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Abstract

Consider a three-dimensional vortex sheet in inviscid, incompressible
flow which is irrotational away from the sheet. We derive an equation for
the evolution of a vortex sheet in Lagrangian coordinates, i.e. an equation
that is restricted to the sheet itself and is analogous to the Birkhoff-Rott
equation for a two-dimensional (planar) sheet. This general equation is
specialized to sheets with axial or helical symmetry, with or without swirl.

1 Introduction

A vortex sheet in a three-dimensional inviscid, incompressible fluid flow is
a two-dimensional surface across which the tangential velocity is discontinuous.
Vortex sheets occur in a wide variety of flows, such as flow behind an obstacle
with a sharp trailing edge, or serve as approximations to thin shear layers in
such flows. If the flow is irrotational away from the sheet, as is often the case,
the sheet’s motion and the dynamics of the entire flow are determined solely by
the strength and shape of the sheet itself. Such a three dimensional flow can
thus be described through a two-dimensional problem. Under the additional
assumption of helical or axial symmetry, the problem is further reduced to
being one-dimensional.

The most important three-dimensional effect from the point of view of vortex
dynamics is vortex stretching, which is described by the term ω · ∇u in the
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Helmholtz equation
∂tω + u · ∇ω = ω · ∇u (1.1)

for the vorticity ω = ∇× u. In a two dimensional flow or in axially or helically
symmetric flow without swirl, the vortex stretching terms vanish; while for
axi-symmetric flow without swirl, the vortex stretching terms vanish in the
equation for ωθ/r

2. For flow with helical symmetry and no swirl, there is a
corresponding equation without vortex stretching terms. In this sense axially
or helically symmetric flows with swirl represent the simplest three-dimensional
flow with vortex stretching.

Vortex sheets with axial or helical symmetry and with swirl provide a rela-
tively simple set of examples from which to develop an understanding of general
three-dimensional flows. For example we hope that such flows may provide
evidence for the formation of singularities (or lack thereof) in 3D inviscid flows.

For a general three-dimensional vortex sheet, a Lagrangian description is
derived in the next section. Flows with axial or helical symmetry are discussed
in Section 3. The vortex sheet formulation from Section 2 is then specialized
to the cases of helical symmetry in section 4 and axial symmetry in section 5,
both with or without swirl. Simple examples are analyzed in section 7.

The general vortex sheet equation ( 2.14) derived in Section 2 has been
derived previously in [3, 6, 10]. The equations for an axisymmetric vortex sheet
without swirl have been derived and numerically solved in [2, 3, 4, 5, 7, 8, 12, 13].

2 Lagrangian Theory for a General 3D Vortex

Sheet

Assume that the vortex sheet S is a smooth surface dividing R3 into two
parts Ω+ and Ω− with normal vector n on S pointing into Ω+. Denote (u+, p+)
and (u−, p−) as the velocity and pressure in Ω+ and Ω− respectively. The
Eulerian equations for the flow field are

∇ · u± = 0
∂tu± + u± · ∇u± + ∇p± = 0 (2.1)

in Ω± and

n · u+ = n · u−

p+ = p− (2.2)

on S. In addition we assume that u is irrotational away from S, i.e.

∇× u± = 0. (2.3)
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These are the Eulerian equations for flow due to a vortex sheet.
A “Lagrangian” description of the motion of S is given in terms of a parame-

terization X(α, β, t) of S. There is some arbitrariness in the parameterization of
S. For example the motion of S is determined only by the normal component of
the velocity ∂tX; any tangential component can be considered as a shift in the
parameterization. Moreover since u is not continuous across S, a Lagrangian
description following the motion of fluid particles is impossible. On the other
hand it turns out that the average velocity

U =
1
2
(u+ + u−) (2.4)

is the natural choice for the velocity of the vortex sheet, i.e. we set

∂

∂t
X(α, β, t) = U(α, β, t). (2.5)

Since this equation describes the sheet through its parameterization X(α, β, t),
we refer to it as a “Lagrangian” theory.

