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Moore 's  approximation method,  first formulated for vortex sheets, is generalized and applied to axi-symmetric flow 
with swirl and with smooth initial data. The approximation preserves the forward cascade of energy but neglects any 
backflow of energy. It splits the Euler equations into two sets of equations: one for u .  = u+(r, z, t) containing all 
non-negative wavenumbers (in z) and the second for u = ~i+. The equations for u+ are exactly the Euler equations but 
with complex initial data. Traveling waves solutions u+ = u+(r, z - io-t) with imaginary wave speed are found numerically 
for this problem. The asymptotic properties of the resulting Fourier coefficients show a singularity forming in finite time at 
which the velocity blows up. 

I. Introduction 

In three-dimensional inviscid, incompressible 
flow, the vorticity can grow through vortex 
stretching, and it is possible that singularities 
(infinite vorticity) may develop in finite time 
from smooth initial data. The interest in these 
possible singularities is mathematical, numerical 
and physical: Singularities in any solutions of the 
three dimensional Euler equations would pre- 
vent establishment of global existence theorems. 
Special numerical methods would be required for 
singularities or nearly singular behavior in nu- 
merical solutions. Finally, singularity formation 
may be a primary mechanism for transfer of 
energy from large to small wavelengths and thus 
an essential ingredient in the onset of turbu- 
lence. Moreover  singularities, which can be de- 
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scribed through a small number of parameters, 
may provide the simplest possible description of 
a complex flow. 

The main analytic result on singularity forma- 
tion in 3D is that of Beale, Kato and Majda [7], 
who showed that 

Hu(. ,  t ) [ l s -  < q~(l lu( . ,  0)Its, f s u p  IoJ(x, t')l d t ' )  
x " 

0 

(1.1/ 

for some smooth function q~ and for any Sobolev 
norm I1" IIs with s -> 3. This establishes that if any 
smoothness is lost at time t , ,  then in fact So maxx 
1o~ I dr' = ~. A similar result, that loss of analyti- 
cally implies blow-up of vorticity, was proved by 
Bardos and Benachour [6]. For inviscid, incom- 
pressible flow in two dimensions, an initially 
smooth velocity field u (x, 0) will stay smooth for 
all time due to the conservation of vorticity. 

The numerical search for singularities was star- 
ted on the Taylor -Green  flow [10], for which the 
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results indicatc a singularity for a complex value 
o f t  but not for real t. Experimental  results 

showing vortex reconnection for high-Reynolds 
number  flows inspired a study of singularities for 
a filament model of two interacting vortex tubes 

bv Siggia [381 . The singularities in this model 
equat ion arc smoothed out however due to fiat- 
tening of the vortex cores, as seen in computa-  
tions of Anderson and Greengard  [21 , Pumir and 
Siggia [311 and Shelley, Meiron and Orszag [36]. 
More recently Kerr [231 presented a new set of 
computat ions  for this problem which exhibit in- 
tensification of w)rticity that may indicate singu- 
larity formation.  Several related studies of singu- 
larity formation arc in [8 ,9 ,16-18 ,39] .  

Swirl in axi-symmetric flows amplifies vorticity 
by stretching, and the axi-symmetry may prevent 
core flattening, so that such flows seem a likely 
candidate for singularities. Grauer  and Sideris 
[20[, Meiron and Shelley [26] and Pumir and 
Siggia [32] have performed computat ions of axi- 
symmetr ic  flow with swirl that show significant 
w~rtex stretching but no singularities within the 
computat ional  time. In [32] however,  an adap- 
tive numerical method,  with nonlinear scaling of 
x and t, was used on an asymptotically reduced 
cquat ion to produce singularities for axi-symmet- 
ric flow with swirl. Some critical remarks on the 
results of [32] are presented in [43]. 

The present study of axi-symmetric flow with 
swirl is motivated by the computat ions of ( 'a-  
tlisch, Li and Shelley [12] for axi-symmetric, 
swirling vortex sheets, with w~rticity mainly m 
the ,; direction. The sheet is destabilized by 
adding a vortex line on the axis of symmetry with 
vorticity in the ~ direction. This basic flow is 
drawn figuratively in fig. la. Nonlinear computa-  
tions in [12] then show reconnection of the sheet 
with itself and with the vortex line. 

The basic flow in the present study is a 
smoothed  version of that vortex sheet problem. 
To avoid geometric  singularities at r - 0  and 
r ~ the flow is put in an annulus I < r < 3. The 
w~rtex line is included through an azimuthal 
velocity u,  - F/2"rrr, which can also be thought 

Fig. I. (a) An ax i - symmct r ic ,  swir l ing vor tex sheet  x~ith :t 

vor tex  line on the s y m m e t r y  axis. (b) Sn loo lh  swir l ing flow in 
an annu lus ,  fo rmed  by s m o o l h i n g  out  the vor tex s h c e l  

of as w)rticity on the boundary r = 1. The w~rtex 
sheet is replaced by a smooth rotational shear 
layer of small amplitude, so that the resulting 
basic flow is 

.t,-t ( )0 
~"lT r 

(1.2) 

with vorticitv 

~ ) ( r ) -  r la (rul(r)) ,~, ( I .3) 

which is primarily in the +~ direction to make 
the flow unstable. The geometry of this flow is 
sketched in fig. lb and determined in section 4 
below. 

