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A NUMERICAL STUDY OF RIEMANN PROBLEM SOLUTIONS
AND STABILITY FOR A SYSTEM OF VISCOUS
CONSERVATION LAWS OF MIXED TYPE*

MAHMOUD AFFOUF? AND RUSSEL E. CAFLISCH$

Abstract. A numerical study of the isothermal fluid equations with a nonmonotone equation of state

(like that of van der Waals) and with viscosity and capillarity terms is presented. This system is ill-posed
(i.e., elliptic in x vs. t) in some regions of state space and well-posed (i.e., hyperbolic) in other regions.
Thus, it may serve as a model for describing dynamic phase transitions. Numerical computations of phase
jumps, shock waves, and rarefaction waves for this system are presented. Although the solution of the
Riemann problem is not unique, all of these waves are found to be stable to infinitesimal initial perturbations.
Criteria are found for instability after O(1) initial perturbations. An analytic argument is made for stability
of phase transitions.
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1. Introduction. The isothermal fluid equations with viscosity and capillarity terms
are

(1.1)
Vt-- /’/x --0

u, + p(v) eux 6Vx,x,

in which v is specific volume, u is velocity, x is the Lagrangian space variable, e is
the viscosity coefficient, and 6 is the capillarity coefficient. The capillarity term was
first proposed by Korteweg [10] and later analyzed by Felderhof [2] and Bongiorno,
Scriven, and Davis [1]. This system with a van der Waals pressure law was analyzed
by Slemrod [19], [20] as a simple model for liquid-gas phase transitions.

The van der Waals pressure term is

(1.2) p(v)
RO a

v-b v2

for constants a, b, R, and 0, which is sketched in Fig. l(a). We will mainly use the
simplified form

(1.3) p(v)=v-(v-2)

sketched in Fig. l(b). For these choices of p, there is an interval [a,/3] of values of
the specific volume v for which p’(v)> 0. This unstable spinoidal region separates the
two phases of liquid (v<a) and gas (/3 < v). For v[a,] the system (1.1) is elliptic
in x and t, while in the liquid or gas phases it is hyperbolic.

The system (1.1)-(1.3) is only a crude model for describing dynamic phase
transition, without a solid physical basis. However, we believe that the mathematical
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FIG. 1. (a) Van der Waals pressure for increasing values of temperature. (b) Cubic pressure law.
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properties of this system will occur in other more realistic phase transition models [3]
or in other conservation laws of mixed type [14], [18].

Traveling wave solutions for (1.1)-(1.3) representing phase transitions and shock
waves were analyzed by Slemrod [19], [20] and Hagan and Slemrod [5]. In particular,
they showed that the capillarity term in (1.1) is necessary to get a full set of phase
transition waves. Moreover, inclusion of capillarity eliminates some phase jumps and
thus provides some uniqueness. These traveling wave solutions were then combined
with rarefaction waves by Shearer 15]-[ 17] and Hattori [6], [7] to produce approximate
solutions of the Riemann problem. The rarefaction waves would be exact solutions if
e and 3 were zero. By a Riemann problem solution, we mean any combination of
traveling waves (shocks or phase transitions) and rarefactions that connect two given
states (b/l, /31) at x=- and (ur, vr) at x=. A surprising result of Shearer [17] is that
the Riemann problem solution for given end states (Ul, Vl) and (u,., Vr) is not unique.

Viscosity and capillarity provide a selection principle for the nonunique weak
solutions of the first-order part of (1.1). We use this because it seems more physically
and mathematically correct than the alternatives, including chord conditions or hyper-
bolic numerical methods such as Lax-Friedrichs or Lax-Wendroff.

We present numerical computations of the initial value problem for (1.1), with
the pressure law (1.3) for rarefaction waves ( 5) and for shock waves and rarefaction
waves ( 6 and 7). In particular, we show that all ofthese waves are stable to sufficiently
small initial perturbations, if the end states of the wave are not in the spinoidal region.
This may be surprising because of the nonuniqueness of Riemann problem solutions
and because the phase transition waves pass smoothly through the spinoidal region.
Stability of these phase transitions is explained by their narrow width ( 7.5). On the
other hand, for moderate-sized initial perturbations, these waves may be unstable as
described in 5 and 7.

At present there is no mathematical analysis of stability of Riemann problem
solutions for systems like (1.1) that are not strictly hyperbolic. Our numerical computa-
tions and resulting conclusions should be a useful guide for future analysis as well as
further computations.