First we use the Biot-Savart law to find U in terms of S. Since ∇2u =
−∇× ω, then

u(x) =
∫
ω(x′) ×∇xG(x− x′)dx′ (2.6)

in which G = −(4π|x − x′|)−1 is the free space Green’s function. For a vortex
sheet flow, ω(x) = σ(x)δS (x) so that

u(x) =
1
4π

∫

S

σ(x′) × x− x′

|x− x′|3ds(x
′) (2.7)

away from the sheet, i.e. in Ω+ and Ω−. Now take the limit as x approaches
a point on S from either side. According to the Plemejl formulas (derived in
Appendix A)

u±(x) =
1
4π
PV

∫

S

σ(x′) ×
x − x′

|x− x′|3ds(x
′) ±

1
2
σ(x) × n(x) (2.8)

in which the integral is a Cauchy principle value integral. It follows that

U(x) =
1
4π
PV

∫

S

σ(x′) × x− x′

|x− x′|3
ds(x′) (2.9)

for x on S. Since ∂tX = U, then this can be rewritten as

∂tX =
1
4π
PV

∫

S

σ(X′) × X −X′

|X− X′|3ds(X
′). (2.10)

Next we find an expression for σ(x). In Ω+ and Ω− there are potential
functions φ+ and φ− satisfying

u± = −∇φ±. (2.11)
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Since u has a jump across S, ω = n× (u+ − u−) δS , i.e. σ = n × (u+ − u−).
Then since n · ∇φ+ = n · ∇φ−,

σ = n× (u+ − u−)
= −n× (∇φ+ −∇φ−)
= −n×∇τΦ (2.12)

in which Φ = φ+ − φ− on S and ∇τ is the gradient along S, i.e.

∇τΦ = ∇Φ− (n · ∇Φ)n. (2.13)

Therefore the evolution equation for the sheet is

∂tX = − 1
4π
PV

∫

S

(n′ ×∇τΦ′) × X −X′

|X− X′|3ds(X
′) (2.14)

In which Φ′ = Φ(X′), etc.
Finally we express this integral using the parameters α and β. First consider

Φ. Bernoulli’s law holds in Ω+ and Ω− separately, i.e.

−∂tφ± +
1
2
|∇φ±|2 + p± = c±. (2.15)

On S, n · ∇φ+ = n · ∇φ−, so that

|∇φ+|2 − |∇φ−|2 = (∇φ+ + ∇φ−) · (∇τφ+ −∇τφ−)
= −2U · ∇τ Φ. (2.16)

Subtract the equation ( 2.15) for φ+ from ( 2.15) for φ− and use p+ = p− to
obtain

∂tΦ + U · ∇τΦ = c ≡ c− − c+. (2.17)

This says that on a point moving with speed U, Φ(t) = Φ(0) + ct in which c is
constant. Since we are only interested in ∇τ Φ, we may set this constant to zero
for simplicity; i.e. c = 0. Moreover since X(α, β, t) moves at speed U for fixed
α and β, we find that ∂tΦ(α, β, t) = 0. This says that

Φ = Φ(α, β) (2.18)

so that Φ should be part of the prescribed initial data and then does not change
in time.

Assume that Xβ ,Xα and n form a right hand system so that Xα × Xβ =
−|Xα × Xβ|n. Then on S
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Φα = Xα · ∇τ Φ
Φβ = Xβ · ∇τΦ (2.19)

and

σ = −n×∇τΦ
= |Xα ×Xβ |−1(Xα ×Xβ) ×∇τΦ
= −|Xα ×Xβ |−1((Xβ · ∇τΦ)Xα − (Xα · ∇τΦ)Xβ)
= −|Xα ×Xβ |−1(ΦβXα − ΦαXβ). (2.20)

Also
ds(X) = |Xα ×Xβ |dαdβ. (2.21)

Therefore the vortex sheet equation in parametric form becomes

∂tX(α, β, t) = − 1
4π
PV

∫
(Φ′

βX′
α−Φ′

αX′
β)× (X−X′)|X−X′|−3dα′dβ′ (2.22)

in which X = X(α, β, t), X′ = X(α′, β′, t), etc. This equation, as well as the
non-parametric form ( 2.14), was derived earlier in [3, 6, 8, 10].

3 Flow with Helical or Axial Symmetry

Fluid flows with helical or axial symmetry are briefly described in this sec-
tion, following which they will be specialized to vortex sheets in subsequent
sections. The discussion closely follows that of Landman [11] but is repeated
here for convenience and completeness. In addition to several changes in no-
tation, his parameter α is replaced by κ = α−1 so that axial symmetric flow
is just the special case κ = 0. Furthermore we distinguish between flows with
swirl and those without swirl for both helical and axial symmetry, since vortex
stretching terms can be neglected in flow without swirl.

A flow possesses helical symmetry if in cylindrical coordinates (r, θ, z), the
physical quantities depend only on the variable r, ξ and t, in which

ξ = z + κθ. (3.1)

The parameter κ is the pitch angle of the helix. In particular κ = 0 corresponds
to axial symmetry.

