, however, there is no longer a dominant term,
and Tr appears rather different. This can be seen by comparing the plots in Fig. 3. Of course
this is a transient effect with diminishing influence as N increases. However, as dimension
increases, so does the length of the transient region.

Faure Sequence in 16 Dimensions

-2

-4

-6

-10

-12

-14

First Point Near 0

First Point From 0Away

-16
0 2 4 6 8 10 12 14

log2(N)

FIG. 3. L discrepancy ofFaure with and without point near zero.

As an alternative to T, the modified L2 discrepancy TN was defined in 2. As with the
L2 star discrepancy, it is possible to derive an exact formula for TN for any given sequence
{an of N terms (the notation for a sequence is changed here from x to a to help distinguish
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between the terms ofthe sequence and the points defining the rectangles). Using the Heaviside
function

1, y>0,
0(y)=

0, y<0,

it is possible to rewrite RN as

1N(_IRv(J(y,z)) y O(zi -an,i)" O(an,i Yi) H(zi Yi)
n=l i=1 i=1

Squaring this quantity and integrating over the domain described above leads to T2, which
can be expressed as T A + B + C, where

These quantities can be evaluated as follows.
For A.

O(zi an,i)O(an,i yi)O(zi am,i)O(am,i yi)dyidzi
,zi ).I2, yi <zi

O(Zi an,i)O(Zi am,i)dzi O(an,i yi)O(am,i yi)dyi

[1 max(y, a,, am,)]O(a,, y)O(am, yi)dy

max(a,,, am,)l" min(a,,,, am,i).

Thus

A - [1 max(an,i, am,i)]" min(an,i, am,i).
n=l m=l i=1

For B.

(Zi yi)O(zi --an,i)O(an,i yi)dyidzi
,z )I2,y <zi

fol [fy,l(zi Yi)O(zi an,i)dzi] O(an,i Yi)dyi

foan"[fyil(zi-Yi)O(zi-an,i)dzi]dyi
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The inner integral is the area of a trapezoid with comers (an,i, 0), (1, 0), (1, Yi), and
(an,i, an,i Yi ). Thus we have

(zi yi)O(zi an,i)dzi (1 an,i)(1 + an,i 2yi).

Substituting this in the previous equation, it follows that

an’ 1 1 2-1an,(1 an,i)(1 "1- an,i 2yi)dyi (1 an,i) [(1 + an,i)yi Yi- J0

1-an,i (1 an,i).

Thus

2-s+l N

iIN an,i(1 an,i).
n=l i=1

For C.

(zi yi)2dzidyi - (zi yi dyi

jO 11g(1 ),ly

12

Thus

C= 12-s

Combining these elements leads to the formula

(TN)2
1 N N

N-T 2 H[1 max(an,i, am,i)], min(an,i, am,i)
n=l m=l i=l

2-S+lN
N II_, an,i (1 an,i) -Jr 12-s
n=l i=1

As with the star discrepancy, it is possible to compute the expected value of this quantity for
a random sequence. This root mean square (rms) expectation of Tv is given by

E(T) TI H dan,i
sv

n=l i=1

1
6- (1 2-).

N

Thus again the average L2 discrepancy of a random sequence decreases like N-1/2, corre-
sponding nicely with the random Monte Carlo bound.



QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES 1265

By comparing the formulas forT and TN, it appears likely that Tr > TN for all sequences
and all N, although this has not been proved. It is certainly true for the expected value of a
random sequence, and it has been borne out in all computations. Figure 4 compares the two
discrepancies for a couple of versions of the Faure sequence (created by starting at different
places in the sequence). The qualitative behavior of the two discrepancies is similar for large
N, but Tv is smoother and has a shorter, less extreme, transient region. This becomes even
more important in higher dimensions, where the transient region is considerably longer.

-2

-3

-7

Faure Sequence in 4 Dimensions

Faure

Expected Random

22.... N ............