Related work on this system and other systems of mixed type has been performed
by several authors: Nicolaenko [12] performed numerical solutions of (1.1) with
periodic boundary conditions and analyzed inertial manifolds for this system. Slemrod
and Flaherty [21] numerically solved (1.1) with e 6 0 using the Lax-Friedrichs
method, which provides numerical regularization terms. Slemrod and Marsden [22]
analyzed chaos for (1.1) with forcing terms. General initial value problems have been
discussed in [8], [23 ].

2. Basic properties of the system of mixed type. Some understanding of (1.1) is
obtained by comparison with the equal area rule for equilibrium phase transitions and
by analysis of the linearized equation for small perturbations of constant u and v.
First, note that in this Lagrangian formulation ofthe fluid equations, Galilean invariance
means just that the equations are unchanged if a constant is added to the velocity u.

2.1. Equal area rule. An equilibrium phase transition has ut u,= vt =0. The
equation for v is then

(2.1) 6vxx+p(v)-po=O

after integration once in x. A phase transition occurs if there is a (smooth) solution
v(x) of (2.1) with end states v and Vr in different phases. In particular, p(vl) p(v,.) Po.
For Pl < P0 < P2 there are stationary points vl, v2 for (2.1) with p(Vl)= p(v2)--P0, but
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only for Po satisfying the equal area rule

(2.2) (p(v)-po) dv=O
D1

are Vl and v2 connected by a solution of (2.1). Condition (2.2) is easily derived by
rewriting (2.1) as

(2.3) 6ww,+p(v)-po=O

for w v,. Denote these "equal area" valves as m v and M v2. Also denote 3’ and
r satisfying p(y)=p(a) and p(r) =p(/3).

This derivation of the equal area rule (2.2) from the dynamic van der Waals fluid
equations (1.1) is independent of the choice of p(v). It shows the importance of the
capillarity term 6 and demonstrates some consistency of (1.1) with equilibrium statis-
tical mechanics.

A further insight into the system (1.1) for 6 < e2/4 is gained by rewriting it as a
viscous conservation system

vt- w, d Vcx
(2.4)

wt+p(v)=dzwx

in which

w U- dll)

(2.5) d, =1/2(e /e2- 46)

2.2. Dispersion relation for the linearized partial differential equation (PDE). The
linearization of (1.1) around a constant state v v is

(2.6) v, + p’( v)v, ev, 6V,x.

This equation admits a solution in the form

(2.7) v(x, t) ext+k,
where k is the wave number and A C is the frequency which is a complex value.

Substitute this function in (2.6) to obtain

(2.8) A2+ ek2A + t3k4-p’k2= O.

This equation is the dispersion relation for (2.6), which has two modes A+ and A_,
given by

ek2 + x/e 2k4 4(6k4 p’k2)
(2.9) A+

2

The .sign of the real part of A indicates the stability or the instability of the solution
of (2.6). From (2.9) the solution is seen to be stable for p’ < 0, because Re (A) < 0. The
only possible instability occurs for Re (A)> 0, i.e., for p’> 0 with states in the elliptic
region, and this can happen if

x/e2k4-4(6k4-p’k2) > ek2,
which can be simplified to

(2.10) Ikl < 6-1/24-b-’
This is the wave interval of instability. Figure 3 shows the real part of A versus the
wave number k for fixed p’> 0, e, and 6.



RIEMANN PROBLEMS FOR CONSERVATION LAWS OF MIXED TYPE 609

The wave number k., with maximal rate of instability is found by differentiating
A with respect to k to obtain

dA k2+2p
ek+

dk //3k2 + 4p’’
where/3 e2-46. Then dA/dk 0 for k, so that

(2.11) ek, =/k+4p"
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FIG. 2. Curve ofpoints Ur which are connected to a given point Ul by a shock, phasejump, or rarefaction.
(a) Shocks S+ and S_, rarefactions R+ and R_, and phasejumps W(Ut) for Ut Ht. (b) Shock and rarefactions
for Ut Hr. The phase jump curve W(UI) is omitted.
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There are three cases:
1. If/3 0, then

(2.12) k -.% E
-1

2. If/3 > 0, then

(2.13) km= x/(-2 + v/4 +/3/6)p’/.

For example, if p’= 1 and 6 ce 2, c > , then

km= t-1/2( -2c + x/)1--4C
1/2.