We use the two unit vectors er and eξ given by

eξ =
∇ξ
|∇ξ|

=
rez + κeθ

(r2 + κ2)1/2
(3.2)
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in addition to the Beltrami vector h defined as

h =
r∇r ×∇ξ
κ2 + r2

= h2(κez − reθ) (3.3)

in which
h2 =

1
κ2 + r2

. (3.4)

This vector has the following properties:

∇× h = −2κh2h ∇ · h = 0 |h|2 = h2 (3.5)

and h is in the direction of symmetry of the flow, that is

h · ∇g = 0 for g = g(r, ξ, t). (3.6)

Since they are divergence free, the velocity and vorticity fields can be written
in helical variables as

u = νh + ∇χ× h
ω = ζh + ∇ψ × h (3.7)

in which ν, ζ, χ and ψ are scalar functions of (r, ξ, t). When rewritten in cylin-
drical coordinates, the velocity field is

u =
1
r
χξer − h2(rν + κχr)eθ + h2(κν − rχr)ez

=
1
r
χξer + νh− hχreξ (3.8)

This shows that the cylindrical and helical components of u are

(ur , uθ, uz) = (
1
r
χξ,−h2(rν + κχr), h2(κν − rχr))

(ur, uh, uξ) = (
1
r
χξ, hν,−hχr) (3.9)

in which uh = h−1h ·u, uξ = eξ ·u. Note that the second expression for u is not
written in a right hand order, since h goes to −eθ as κ goes to zero. Similarly
the cylindrical and helical components of ω are

(ωr, ωθ, ωz) = (
1
r
ψξ,−h2(rζ + κψr), h2(κζ − rψr))

(ωr, ωh, ωξ) = (
1
r
ψξ, hζ,−hψr). (3.10)

Using this representation of u and ω, the fluid equations are the following:
The kinematic condition ω = ∇× u is

ψ = ν

∆∗χ = −h2ζ − 2κh4ν (3.11)
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in which

∆∗χ = ∇ · h2∇χ =
1
r

∂

∂r
(rh2∂χ

∂r
) +

1
r2
∂2χ

∂ξ2
(3.12)

is the helical Laplacian operator. The dynamic equation for ν and ζ are

∂ν

∂t
= h · (∇χ×∇ν) (3.13)

h2 ∂ζ

∂t
= −2κh4h · (∇χ×∇ν) + h · (∇(h2ν)×∇ν)− h · (∇(h2ζ) ×∇χ)

We will say that a helically symmetric flow is “swirl-free” if the velocity is
perpendicular to h, i.e. if ψ = ν = 0. Note that this condition is maintained by
the equations and that the fluid equations for u and ζ then reduce to

∆∗χ = −h2ζ

h2∂ζ

∂t
= −h · (∇(h2ζ) ×∇χ). (3.14)

A direct calculation shows that the term on the right of the ζ equation is

h · (∇(h2ζ) ×∇χ) = r−1(χξ∂r − χr∂ξ)(h2ζ)
= u · ∇(h2ζ) (3.15)

so that ( 3.14) is
∂t(h2ζ) + u · ∇(h2ζ) = 0. (3.16)

which contains no stretching term.
Since ωξ = −hψr = −hνr = −h∂r(uh/h), then

uh(r) = −h(r)
∫ r

0

h−1(r′)ωξ(r′) dr′. (3.17)

This relation is analogous to Stokes law relating angular velocity to axial vor-
ticity for an axisymmetric flow as derived below. So we refer to this as the
circulation formula for flow with helical symmetry.

In the case of axial symmetry with κ = 0, the above definitions simplify to

eξ = ez, h = −1
r
eθ

u = −ν
r
eθ −

1
r
∇χ× eθ =

1
r
χzer −

ν

r
eθ −

1
r
χrez (3.18)

ω = −ζ
r
eθ −

1
r
∇ψ × eθ =

1
r
ψzer −

ζ

r
eθ −

1
r
ψrez.

Thus the components of u and ω in cylindrical coordinates are

(ur, uθ, uz) =
1
r
(χz,−ν,−χr)

(ωr, ωθ, ωz) =
1
r
(ψz,−ζ,−ψr) (3.19)

(3.20)
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The fluid equations are

ψ = ν

∂2χ

∂z2
+ r

∂

∂r

1
r

∂χ

∂r
= −ζ

∂

∂t
ν + (ur∂r + uz∂z)ν = 0 (3.21)

∂

∂t
(ζ/r2) + (ur∂r + uz∂z)(ζ/r2) =

1
r4
∂z(ν2)

For the case of axial flow without swirl these simplify to

ψ = ν = 0
∂2χ

∂z2
+ r

∂

∂r

1
r

∂χ

∂r
= −ζ (3.22)

∂

∂t
(
ζ

r2
) + (ur∂r + uz∂z)(

ζ

r2
) = 0.