2 3 4 5 6 7 8 9

log2(N)

FIG. 4. Comparison ofTN and T*N"

A disadvantage of using Tv to measure discrepancy is that no direct connection has been
established between it and integration error. Whereas the relationship Dv < Dv allows the
Koksma-Hlawka inequality to be modified to include Dv, the sup discrepancy taken over all
rectangles, it is not possible to change the L2 version from T, to Tv. Nevertheless, actual
computation of TN indicates that it is a useful gauge of integration error convergence as a
function of N. Figures 5-8 show plots of Tv (solid line) on a log log base 2 scale. The rms
expectation of TN for a random sequence (dashed line) is also plotted, along with the function
& (dotted line) for reference.

There are several interesting features of these plots, which should be noted. Sobol’ [23]
predicts that when N equals large enough powers of two, the value of discrepancy should have
a local minimum. The plot for the Sobol’ sequence in three dimensions shows this kind of
behavior. After N 21 there appears to be a cusp at the powers of 2. Closer examination
of this phenomenon shows that a minimum actually occurs at a few points short of the power
of two. Sobol’ also predicts how large N must be before this occurs, with the cut-off value
increasing with dimension. For three and four dimensions, he shows greater uniformity for
N 26 and above. However, the plots do not reveal any particularly noteworthy behavior
until, as mentioned above, N 21 for three dimensions and N 213 for four dimensions.
For s 8 Sobol’s formula for the cut off value predicts improved discrepancy for powers of
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............. Sobol’ 3-D

-4
.............. Expected Random

-8
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-12 ............
-14

-16 ....
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-18
0 2 4 6 8 10 12 14 16

log2(N)

FIG. 5. TN for three-dimensional Sobol’ sequence.

Sobol’ 4-D

Expected Random

1IN

log2(N)

FIG. 6. TN forfour-dimensional Sobol’ sequence.
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-2- ................. Sobol’ 8-D................ Expected Random

-12-
...... .................

-14 ......... ...........
180 2 4 6 1 1 14 16 18

log2(N)

FIG. 7. TN for eight-ditnensional Sobol’ sequence.
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-20

-25

................... Sobol’ 16-D........................ Expected Random......................... 1/N

’""........

2 4 8 10 14 18

log2(N)

FIG. 8. TN for sixteen-dimensional Sobol’ sequence.
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two greater than or equal to N 222. Since this number is larger than four million, it is not
surprising that nothing special is seen on the plot for eight dimensions, which only goes out
to about 16,000.

A more important observation to be made from these plots is the transition of TN from
random-like behavior for low values of N, to perhaps eventual -type convergence. For
dimensions three and four, Tv starts near the rms expectation curve of Tv for a random
sequence, but fairly quickly starts to decay at a faster rate than N-1/2. The transition seems
to occur around the point where the rms expectation curve and the curve intersect. This is

easily shown to occur at around N 6s. This is a purely heuristic estimate, since the curve -is used only as an approximation to the asymptotic behavior of Tv and does not mean much
for smaller values of N. However, it does provide a rough estimate of the nature of TN. In
eight dimensions this predicts a transition at around N 22. Figure 7 shows that TN is just
beginning to break away from the rms expected curve around N 214. In 16 dimensions,
after an initial transient region which is near the rms expectation of TN for a random sequence,
the value of Tv for the Sobol’ sequence lies almost exactly on the rms expectation curve
out to N 216 and probably considerably farther. For this dimension the heuristic estimate
predicts the transition at 241 It might be hoped that this is an overestimate; however, this
kind of exponential growth of the transition point is similar to that of the maximum point
for the theoretical bound on discrepancy. Figure 9 compares the L2 discrepancies of various
sequences in 16 dimensions. Except for within the initial transient, all of the sequences behave
almost identically; that is, as if they were random. This indicates that in high dimensions,
unless one uses a very large number of points, quasi-random sequences are no more uniform
than random sequences.

4 Sequences and Exp. of Random in 16-D
-18

Random and
-20 .-., Expected Random

"" ’...../" ""’" ,.,., Halton

-22 Sobol’

I/ Faure

-24 ’""..,

-26 ...............
-28

-313
0 2 4 6 8 10 12 14 16 18

log2(N)

FIG. 9. L2 discrepancy in 16 dimensionsfor various sequences.