3. If/3 < 0, there is a similar formula for kin.
2.3. Elementary waves. The system (1.1) has the following types of simple smooth

solutions, which are similar to the elementary waves used for the Riemann problem:
1. The class of traveling wave (shock wave) solutions, denoted by S:, S, which

depend on e and 6 and the shock speed s. If e is sufficiently large compared to 6,
these shock profiles are monotone; otherwise, they are oscillatory. The subscript
indicates the direction of propagation of the shock. Omit the superscript 6, if 6 --0.

2. The class of phase jumps, i.e., shock profiles connecting end states in different
phases, denoted by S: and S’.

3. The class of the stationary phase jumps, i.e., shock profiles with speed 0, denoted
by S’

4. The class of the rarefaction waves depending on e, 6 denoted by R’a and R’a

For a given left end state Ue (ue, ve), the set of right end states Ur (Ur, Vr) to
which Ue can be connected by a single elementary wave is indicated in Fig. 2. These
elementary waves are described in detail in 4 and 5.

3. The numerical method.
3.1. The finite difference equation. Our goal is to investigate the behavior of the

solution of the system (1.1) numerically. First, reduce the system (1.1) to an equivalent
single equation. Since uxt v, and Uxx- v, the derivative of the second equation
of (1.1) is

(3.1) Vtt+P(V)xx--eVxxt--tVxxxx t>=O, xER 1.

We will find solutions of (3.1) (or (1.1)) which are constant at x= +oo. Equation (3.1)
is preferable to the original system (1.1), since (1.1) requires a consistency condition
for the jump [u] u+- u_ in terms of v]. The system (1.1) could also be rewritten as
an equation for w with w v and w, u, but the resulting solutions w would have
linear growth at infinity.

Although we wish to solve the Cauchy problem for (3.1) on the whole real line,
the numerical scheme must be solved on an interval [a, b]. Thus, in addition to initial
conditions, we introduce artificial boundary conditions; i.e.,

v(x, t)l,=o v(x, 0)=/(x),

v,(x, t)l,=o v,(x, o)- g(x),

(3.2)
Vx(X, t)lx:a =/3.(t),

v(x,t)lx=-a(t),

v(x,t)lx=---(t).
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Discretize the rectangular region [a, b] [0, T] with space steps Ax and time steps
At, where Ax=(b-a)/m, and denote the approximate value of the solution v(x, t) at
the grid point with coordinate (nAt, jAx) by v. v( nAt, jAx). Define the following
finite difference operators:

j /)j+ 1)j

(3.3)

The following finite difference equation (FDE)

(3.4)

1 + 1 + e + o

At2 D, D-/v + Ax---5 Dx D-p( vT) -2A Ax2 Dx D-(D v.

2AX4 (D+D-)2(vT+I+ vj )=0

is consistent with the PDE (3.1), with global discretization error

(3.5) E(Ax, At)= O(At2) + O(Ax2).
3.2. Linearized stability of the numerical scheme. To analyze the linear stability

of the numerical method, denote the error as

(3.6) E. v(n At, j Ax)-v.,
in which v(n At, j Ax) is the exact value of the solution of (3.1) at the point with
coordinate (n At, j Ax) and v is the solution of the numerical scheme (3.4). This
approximately solves the following linearized equation (with boundary conditions
omitted)"

(3.7)

1 p’ +

At2 D+ Dt Ej --Ax2 DxDEj

E + 0

-2 At Ax2 DD-DtE + n+l n--1

2 Ax4 (D+D-)2(Ej +Ej )=0.

Suppose

n ijAx(3.8) Ej e

where sc e at, and a is analogous to the frequency and/3 to the wave number. Then
: satisfies the following quadratic equation.

(l+2ersin fl Ax/ 88r2 sin4
2

(3.9) + (-2-4p’h2 sin2 fl x)
+ (l_2er sin/3 Ax /32Ax)2

+86r: sin4 =0,
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in which h At/Ax and r= At/Ax2. The numerical scheme (3.9) is stable if 1:1=< 1.
For p’<0 a straightforward analysis shows this to be the case for all e >=0, 6 >-0,
Ax > 0, and At > 0 with

1
(3.10) (At/Ax)Z<

which is the Courant-Friedrichs-Lewy (CFL) condition.
For p’> 0, i.e., for states in the unstable elliptic region, the dispersion relation for

the FDE is a good approximation to that of the PDE in the interval of instability
(2.10). This agreement is illustrated in Fig. 3, where the real part of h of the linearized
PDE (2.6) and the frequency a In (ll)/At of the FDE (3.9) are plotted versus the
wave number k, for fixed values of p’> 0, e, 6, Ax, and At satisfying the CFL condition
(3.10). The agreement between these dispersion relations indicates that the FDE should
correctly simulate the instability of the PDE, and gives us confidence that the solution
of the FDE (3.4) will converge to the exact solution of the PDE (3.1).