In the case of axial symmetry the relation ( 3.17) becomes the familiar
circulation equation

uθ = r−1

∫ r

0

ωz(r′)r′dr′. (3.23)

Finally we state the relations between the quantities used here and the cor-
responding quantities defined by Landman [11]. They are

κ = α−1 ξ = κφL h = κ−1hL h2 = κ−2h2
L

(χ, ν, ζ, ψ) = κ(uL, vL, ζL, ψL) (3.24)
∆∗ = κ−2∆∗

L

in which the subscript L denotes the quantity used in [11].

4 Vortex Sheets with Helical Symmetry

First we parameterize the sheet by setting α to be constant on the symmetry
curve, i.e. in the direction h, and β to be linear in angle. Write the point
X(α, β, t) in cylindrical co-ordinates as

X = (z, r, θ). (4.1)

Then
ξ = ξ(α, t) θ(α, β, t) = ψ(α, t) + β. (4.2)
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The function ψ, which represents the angular coordinate of the curve β =
constant, is unrelated to the potential function of the previous section. Since
ξ = z + κθ and since r is constant along a symmetry curve, then

z = −κβ + Z(α, t)
r = r(α, t). (4.3)

It also follows that Xβ is parallel to h.
Similarly the vorticity density −n×∇τ Φ must be constant along a symmetry

curve, i.e. it must be independent of β. Since Xα and Xβ do not depend on β,
this implies Φα and Φβ must be independent of β, i.e. that Φ = φ1(α) + φ2β.
The parameterization must also be chosen so that Xβ , Xα, n form a right hand
system. For example if the vortex sheet is a perturbation of a circular cylinder
then Xβ ≈ eθ, Xα ≈ ez, n ≈ er which is a right hand system.

In the case of helical symmetry with κ 6= 0, the symmetry lines are the
helices r = constant, z + κθ = constant which are unbounded, so that the
domain for β is −∞ < β < ∞. A curve β = constant starts on a helix, say
α = α1, and continues until it returns to the same helix at α = α2. The interval
(α1, α2) is most likely finite, in which case r, ψ, and Z are required to be
periodic on (α1, α2).

The form of Φ may be simplified in two cases.
(1) Axial or Helical Symmetry without swirl. In this case the vortex lines

coincide with the symmetry lines. Then the vorticity density σ, which is parallel
to ΦβXα − ΦαXβ, is also parallel to h. Since h is parallel to Xβ , Φβ = 0, i.e.

Φ = φ(α) (4.4)

(2) Axial or Helical Symmetry with Swirl. Assume that the vortex lines are
never tangent to the symmetry lines. Choose the parameter β to be constant
along a vortex line; so that σ is parallel to Xα Then Φα = 0, and

Φ = φ2β = Γβ/2π, (4.5)

in which Γ is analogous to the circulation around the sheet and is independent
of (α, β, t).

Now calculate the quantities in the Birkhoff-Rott integral ( 2.22). A point
x has the representation in cylindrical coordinates x = (z, r, θ) = zez + rer(θ)
in which the basis vector er depends on θ and has derivative ∂θer = reθ. On
the surface S,

X = (−κβ + Z(α, t), r(α, t), β + ψ(α, t)) (4.6)

and thus its derivatives are given by

Xα = Zαẑ + rαr̂ + rψαθ̂

Xβ = −κẑ + rθ̂ (4.7)
= −h−2h
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The vorticity density vector is then

σ = −|Xα ×Xβ |−1(ΦβXα − ΦαXβ) (4.8)

in which
|Xα ×Xβ | = r(r2α(1 + κ2/r2) + (Zα + κψα)2)

1
2 (4.9)

and

ΦβXα − ΦαXβ = ((φ2Zα + κφ1α)ẑ + φ2rαr̂ + r(φ2ψα − φ1α)θ̂) (4.10)

In terms of cylindrical basis vectors r̂, θ̂ evaluated at the point (α, β), the basis
vectors r̂′, θ̂′ are given by

r̂′ = cos(θ′ − θ)r̂ + sin(θ′ − θ)θ̂

θ̂′ = − sin(θ′ − θ)r̂ + cos(θ′ − θ)θ̂ (4.11)