It should also be noted that the value of Tv is insensitive to where the sequence begins. All
the sequences considered are produced by mapping the sequence of integers {n 1, 2, 3
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tO points in IS; however, it is not mandatory to start with n 1. Any number of the initial
terms can be discarded without affecting Tv much, except in the transient region. The same
is true for Tr, but the change in the transient region may be much more extreme if a point
very close to zero is included. It is also possible that, when these initial terms are discarded,
Sobol’s improved bounds on discrepancy are no longer valid. For Sobol’ these occur at powers
of 2; for Faure they should occur at powers of p(s). However, as pointed out above, this
improvement is only of practical value for low dimensions; moreover, from the discrepancy
plots, it is clear that the value of discrepancy at the special values of N is not all that much
lower than otherwise. Orthogonal projections (discussed next), which are calculations of
discrepancy and computations of integrals, show that there is not much difference between
any two subsequences of equal length. Thus it does not matter what value of n corresponds
to the beginning of the sequence.

For the T discrepancy, similar dependence on dimension s is observed. To optimize
the sequence for a given dimension s, we consider "Hammersley"-type sequences in which

nthe components in the first dimension are lattice points , while the other components come
from an (s 1)-dimensional quasi-random (or random) sequence. Figures 10 and 11 show the

T discrepancy for a variety of sequences, a pure random sequence, a Hammersley random
sequence, a Hammersley-Halton sequence, and a normal Halton sequence, in dimensions 2,
10, and 15. The random sequences have discrepancy of size N-1/2 in all dimensions. In
dimension 2 the quasi-random sequences have discrepancy of size N-1, but in dimension 10
it is of size N-/2 for small N before beginning to drop off faster for larger N. In dimension
15 the quasi-random sequences have discrepancy almost exactly that of a random sequence
(i.e., of size N-/) for the values of N computed here, although it must eventually approach
size N- for extremely large N.

7. Orthogonal projections. Another approach to understanding quasi-random sequences
is to look at two-dimensional orthogonal projections of the points in Is. The assumption made
here is that if a sequence is uniformly distributed in Is, then the two-dimensional sequences
formed by pairing coordinates (i.e., the two-dimensional orthogonal projections) should also
be uniformly distributed. Moreover the discrepancy of projections of a sequence occur explic-
itly in the average error identity (6). The appearance ofnonuniformity in these projections is an
indication of potential problems in using a quasi-random sequence for integration. However, a
sequence with very nonuniform behavior in some projection may in fact be reasonably uniform
in Is. Of course, attempting to integrate a function that has strong dimensional dependence
on just the two dimensions in question will lead to poor results, but for many functions a bad
pairing of dimensions may not have much influence.

Here a catalog of potentially bad behavior is given for all the sequences under consid-
eration, along with some insight into the source of these problems. First it is worthwhile to
consider a pseudo-random sequence. Figure 12 shows the projection of4096 points on the first
and 16th dimensions of the sequence generated in.Matlab (using seed zero). The points appear
to be randomly distributed and fairly uniform. Any decent pseudo-random number generator
should be able to produce this effect for orthogonal projections. Nothing particularly different
was seen from examining other projections of this sequence.

Figure 13 shows the projection of 4096 points of the Halton sequence onto the first and
second dimensions and the 28th and 29th dimensions. Compared with the random sequence,
this low-dimensional projection appears to be considerably more uniform, and thus a better
sequence. However, difficulties with high dimensions occur, as observed in ]. If approxi-
mately 5900 points are used, then the projection onto the 28th and 29th dimensions would be
almost perfectly uniform. However, this would not be true for any other dimensional pairings,
and as more points are added the uniformity would disappear. The problem here arises from
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Comparison of Discrepancies in 10 Dimensions
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FIG. 10. L discrepancy in 2 and 10 dimensionsfor various sequences.

the use of large primes, in this case 107 and 109 for the 28th and 29th dimensions respectively.
The 28th dimension of the Halton sequence consists of monotone increasing subsequences of
length 107 terms. When this is paired with the monotone subsequences of length 109 for the
29th dimension, the lines seen in the plot occur.
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Comparison of Discrepancies in 15 Dimensions

Hammersley Halton

Halton

Hammersley Random

Expected Random

log2(N)

FIG. 11. L discrepancy in 15 dimensionsfor various sequences.
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FIG. 12. Two-dimensional projection ofrandom sequence.