3.3. Numerical boundary conditions. This proposed scheme is implicit, multilevel,
and of order O(At-+Ax2). Therefore, it is essential to define the solution at an
additional point outside the boundary, in addition to using the given boundary condi-
tions. At x---a- Ax, extrapolate to get the value of v as a linear combination

v(a -Ax) ov(x) + v(x + Ax) + yv(x + 2Ax)+ cr Axv’(x).
This approximation is valid up to O(Ax4) if

a=- /3 =3, y=-, or=-3,

so that at the left end we use

(3.11) v(a-Ax)=--v(a)+3v(a+Ax)-1/2v(a+2Ax)-3v’(a)Ax+O(Ax4)

d24, PDE, FDE, dp + 1.
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FIG. 3. Real part of ,t(growth rate) vs. wave number k for the PDE and the FDE.



RIEMANN PROBLEMS FOR CONSERVATION LAWS OF MIXED TYPE 613

and similarly at the right end b- (m + 1)Ax we use

(3.12) v(b+Ax)=-v(b)+3v(b-Ax)-1/2v(b-2Ax)+3v’(b)Ax+O(Ax4).
3.4. Initialization. Since the numerical scheme (3.4) involves two previous time

levels, an approximation for v(At,. is needed. Expand v(At,. in a Taylor series as

At2

(3.13) v(At, .)= v(0, .)+ v’(0, .) At + v"(0,. --+ O(At3).

The first two terms v(0,. and v’(0,. are given as initial data, while the value v"(O,.
is found from (3.1) to be

v,,(O, -p(v(O, ))x + ev(O, ),t- v(O, ),,.

3.5. Choice of initial data. We would like to solve (1.1) with the following Riemann
data

(3.14) (u, v)(x, 0)=
)1), (0

(Ur, Vr) X>0o

Since s2= -[p]/[v] and v, u,, then v,(x, 0) is a 6-function, which is approximated as

X < --Xo

hi2, x -Xo

(3.15) vt(x, O)- ux(x, O)- h, -Xo < x < Xo

h/2, x Xo

0, Xo < X,

where the height h is defined by

(3.16) I+Ux(X,O)---s(v-Vl)=h.2xo,_
with s2= -[p]/[v]. We use Xo Ax.

The viscosity and capillarity in (3.1) are found to rapidly smooth the solution so
that the smallest important wavelength is at least of size x/. So we simplify the
computation by using the following smoothed initial data:

(3.17) l)(x, O) vl-" vr vr- Vl tanh (-6)2 2

3.6. Numerical parameters. The computations described below have been perfor-
med for a range of values of e and 6. The results in all of the following figures are
for e .02 and 6 e 2, except when indicated otherwise. The computation is found to
converge if Ax is much smaller than the shock width and if At satisfies the CFL
condition. For these values of e and 6, we use Ax .01 and At .001.

The significant values of v (defined in 1 and 2.1) are

1.422, /3 =2.577, y=.845,

4. Rarefaction waves. The rarefaction waves make sense only in the hyperbolic
regions HI and Hr. Thus, suppose the initial data UI (Ul, Vl) and Ur (Ur, Vr) are in
Hr and are connected by rarefactions R’ R: or RR’
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FIG. 5. A rarefaction wave with a decaying diffusion wave on the left and a dispersing oscillation on the right.
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Computations with such initial data recover these time dependent solutions. Figure
4 shows a solution with two rarefactions. In Fig. 5 the solution R: is plotted showing
a forward rarefaction with a small decaying diffusion wave on the left and a dispersing
oscillation on the right. In both cases, the diffusion term dominates the dispersion
term. This computation has been performed at a sequence of values of Ax and At that
are small enough to guarantee that the oscillations are not a numerical artifact and
are well resolved.