Thus the vector Φ′
βX

′
α − Φ′

αX′
β evaluated at (α′, β′) is

Φ′
βX

′
α − Φ′

αX′
β = (φ2Z

′
α + κφ′

1α)ẑ (4.12)
+ (φ2r

′
α cos(θ′ − θ) − r′(φ2ψ

′
α − φ′

1α) sin(θ′ − θ))r̂

+ (φ2r
′
α sin(θ′ − θ) + r′(φ2ψ

′
α − φ′

1α) cos(θ′ − θ))θ̂

Similarly

X −X′ = (z − z′)ẑ + (r − r′ cos(θ′ − θ))r̂ − r′ sin(θ′ − θ)θ̂ (4.13)
|X−X′|2 = (z − z′)2 + r2 + r′2 − 2rr′ cos(θ − θ′) (4.14)

= (−κ(θ − θ′ − ψ + ψ′) + Z − Z′)2 + r2 + r
′2 − 2rr′ cos(θ′ − θ)

Now compute the cross product in the integral at θ = 0; the value for θ 6= 0
can be found by replacing θ′ by θ′ − θ. The cross product is

(Φ′
βX

′
α − Φ′

αX′
β) × (X −X′)

= (−φ2rr
′
α sin θ′ + (r

′2 − rr′ cos θ′)(φ2ψ
′
α − φ′

1α))ẑ (4.15)
+ ((φ2Z

′
α + κφ′

1α)r′ sin θ′ + (z − z′)(φ2r
′
α sin θ′ + r′(φ2ψ

′
α − φ′

1α) cos θ′))r̂

+ ((φ2Z
′
α + κφ′

1α)(r − r′ cos θ′) − (z − z′)(φ2r
′
α cos θ′ − r′(φ2ψ

′
α − φ′

1α) sin θ′))θ̂

since r̂, θ̂, ẑ form a right hand system. In this expression z − z′ = κ(θ′ + ψ −
ψ′) + Z − Z′ since θ = 0.
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Define the following integrals

I1 =
∫ ∞

−∞
cos θ′|X−X′|−3dθ′

I2 =
∫ ∞

−∞
|X− X′|−3dθ′

I3 =
∫ ∞

−∞
sin θ′|X− X′|−3dθ′ (4.16)

I4 =
∫ ∞

−∞
θ′ cos θ′|X− X′|−3dθ′

I5 =
∫ ∞

−∞
θ′ sin θ′|X− X′|−3dθ′

in which

|X− X′|2 = (κ(θ′ + ψ − ψ′) + Z − Z′)2 + r2 + r
′2 − 2rr′ cos θ′. (4.17)

First perform the β′ integration in the Birkhoff-Rott integral and denote this
integral as B. Since dβ′ = dθ′, then

B = {−φ2rr
′
αI3 + (r′2I2 − rr′I1)(φ2ψ

′
α − φ′

1α)}ẑ (4.18)
+ {(φ2Z

′
α + κφ′

1α)r′I3 + (Z − Z′ + κ(ψ − ψ′))(φ2r
′
αI3

+ r′(φ2ψ
′
α − φ′

1α)I1) + κ(φ2r
′
αI5 + r′(φ2ψ

′
α − φ′

1α)I4)}r̂
+ {(φ2Z

′
α + κφ′

1α)(rI2 − r′I1) − (Z − Z′ + κ(ψ − ψ′))(φ2r
′
αI1

− r′(φ2ψ
′
α − φ′

1α)I3) − κ(φ2r
′
αI4 − r′(φ2ψ

′
α − φ′

1α)I5)}θ̂

In the Birkhoff-Rott equation the velocity is

Xt = Ztẑ + rtr̂ + rψtθ̂ (4.19)

then the equations for Z and r are

Zt = − 1
4π
PV

∫
− φ2rr

′
αI3 + (r′2I2 − rr′I1)(φ2ψ

′
α − φ′

1α)dα′ (4.20)

rt = − 1
4π
PV

∫
( φ2Z

′
α + κφ′

1α)r′I3 + (Z − Z′ + κ(ψ − ψ′))(φ2r
′
αI3 + r′(φ2ψ

′
α − φ′

1α)I1)

+ κ(φ2r
′
αI5 + r′(φ2ψ

′
α − φ′

1α)I4)dα′

while the equation for ψ is

ψt = −
1

4πr
PV

∫
(φ2Z

′
α + κφ′

1α)(rI2 − r′I1) − (Z − Z′ + κ(ψ − ψ′))(φ2r
′
αI1

−r′(φ2ψ
′
α − φ′

1α)I3) − κ(φ2r
′
αI4 − r′(φ2ψ

′
α − φ′

1α)I5)dα′ (4.21)
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In the swirl-free case,i.e. φ2 = 0, these equations were derived earlier in [8], but
without the simplification derived next.