1272 WILLIAM J. MOROKOFF AND RUSSEL E. CAFLISCH

Dimension 1" p 2

Projection of 4096 Points

Dimension 28; p 107

FIG. 13. Two-dimensional projection ofHalton sequence.

To improve this situation Braaten and Weller [1] suggest a scrambling or permutation
procedure, which preserves the traditional (log N)/N-type bound for the discrepancy. A
less elaborate, but easier to implement, scrambling technique was used in the current work.
Here the sequence was simply (pseudo)randomly scrambled independently in each dimension.
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For example, if N points in I were required, then s sequences of N random numbers were
generated and sorted from smallest to largest. This mapping oforiginal position in the sequence
to final position was then used to permute the Halton sequence. Figure 14 shows a two-
dimensional projection ofthe 29-dimensional randomly scrambled sequence. At least in terms
of projections, scrambling seems to greatly improve the Halton sequence in high dimensions.
In each dimension, this procedure does not change the one-dimensional discrepancy of the
N points. As the pairings across dimensions are (pseudo-)random, this may lead to slower,
more random-like, convergence, although the actual value of discrepancy for a given N will
hopefully be smaller over a reasonable range of N.

0 0.1 0.2 0.3 0.4, 0.5 0.6 0.7 0.8 0.9

Dimension 28; p 107

Fro. 14. 28th versus 29th dimensions ofscrambled Halton sequence.

To compare the standard Halton sequence to the scrambled version, Braaten and Weller
[1] compute the discrepancy T of the first 1000 points of each sequence in 8, 12, and 16
dimensions. This result is somewhat misleading, though, because of the use of the Tr. This
measure of uniformity weights the point zero and points near zero, such as the first terms
of the Halton sequence in high dimensions, much greater than other points in the unit cube.
The calculated value of T for the Halton sequence is almost entirely determined by the first
point. If the sequences formed by deleting the first ten points of Halton and scrambled Halton
are compared, the values of T are almost identical for this range of number of points and
dimension. This is not to say that scrambling does not improve the sequence, but just that the
improvement cannot be seen through calculation of Tr.

Press and Teukolsky [21 give some examples of the projections of the Sobol’ sequence
to illustrate how it fills out the unit square. They show how the first 256 points lay down a
fairly uniform, but distinct, pattern in the square, and how the next 256 points fill in the gaps
left by the first group. The points are put down to be uniform, and additional points "know"
about the spaces left by the original points, so they are put down to make the whole sequence
even more uniform.
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To understand what can potentially go wrong here, it is necessary to have a feel for how
the Sobol’ sequence is generated. Each dimension of this sequence is just a permutation of
the Halton sequence with prime base 2 (this is also known as the van der Corput sequence)
whenever N 2m for m 0, 1, 2, 3 These permutations are generated from irreducible
polynomials over the field {0,1 }. Ideally, polynomials of the lowest degree possible are used;
however, as dimension increases, it is necessary to use polynomials of higher and higher
degree. To generate a one-dimensional sequence from a polynomial of degree d, d 1 odd
integers jl jd-1 must be chosen with the restriction that ji < 2i. Thus there are 2d

possible ways of picking the starting values. Sobol’ has given a list of good starting values
for dimension up to 16 [24]. These are said to be better because they produce sequences that
satisfy an additional uniformity property.