4.1. Stability of rarefaction waves. If the end states Vl, vr are far from the elliptic
region [a,/3], then the rarefaction waves connecting these states are observed to be
stable with respect to any small perturbations. However, if one state of the initial data
(4.4) is very close to the elliptic region, then for any small perturbation entering the
elliptic region, the connection between the end states is unstable. This is because at
the end point which is close to the elliptic region, the speed of the flow equals p’,
which is nearly zero, so that the motion is almost stationary. Thus, any perturbation
entering the elliptic region creeps to the other phase, and, as a result, a different
connection is obtained. For example, if the solution is initially a backward rarefaction
R_’ with Vr very close to/3, then in finite time the solution becomes R__"’ $5 SSS_’.
This instability also occurs when there is no dispersion (6 0), but then the final result
is R-,o,o.

Suppose that the connection between U, Ur consists of two rarefactions, i.e.,
there is a state U, such that the connection UI, U,, is a backward rarefaction and the
connection U,,,, Ur is a forward rarefaction. Take initial data as in 3.5 and take
very close to the elliptic region. Then the solution is unstable, and the two rarefactions
become R-S.S-S:S:RY;, as shown in Fig. 6. Also, if 6 0 then the solution is
still unstable, but the final connection is RSSSR_.

3.2

3.0

2.8

2.6

2 4 6 8 10 12 14 16
X" eps .03, del eps 2/4

FIG. 6. Instability of two rarefactions with a state close to the elliptic region.
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Two states within the same phase Hr may also be connected by a rarefaction
followed by a phase jump to HI and a second phase jump back to Hr. Such a solution
of the form R_"SSR;’, which crosses the elliptic region twice, is shown in Fig.
7. For 6 0 a similar solution of the form R o is presented in Fig. 8. In the----j-.+j+

latter case, the speed of the phase jump is equal to the speed of the adjacent rarefaction
wave.

5. Traveling wave solutions: Shocks and phase jumps. In this section exact traveling
wave solutions for the equation (1.1) are described and classified, based on a numerical
investigation of their properties. First, a distinction is made between traveling waves
that are shocks and those that are phase jumps.

5.1. Shock waves. Assume that the end states U and Ur are in the same phase,
either H or H, and that the connection between U and U is either a backward
shock, a forward shock, or a combination of them. The solution of (4.1) with initial
data (4.4) will be approximated by the corresponding shock profiles S__’, S;*, or
S-*S;*. If viscosity dominates dispersion, then the shock profiles are monotone
functions; while if dispersion dominates viscosity, then the solutions have oscillations
around the corresponding spiral node. These traveling wave solutions solve an
autonomous ordinary differential equation and will be oscillatory when one of the
endpoints is a spiral node, which is the case if

6 > s2(p’(v) + s2)-le2/4
as discussed by Whitham [26, p. 482]. In case of a combination of two shocks, the
oscillations are in front of each profile, whether forward or backward. Figure 9 shows
a combination of two monotone shock profiles, and Fig. 10 shows a combination of
two oscillatory shock profiles.

3.2

3.0
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FIG. 7. Two states Ul and Ur in Hr connected by a rarefaction followed by two phase jumps, for 6 # O.
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FIG. 9. A combination of two monotone shocks.
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FIG. 10. A combination of two oscillatory shocks.

5.2. Phase jumps. We next consider Riemann data with end states in different
phases, i.e., UI HI and Ur Hr. First, make some definitions and notations.

1. We call the solution of (4.1) with initial data (4.4) a connection, and denote
it by Ul-* Ur).

2. We divide the liquid phase, i.e., Ht (in which the end state Ut is located), into
three distinct regions:

(5.1) D1 {(u, v): v < 3’},

which is the globally attractive region,

(5.2) D2 {(u, v): 3, -< v=< m},

which is the dispersively stable region, and

(5.3) D {(u, v): m < v <

which is the metastable region.
3. The stationary point Ut (ut, v,) Hr is defined for Ut D2 to satisfy

u,,=u, p(v,)=p(v) and p’(Vs)<O.

There is a stationary solution connecting U and Us, if 6 0, but if 6 0 the only such
connection is that of the equal area rule (cf. 6 below).

4. The tangential point Ut (ut, v,) is defined for U e D1 as follows: the line
passing through (p(v), Vl) and (p(v), v) is tangential to the curve p(v) at the point
(p(vt), v,), and the jump U to U is permissible.

5. The admissible point U* (u*, v*) is defined for Ut in some subset of D I,.J D2
including v m, according to the viscosity-capillarity criteria so that (U- U*) is the
unique connection that is a forward phase jump, denoted by Sy’.
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6. The equal area point Ueq (bleq, Veq) is defined to satisfy

S ’l.)eq "l)l l.,leq U,

(p(v)-p(vl)+ dv =O.
Vl

7. The geometric locus W(UI) is the Rankine-Hugoniot curve in the phase Hr
with respect to Ul, defined as follows:

W(gl)={(u’v)’-s(v-vl)=(u-ul) and s2= [p]" }-Iv]’ s>0

The endpoints of W(Ul) are geq and either Us, for U! e D2 or U, for Ul D1. This is
plotted in Fig. 2.