Using the circulation formula ( 3.17) for helical flow the equation for ψt can
be considerably simplified. Since ωξ = 0 except on the sheet, uh/h is piecewise
constant as a function of r, i.e. constant on the line segments with z and θ
fixed between successive crossings of the sheet. By symmetry uh = 0 on the
axis r = 0; its value everywhere else can be found by determining the jump
uh+ − uh− across the sheet. Following ( 3.9), ( 4.7), ( 2.11) and ( 2.20),

h−1(uh+ − uh−) = h−2h · (u+ − u−)
= Xβ · ∇τΦ
= Φβ (4.22)

which is a constant. Recall that uh+ is the value in Ω+ and uh− is the value in
Ω− and that the axis r = 0 is contained in Ω−. Then ( 4.22) implies that

h−1uh =
{

0 in Ω−
Φβ in Ω+

(4.23)

Now h−1uh = κuz − ruθ and the vortex sheet velocity is the average of the
velocities on either side. Thus

κZt − r2ψt =
1
2
h−1(uh+ + uh−)

=
1
2
h−1uh+

=
1
2
Φβ. (4.24)

The resulting simple equation for the evolution of ψ is

ψt =
κ

r2
zt −

1
2r2

Φβ . (4.25)

A direct derivation of this equation from ( 4.21) is difficult and not illuminating.
The vortex sheet equations ( 4.20) and ( 4.25) can be simplified in each of

the two cases above as follows:
Case 1. Helical flow without swirl: φ1 = φ(α), φ2 = 0, i.e. Φ = φ(α). Then

Zt =
1
4π
PV

∫
φ′

α(r′2I2 − rr′I1)dα′

rt = − 1
4π
PV

∫
φ′

αr
′(κI3 − (Z − Z′ + κ(ψ − ψ′))I1 − κI4)dα′

ψt =
κ

r2
Zt (4.26)

The last equation for ψ does not influence the equations for Z and r; it only
maintains the condition that uh = 0 for swirl-free flow.
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Case 2. Helical flow with swirl: φ1 = 0, φ2 = Γ i.e. Φ = Γβ/2π. Then

Zt = − Γ
8π2

PV

∫
−rr′αI3 + (r′2I2 − rr′I1)ψ′

αdα
′

rt = −
Γ

8π2
PV

∫
Z′

αr
′I3 + (Z − Z′ + κ(ψ − ψ′))(r′αI3 + r′ψ′

αI1) + κ(r′αI5 + r′ψ′
αI4)dα

′

ψt =
κ

r2
Zt +

Γ
4πr2

. (4.27)

A helically symmetric vortex sheet with swirl may be represented in the form
of Case 2, if the vortex lines on the sheet are never tangent to the symmetry
direction h.

The equations above provide the velocity for a helical vortex sheet with or
without swirl. The fluid velocity u+, u− for points off the sheet is computed
from similar formulas: The axial and radial velocities uz and ur at a point x
are exactly equal to the formulas above for Zt and rt in which the values of
z = Z +κψ and r in the integrals are the the axial and radial components of x.
The azimuthal velocity uθ is then given from the formula ( 4.23).

In this presentation the main features of helical symmetry are that the evo-
lutions equations for the vortex sheet may be simplified in the two cases above
and that the angular velocity equation for ψt is easily expressed in terms of Zt

and Γ.

5 Axi-Symmetric Sheets

For an axi-symmetric sheets the symmetry lines are the circles r = constant, z =
constant, so that the parameter β lies in the interval 0 < β < 2π. The inter-
val for α is infinite if the vortex sheet forms an infinite cylinder, or finite with
periodicity if the sheet forms a ring.

Equations for an axi-symmetric sheet can be derived as in the previous
section. The formula ( 4.15) for the integrand in ( 2.22) is still valid, but
now κ = 0 and z = Z(α, t) = z(α, t).

The integrals corresponding to I4 and I5 are not needed since κ = 0. In
addition the term |X−X′| is periodic and even in θ′, so that the integral with
a factor sinθ′ corresponding to I3 vanishes. The remaining two integrals are

J1 =
∫ 2π

0

cosθ′
(
(z − z′)2 + r2 + r′2 − 2rr′cosθ′

)−3/2
dθ′

J2 =
∫ 2π

0

(
(z − z′)2 + r2 + r′2 − 2rr′cosθ′

)−3/2
dθ′. (5.1)

They can be written in terms of elliptic integrals ( see [1] p. 590 or [9] pp.