What can go wrong with the Sobol’ sequence involves the pairing of dimensions. The
fact that each dimension is a permutation of the same sequence allows for certain correlations
to develop. In some cases this is good, because it allows for the phenomenon described above
where points fill in the gaps left by previous points. However, these correlations can also
produce regions in the unit square where no points fall until N becomes extremely large. Figure
15 shows a "good" pairing of dimensions using Sobol’s second and third dimensions with his
recommended starting values. A "bad" pairing of dimensions is also shown, representing what
wouldbe the 27th and 28th dimensions following Sobol’s convention for associating dimension
with generating polynomial. The polynomials used here are x7 + x5 + x4 + x2 + x + 1 and
x7 + x5 + x4 + x3 + x2 + x / and the starting values are (1,3,5,11,3,3,35) for the 27th
dimension and (1,1,7,5,11,59,113) for the 28th dimension. If one or two of these starting
values were changed, then the problem illustrated in the graph would disappear. However,
it does not seem possible to tell a priori that this is a bad pairing. Moreover, neither set of
starting values is particularly at fault, because when they are paired with other dimensions
there is no such pathological behavior.

For 29 dimensions, there are 406 pairings of dimensions that could be checked for such
correlations; this probably should be done if the Sobol’ sequence in this high a dimension is to
be used. Sobol’ may have checked this for the recommended first 16 dimensions; however, the
uniformity property that these sequences satisfy does not exempt them from such bad behavior.
There may also be higher-dimensional correlations, which would be difficult to detect.

The bad behavior seen in the second plot of Figure 15 can be explained in terms of the
filling-in-holes idea. If 8192 (213 points are used, the plot looks almost identical to what is
shown for 4096. However, the next 8192 points fall only where the gaps appear. Thus by
N 16, 384, the projection plot is almost perfectly uniform. The problem is that the cycle
for filling in holes is 213 which is too long.

The idea behind the Faure sequence is an extension of the theory of the Sobol’ sequence.
This theory, which has been somewhat extended by Niederreiter 15], is based on the idea of
the elementary rectangle base p in I This is a rectangle that is a product of s intervals of the
form [ap-d, (a + 1)p-d), where a is an integer less than pd and d is a nonnegative integer. For
arbitrary integer m, the goal is to construct a sequence such that every subsequence of length
pm ofthe form (k- 1)pm < n < kpm (n is the index ofthe sequence) has the property that each
elementary rectangle base p of volume p-m contains exactly one point of the subsequence.
Faure constructs such a sequence by taking p to be the smallest prime greater than or equal to s.

Figure 16 shows the projections onto the first and second dimensions of 3125 points ofthe five-
dimensional sequence (p 5), and 2197 points of the 13-dimensional sequence (p 13).
The second plot of this figure shows some considerable difficulties, which may initially seem
surprising given that the sequence was constructed so that every elementary rectangle base 13
with volume contains exactly one point if N is a power of 13. However, Figure 17 illustrates
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FIG. 15. Two-dimensional projection ofSobol’ sequence.

how this can happen. The grid shown divides the unit square into elementary rectangles of
volume 13 -3. It is clear that each rectangle does have exactly one point of the sequence in
it; unfortunately, the distribution of the point inside the rectangle is not uniform. It will take
approximately 134 28,561 points before the square is more satisfactorily filled.
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Dimension

Projection of 2197 points of 13-D Faure Sequence
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FIG. 16. Two-dimensional projection ofFaure sequence.

As noted above, even if a sequence has poor two-dimensional projections, it may still be
fairly uniform in Is, and there are many functions which it may integrate quite well. However,
it is important to be aware of the potential problems these sequences may have, and the
orthogonal projections are a good means of identifying and assessing the difficulties.



QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES 1277

0.2

0.15

0ol

0.05

Blow up of 13-D Faure Sequence Projection

i*
0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

Dimension

FIG. 17. Two-dimensional projection ofFaure sequence.