In addition to these definitions, we will assume that Ul =(0, Vl) HI and Ur
(Ur, Vr) Hr. From an extensive series of computations we have been able to classify
the possible connections (Ul Ur) for fixed e, 6.

5.3. Classification. First, we restrict ourselves to forward phase jumps. We have
identified the following 12 types of solutions of the system (4.1) with Riemann initial

1. S;’ S; 2. S’a

3 S2S;’S: 4. $5 S;’R’-b
5. RL’S;’S: 6. R’S;"R2
7 S5S;R;, 8 g+,S_S
9. S2S’ 10. R’S;"

11 S;’S, 12. S’g’

data as in 3.5"

Several of these possibilities are plotted in Figs. 11-14.
Based on our computations we believe that these 12 are all the possibilities, as

argued next. In particular, for 6 0 and for two end states in different phases, we
argue that there can be at most one phase jump; while for two states in the same phase
there can be either two or no phase jumps. The validity of this classification is based
partly on analytic information and partly on numerical results. These are summarized
as follows:

(1) The solution connecting Ul to Ur may cross the elliptic region only as a phase
jump, i.e., S’ or S;’, since there are no rarefaction waves that cross the elliptic region.

(2) For two states that are connected by a forward phase jump, there are only
several possibilities. The left state, which is in Hi, can be connected to another state
in the same phase by $5 or R5, and the right state in Hr can be connected to another
state in the same phase by Sc or Rc. This is because these connections are in the
same hyperbolic region and the speed of the phase jump is smaller than any forward
shock or rarefaction wave that may connect such end states.

(3) According to the viscosity-capillarity admissibility criteria, for any fixed e, 3
and U D1 U D2 there exists a unique U* such that (UI--- U*)--S;’. This unique
point is located on the geometric locus W(UI) as shown by Slemrod [20].

Furthermore, our numerical results show monotone behavior of the function
U*= (u*, v*), depending on e, 6 and UI (Ul, Vl), as described next.

(3a) If UI D2, then U* is an increasing function of UI; i.e., each component of
U* is an increasing function of the corresponding component of Ul. Also, for fixed
UI, U* varies on W(UI) as e and 6 vary, with v* a decreasing function of e for fixed
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FIG. 12. A connection $5 S:. S:.
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6 and an increasing function of 6 for fixed e. Moreover, for any choice of e, 6 the
values of U* fill the geometric locus W(UI). So, if 6 =0 then U*= Ust and if e--0
then U*= Ueq.

(3b) If UI D1, then U* is a decreasing function of UI. However, v* is again
decreasing with respect to e and increasing with respect to 6 for fixed UI, with the
following property: If 6 0, then U* will fill the geometric locus W(UI). If 6 0, any
point on the Hugoniot curve with/3 < v* < vt is allowed. If e 0, then U*= Ueq.

(4) If 6 0, then the only possible stationary phase jump is the connection
(m- M), i.e., the Maxwell equal area connection.

(5) If 6 0, then any stationary phase jump is admissible, i.e., any connection of
the type (U- Ust) is admissible. This case was treated by Pego [13] and Shearer [16].
The resulting solution satisfies the chord condition of Wendroff [25].

Now fix Ul, e, and 6. Then from part (3) there exists a unique state U* W(Ut)
such that the connection (U U*) is a forward phase jump. Choose Ur to be on the
curve S/R/ passing through U*; if Ur is on S/ then (U*- Ur) is a forward shock.
Now suppose UI and Ur are the initial data, then the solution must be $’]’S. To
motivate this, assume that there is another state, say Utl HI, such that (Ull Ur) is
a phase jump. However, because of the monotonicity property (3a), Vl < Vl and Ul > Ul.
Because the curve S-R- has a positive slope (see Fig. 2(a)), the state UI cannot be
on the curve S-R- passing through the point Ul. Thus, UI cannot be connected to UI
by $ or R’ which is not consistent with part (2). This implies that Ur cannot be
connected directly to the other phase, so that there must be a state on S+R/ through
Ur which will be connected to a point on the curve S-R- through Ur. But by (3a)
and (3b) such points must be UI and U*. Similar reasoning for any of the initial data
prescribed in this section argues that the solution is one of the 12 types listed in the
classification.