13



904-905)

K(m) =
∫ π/2

0

(1 −m sin2 θ)−1/2dθ

E(m) =
∫ π/2

0

(1 −m sin2 θ)1/2dθ (5.2)

of the first and second kind respectively. These also have the properties (see [9]
p. 907)

dK

dm
=

1
2m(1 −m)

(E − (1 −m)K) =
1
2

∫ π/2

0

sin2 θ(1 −m sin2 θ)−3/2dθ

dE

dm
=

1
2m

(E −K) (5.3)

After some manipulation, it follows that

J1 = 4
( m

4rr′
)3/2

{
2
m

(E(m) −K(m)) +
1

1 −m
E(m)

}

J2 = 4
( m

4rr′
)3/2 1

1 −m
E (5.4)

in which

m =
4rr′

(z − z′)2 + (r + r′)2
(5.5)

These expressions will be used to simplify the integrals for zt and rt.
As before the potential difference Φ across the sheet can be expressed as

Φ = φ1(α) + φ2β. The general equations for the evolution of an axi-symmetric
vortex sheet are

zt = − 1
4π
PV

∫
(r′2J2 − rr′J1)(φ2ψ

′
α − φ′

1α)dα′

= − 1
π
PV

∫
r′ (φ2ψ

′
α − φ′

1α)
( m

4rr′
)3/2

{
r′ − r

1 −m
E − 2r

m
(E −K)

}
dα′ (5.6)

rt = − 1
4π
PV

∫
(z − z′)r′(φ2ψ

′
α − φ′

1α)J1dα
′ (5.7)

= − 1
π
PV

∫
r′ (φ2ψ

′
α − φ′

1α) (z − z′)
( m

4rr′
)3/2

{
2
m

(E −K) +
1

1 −m
E

}
dα′

ψt = −
1

4πr
φ2PV

∫
z′α(rJ2 − r′J1) − (z − z′)r′αJ1dα

′

= −φ2

2
r−2 (5.8)
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The equations for an axi-symmetric vortex sheet can then be written in the
two possible cases as before:

(1) Axi-Symmetric Vortex Sheet without Swirl: φ1 = φ(α), φ2 = 0 and

zt =
1
π
PV

∫
φ′

αr
′
( m

4rr′
)3/2

{
r′ − r

1 −m
E − 2r

m
(E −K)

}
dα′ (5.9)

rt =
1
π
PV

∫
φ′

αr
′(z − z′)

( m

4rr′
)3/2

{
2
m

(E −K) +
1

1 −m
E

}
dα′

(5.10)

with φ′ = φ(α′), etc. In the swirl free case θ is constant on each vortex line, so
that no equation is needed for ψ.

(2) Axi-Symmetric Vortex Sheet with Swirl: φ1 = 0, φ2 = −Γ/2π and

zt = − Γ
2π2

PV

∫
r′ψ′

α

( m

4rr′
)3/2

{
r′ − r

1 −m
E − 2r

m
(E −K)

}
dα′

rt = − Γ
2π2

PV

∫
r′ψ′

α(z − z′)
( m

4rr′
)3/2

{
2
m

(E −K) +
1

1 −m
E

}
dα′

ψt =
Γ
4π
r−2 (5.11)

in which Γ is the circulation (which is constant) r = r(α, t), r′ = r(α′, t), etc.
As in the case of helical symmetry, an axi-symmetric vortex sheet with swirl
may be written in the form of Case 2 if the vortex lines on the sheet are never
tangent to the symmetry direction θ̂.

The velocity off the sheet may be obtained as in the case of helical symmetry.
The velocities uz and ur at a point x are equal to the formulas for zt and rt in
which z and r in the integrals are the coordinates of the point x. The azimuthal
velocity uθ is given by

uθ =
{

0 inside the sheet
Γ/2πr outside the sheet. (5.12)

As before, “inside” means the component of R3 − S containing the axis r = 0;
the remaining component is “outside.”

6 Two Simple Flows

For a purely rotating flow generated by a cylindrical vortex sheet of radius
R and circulation Γ, the vorticity and velocity are

ω = (Γ/2πR)δ(r −R)ẑ

u =





0 r < R
(Γ/4πR)θ̂ r = R

(Γ/2πr)θ̂ r > R.
(6.1)
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The corresponding potential functions are φ− = 0, φ+ = −(Γ/2π)θ and Φ =
−(Γ/2π)θ. The vortex sheet may be parameterized as

z(α, t) = α

r(α, t) = R (6.2)
ψ(α, t) = (Γ/4πR2)t.