8. Computational speed. Another aspect ofquasi-random sequences worth considering
is the computer time required to generate them. Fox [5] and Bratley and Fox [2] present such
results for various values of N and dimensions and for a pseudo-random number generator
along with the three quasi-random sequences under consideration here. Their calculations
were done on a Cyber 855 computer and include calls to the initialization routine and a routine
to evaluate a simple integral, as well as to the sequence generator. They conclude that the time
spent on the initialization routine is negligible. In comparing the sequences, they find that
Sobol’ is 1 to 3 times faster than their random number generator and 3 to 5 times faster than
Halton. They find Halton to be approximately 4 times faster than Faure. They also state that
when run on a different computer, the ordering remained the same, but the ratios for computing
times for the various sequences were much different. The results show that computation time
is approximately proportional to dimension and to number of points used.

Similar timing experiments were run for this work on an Alliant FX/80. The pseudo-
random number generator used was the routine lib_vdran supplied by Alliant and found in
the common library. The results of these experiments are given in Table 1. These results
are not definitive, since we have not made much effort to optimize our code. Nevertheless
we expect that they will be of interest to the potential user. Here, the only thing timed
was the sequence generating subroutine; the initialization routine was not included, nor was
any integral evaluated. Here, the random number generator is the fastest, and its times are
proportional to the number of points and the dimension. Sobol’ again is faster than Halton,
but only slightly so, around 1.2 times faster. Both Sobol’ and Halton have timings that are
proportional to N, but that grow slower than linearly with dimension. This is probably related
to the vector and parallel aspects of the Alliant. Sobol’ and Halton are approximately 4 to 5
times faster than Faure.
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TABLE
Timingsfor QMC sequences (in seconds)..

Generator N s 5 s 10 s 20 s 40
Random 1000 0.00363 0.00702 0.0138 0.0284
Halton 1000 0.0263 0.0335 0.0424 0.0568
Sobol’ 1000 0.0225 0.0257 0.0321 0.0467
Faure 1000 0.102 0.0976 0.123 0.189

Random 10,000 0.0353 0.0707 0.142 0.285
Halton 10,000 0.265 0.342 0.434 0.535
Sobol’ 10,000 0.231 0.269 0.367 0.517
Faure 10,000 1.14 1.08 1.28 1.99

Random 100,000 0.361 0.720 1.45 2.88
Halton 100,000 2.69 3.47 4.31 5.29
Sobol’ 100,000 2.35 2.73 3.52 5.12
Faure 100,000 13.1 11.8 13.7 20.5

As Fox points out, sequence generation time is frequently only a fraction of what is
required to evaluate a complicated integrand. Thus for many realistic problems, the question
of which generator is fastest is not all that important.

9. Conclusions. The computations described above show strong dependence of the dis-
crepancy on dimension s. While the theoretical bound N-1 is observed in any dimension for
sufficiently large N, it appears that there is a transition value of N, below which the discrep-
ancy is of size N-1/2. For such values of N, random-like behavior of the sequence can be
expected. This transition point grows exponentially with dimension.

Comparison between different quasi-random sequences have also been presented. While
the discrepancy bound suggests that Faure is a superior sequence, the actual calculation of the
discrepancy indicates that all the sequences are about the same. The orthogonal projections
show that all ofthe sequences have potential problems as dimension increases; however, Halton
is probably the worst, because all its high-dimensional pairings will be nonuniform for large
ranges of N. To a certain extent, Faure has the same problem, but the degree of nonuniformity
is not as severe. Sobol’ may be able to avoid this problem if the starting values are carefully
checked for two-dimensional correlations. Ofcourse, this does not preclude three- (or higher-)
dimensional projection problems. Although a direct connection has not been demonstrated,
we expect that nonuniformity of projections will lead to poorer performance of Monte Carlo
methods for many functions.

Finally, computational timings put Sobol’ and Halton on about the same ground, while
Faure is considerably slower.

The actual value of these sequences must be judged by their performance in Monte
Carlo methods. In the companion papers [12], [13] we present computational experiments
with quasi-Monte Carlo methods applied to multidimensional integration and to simulation
of the heat equation. Again it is found that the performance of these methods degrades
with increasing dimension. Nevertheless, quasi-Monte Carlo methods using quasi-random
sequences consistently give significant, but limited, improvement over standard Monte Carlo
methods using random or pseudo-random sequences.
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