(6) Finally, suppose U D3. Then there is no admissible phase jump for 6 0
as shown by Slemrod [20], and the only possible connection (UI- U,.) for any Ur H,.
.e,e,e,is oj ..+ For 6 0 the connection is either So or S_SoR+.

6. Stability of traveling wave solutions. In this section we investigate the asymptotic
behavior (stability or instability) of traveling wave solutions for (1.1), as classified in

5, with perturbations in their initial data. Consider the initial data

(6.1) U(x, o)- Uo(x)+ Vo(x),

in which the function Uo(x) is a traveling wave solution of (1.1), and the function
Vo(x) is the initial perturbation, which is a function of small size decaying to zero at
infinity.

Goodman [4], Kawashima and Matsumura [9], and Liu [11] have proved that
shock profiles are stable with respect to small initial perturbations satisfying

(6.2) ff+ccx]OWo(x)12dxc, V=O,Wo; a =0, 1,2,

provided that the system of equations is strictly hyperbolic and genuinely nonlinear
with positive viscosity matrix on the right-hand side, and that the shocks are weak
enough, i.e., IVl-v,.I is small enough. This result does not apply to the system (1.1),
since it is of mixed type, the right-hand side includes a dispersion term in addition to
the viscosity, and the phase jumps cannot be made weak. Our investigation of stability
and instability is entirely numerical.
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6.1. Stability of constant states. Suppose that the initial data is

(6.3) U(x, O): U+ Vo(x),

where U is a constant state lying in the hyperbolic region, and Vo(x) satisfies (6.2).
Following the computational results, several cases can be distinguished:

(1) If the initial perturbation (6.3) does not enter the elliptic region, i.e., U(x, O)
is in the same phase as U, then the solution of (1.1) with this initial data consists of
two trains of N-waves moving in opposite directions along the characteristics of (1.1).
The N-wave structure is due to the nonlinearity of the pressure p(v). If 6 =0, it is
known that these waves will decay to the constant state / with rate O(t-1/2) because
of the viscosity term. For 6 s 0, our numerical computations also show decay of the
N-waves. Therefore, in this case the constant state U is stable.

(2) If the initial perturbation enters the elliptic region, then the solution U(x, t)
will cross into the other phase at least for a short time. Such large perturbations will
be called elliptic perturbations. As time progresses, the solution of this system may
behave in two different ways.

First, the solution may pull back to the base state U splitting into two N-waves
which decay to zero. In this case U is stable. Second, after a long time the solution
may asymptotically approach a new structure connecting the two different phases. In
this case U is unstable. This stability (or instability) of the solution depends on the
value of the specific volume v, the viscosity e, the dispersion coefficient 3, and the
form of the perturbation in the elliptic region.

These two types of behavior occur in different regions of phase space, as described
next:

(2a) If the base state U is in the region D1, i.e.,

v<3, or v>o-,
then the solution of the system (1.1) is always stable. Therefore, we call D the globally
attractive region.

(2b) If the base state U is in D2, i.e.,

T<=v<=m or M<-v<-o,
then the solution of the system (1.1) is stable to any initial perturbations, if this system
is dispersive ( # 0). The asymptotic stability means that the solution converges to the
constant state, i.e., lim,_ U(x, t)= U, as in Fig. 15. If this system has no dispersion
( 0) then the solution is unstable, and does not converge to a constant state. However,
even in this case, it does not grow indefinitely. Instead, the solution converges to a
combination of stationary phase jumps connecting U to the other phase, as seen in
Fig. 16. Therefore, we call D2 the dispersively stable region.

(2c) If the base state U is in the metastable region, i.e.,

m<v<cr or <v<M,
stability depends on the form of the perturbation in the elliptic region.

(2ci) The base state U is unstable when the perturbation has more crests than
troughs in the elliptic region. This perturbation will be called an effective-elliptic
perturbation. If s O, then

lim U(x, t) S_"SS:. S:,
t-

as illustrated in Fig. 17. If 0, then

lim U(x, t) SoSo So.
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FIG. 15. A constant state U in D2for 8 0 with an elliptic perturbation. At three different times (a) T =0,
T=2, (c) T=5.
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FIG. 15 (continued).

(2cii) The solution is stable if there are more troughs than crests in the elliptic
region.