This is directly seen to be a solution of the equations ( 5.11) for an axi-symmetric
vortex sheet with swirl.

For a purely axial flow with velocity U inside a cylindrical vortex sheet of
radius R, the vorticity and velocity are

ω = Uθ̂δ(r − R)

u =

{
U ẑ r < R
1
2U ẑ r = R
0 r > R

(6.3)

The corresponding potential functions are φ− = −Uz, φ+ = 0 and Φ = Uz.
The sheet may be parameterized as

z(α, t) = α+
1
2
Ut

r(α, t) = R (6.4)
ψ(α, t) = 0

We now check that this solves the equations ( 5.9) for a non-rotating axi-
symmetric flow. The first equation for z becomes

zt = −UR
2

4π
PV

∫ ∞

−∞
J1 − J2dα

′

= U
R2

4π
PV

∫ ∞

−∞

∫ 2π

0

1 − cos θ
((α − α′)2 + 2R2(1 − cos θ))3/2

dθdα′

= U
R2

2π

∫ 2π

0

1 − cos θ
2R2(1 − cos θ)

dθ

= U/2 (6.5)

using integral #3.252(7) from [9] (p. 296) for the α′ integral. The equation for
r is rt = 0 since (z− z′) = α−α′ is odd in (α−α′), while all of the other terms
in the integral are even. These two equations for rt and zt agree with ( 5.9)
above.
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A Plemejl Formulas in Three Dimensions

In this appendix we derive the Plemejl formulas (2.9) and (2.10) above.
Consider the integral

u(x) =
1
4π

∫

S

σ(x′) × x− x′

|x− x′|3ds(x
′) (A.1)
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and its limits as x approaches a point x0 on S from either side. Break u into
two parts

u(x) = vε(x) + wε(x) (A.2)

in which vε is the integral over Sε = S ∩ {|x′ − x0| < ε} and wε is the integral
over S − Sε. The second integral is continuous at x0 and

lim
ε→0

wε(x0) = lim
ε→0

lim
x→x0

wε(x)

=
1
4π
PV

∫

S

σ(x′) × x− x′

|x− x′|3 ds(x
′) (A.3)

In the first integral vε, first consider x approaching x0 on a normal n0 =
n(x0) pointing into Ω+, the region “above” S. For ε small, the surface Sε can
be approximated by a flat disc of radius ε, centered at x0 and normal to n. Also
we may replace σ(x′) by σ0 = σ(x0). The integral is then approximated, after
substituting x0 + x′ for x′, as

vε(x) ∼=
1
4π

∫

|x′|≤ε, x′⊥n0

σ0 ×
x− (x0 + x′)

|x− (x0 + x′)|3
ds(x′) (A.4)

Let x′ have radial coordinates (r, θ) in the disc. Since x = x0 + δn0, with δ > 0
in Ω+ and δ < 0 in Ω−, the term x′ in the numerator integrates to 0 by oddness,
while x− x0 = δn0, |x− (x0 + x′)|3 = (δ2 + r2)3/2 and ds(x′) = rdθdr. Thus

vε(x) ∼=
1
4π
σ0 × n0

∫ ε

0

2π
δr

(δ2 + r2)3/2
dr

=
1
2

(
sgn(δ) −

δ

(δ2 + ε2)1/2

)
σ0 × n0 (A.5)

Finally for x → x0 in Ω+,

lim
x→x0

vε(x) = lim
δ→0

vε

=
1
2
σ0 × n0 (A.6)

and similarly for x → x0 in Ω−

lim
ε→0

lim
x→x0

vε(x) = −1
2
σ0 × n0. (A.7)

Finally we show that the restrictions in the above calculation can be removed.
The integral over the surface Sε can also be written as an integral over the planar
disk Dε. If this integral and the integral in ( A.4) are subtracted, the singularity
of size |x − x′|−2 is canceled leaving an integrand of size |x− x′|−1. Since this
is absolutely integrable, the resulting integral, which is the difference between
the integrals over Sε and Dε, goes to 0 as ε → 0.
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We have established the limit as x → x0 along a normal direction. Since the
limit is approached uniformly in x0 and since σ(x0) and n(x0) are continuous
in x0, then the same limit is achieved as x → x0 along any direction (in Ω+ and
Ω− separately).

The result is then

lim
x̃→x+

u(x̃) =
1
4π
PV

∫
σ(x′) × x− x′

|x− x′|3
ds(x′) ± 1

2
σ(x) × n (A.8)

as x̃ approaches x in Ω±.
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