Note that in all the cases above, the structure of the unstable solution in the case
of the viscous system (6 =0) is (SoSo’" So), and in the case of the dispersive system
(6 O) the structure of the unstable solution is (S_S_jS+jS+).

Next, consider the stability of nonconstant traveling wave solutions. We now
distinguish three types of traveling wave solutions.

6.2. Stability of monotone shock profiles. Viscous shock profiles are monotone
solutions connecting two end states which are in the same phase. Such solutions are
stable with respect to infinitesimal perturbations. The perturbations result in two
decaying diffusive N-waves, in agreement with Liu’s analysis of shock wave stability.
However, if the perturbations are effective-elliptic perturbations, then the shock profiles
may be unstable and approach another combination of shock profiles. Such instability
will occur if the following conditions are satisfied:

(1) If the system (1.1) is dispersive (6 0), and the two end states UI and Ur are
in the metastable region D3, then the shock profiles S- or S are unstable for
effective-elliptic perturbations. The solution of (1.1) connecting the two end states will

,,,Sapproach a connection of the type ,+ as shown in Fig. 18.
(2) If the system (1.1) is viscous (6=0) and the two end states are in D2U D3,

then the shock profiles are unstable for effective-elliptic perturbations. The asymptotic
solution is of the following type SLSoSo" So, or SoSo" SoS$ as shown in Fig. 19.

All other monotone shock profiles are globally stable with respect to any type of
perturbation.

6.3. Stability of oscillatory shock profiles. Oscillatory shock profiles connecting
two end states in the same phase, which occur for large values of 6, are stable with
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FIG. 16. Same as Fig. 15 for 6 O.
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FIG. 16 (continued).

respect to any perturbation that does not enter the elliptic region. If the oscillatory
solution connects to a state that is very close to the elliptic region, then the oscillations
will enter the elliptic region. Then one would expect that this solution would become
unstable. However, this oscillatory solution is found to be stable with respect to
infinitesimal perturbations, despite their entering into the elliptic region. The oscillatory
shock profile behaves like the viscous shock profile for effective-elliptic perturbations.

6.4. Stability of phase jumps. Phase jumps are solutions S’ connecting two states
located in different phases and crossing the unstable (elliptic) region. Numerical
computations show that solutions are stable for any initial perturbations and that the
perturbations only result in the formation of two decaying N-waves.

Figure 20 shows a phase jump connecting a state in the metastable region, and
we might expect that adding an effective-elliptic perturbation would lead to instability.
This is seen for a short time, but as time increases the short time instability disappears
as a result of the interaction with the moving phase jump, and two decaying N-waves
form. This shows that phase jumps are stable solutions of system (1.1).

6.5. Width of phase jumps. The stability of the phase jump can be understood by
comparing its width to the unstable wavelengths for (1.1). If the unstable wavelengths
were much smaller than the phase jump width w, then the phase jump would be
unstable. However, as shown below, the w is much smaller than the unstable
wavelengths, so that the phase jump can be stable.

Suppose the function u(x) is the phase jump. Its width w may be defined as

(6.4) w
max lu’(x)l"
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FIG. 17. A constant 0 in the metastable region for 6 0 with a strong elliptic perturbation at times (a)
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If k is a typical wave number for the function u’(x), then

(6.5) w=O(1/k).

The linearized analysis of 2 is valid for wave numbers k for which the phase jump
looks constant, i.e., for Ikl >> Ikl. We know from 2 that the interval of unstable wave
numbers is Ikl < ko= v/-f ,-/:. Thus, linear analysis shows instability of the phase
jump if there are wave numbers k satisfying both of these criteria, which is possible
if ko >> k, i.e., if

(6.6) w >> 6 /.

Based on numerical results, we establish the following approximate formula for
the width of the phase jumps Sf’:

1. If Ul D2 t_J D3, then

(6.7) w= cx/,
where c is a positive constant. This confirms a remark by Pego [13] that interphase
shocks approach zero thickness as the shock speed approaches zero. Therefore, k,, k
and thus the phase jumps should be stable, as we have already established numerically.

2. If UI D1, then

c(,s)
(6.8) w v/-,

s

where s is the speed of the phase jump (which is not near 0) and the function c(e, s)
is o(s) as s- +o. This again shows that the phase jump width tends to zero as the
speed increases. Again the instability condition (6.6) cannot be satisfied for phase
jumps. This gives a partial analytical justification for the stability of the phase jumps.
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FIG. 18. A strong elliptic perturbation of a monotone shock wave for 6 0 at times (a) T=0, (b) T= 10,20.
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