The Eulcr solution found here consists of a 
c o m p l e x  va lued  velocity field u that is a small 
per turbat ion of ti. The velocity field u is periodic 
in z and contains inward and outward radial jets 
accompanied by rolls in the r - z  plane. The 
determinat ion of these perturbations is described 
in section 4, and the real part of the flow is 
drawn in fig. 2. The singularities found in this 
study correspond to infinite values of the radial 
and axial velocity and occur at the centers of 
these rolls. In contrast the singularities of Pumir 
and Siggia [32] occur at the tips of the outward 
jet. 
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Fig. 2. Streamlines in the r-z plane for the unstable mode. 
Singularities in complex Euler solutions are found at the 
centers of these rolls. 

numerical method that is very accurate but ex- 
tremely unstable; growth of round off error is 
controlled by using a multi-precision package 
MPFUN developed by Bailey [3,4] which allows 
precision of arbitrarily high order. Round off 
error levels of 10 -64 and 10 ~28 were employed in 
the computations described below. 

The computation is performed for fk(r) ,  the 
k-wavenumber (in z) component of the radial 
velocity. There is no singularity in fk(r) for finite 
k; rather singularities are detected through the 
asymptotic properties of fk as k--* 00, as in [40]. 
This procedure is described in section 6. 

The resulting singularity in the radial velocity 
u r has the form 

Ur ~ ( 2  __ 7" q- i~') -1/3 , (1.4) 

The motivation for considering complex- 
valued velocity fields comes from a generaliza- 
tion of Moore's approximation. Derived by 
Moore for the Kelvin-Helmholtz problem 
[27,28], this method has been generalized to 
additional fuid  interface problems by Caflisch, 
Orellana and Siegel [15], and in section 2 it is 
formulated as a general approximation for singu- 
larity formation. When applied to the Euler 
equations for axi-symmetric flow with swirl, the 
velocity u is split into two complex velocities u+ 
and u = t/+, in which u+ consists of the non- 
negative wavenumber components of u. The 
complex velocity u+ (as well as u ) evolves 
according to the Euler equations (without any 
changes), so that Moore's approximation leads to 
the same Euler equations for axi-symmetric flow 
with swirl but with complex initial data. 

The special solution u+(r, z,  t) found here is a 
traveling wave u+ = u+(r, z - i o ' t )  with an im- 
aginary wave speed, which is motivated by the 
traveling wave solutions discovered by Siegel 
[5,37] for Moore's approximation to the 
Rayleigh-Taylor problem. Singularities move in 
from the complex z-plane at speed io- and occur 
physically when they hit the real z line at finite 
real time t. The solution is found through a 

in which 7/ and ,~ are orthogonal spatial coordi- 
nates and 7- is a scaled time coordinate, all 
centered at the singularity. The simplicity of this 
singularity form may indicate that it is generic 
for this problem. 

The complex-analytic approach to singularities 
used here follows similar earlier investigations on 
a variety of simpler problems; including the 
Kelvin-Helmholtz problem [14,25,27,28,35], the 
Rayleigh-Taylor problem [5,29,30,42], the 
Hele-Shaw problem [22,41], and nonlinear hy- 
perbolic or elliptic systems with exactly 2 speeds 
[11]. For the first two problems, Moore's approx- 
imation was shown to give excellent predictions 
for the time, location and type of singularity 
formation. For nonlinear hyperbolic (or elliptic) 
systems, a method was developed for "unfolding 
singularities" and the generic (stable) types of 
singularities were found in [11]. 

2. Moore's approximation 

As presented here, Moore's approximation is 
a general method that can be applied to singu- 
larity formation problems. It is based on the 
following consideration of energy cascade and 
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invcrsc cascade due to non-linearitics. Since e ~k: 
il: i ( /  ~ k  ) :  c = e . the action of nonlinearity on 

wavenumbers  k and 1 is to add them to get 
wavenumber  k + 1. Decompose  these interac- 
tions into two groups: 

(i) energy outflow (forward cascade). If 

sgn(k) = sgn(l) (2.1) 

then Ik + l[ > max(lk[ ,  Ill) so that energy is flow- 
ing out to higher wavenumbers .  

(ii) energy baekflow (inverse cascade). If 

approximat ion is 

AIuI~A[+,,I  + AIr, I. (2.5) 

The neglccted terms all arc nonlinearities involv- 
ing both u+ and u , i.e. both positive and nega- 
tive wavcnumbcrs .  

More generally it 

u u ~ + u +  + ++ (2.6) 

in which u~, is constant in z, then Moore 's  ap- 
proximation is 

sgn(k) - s g n ( l )  (2.2) 

then Ik + I I  < max(lkl ,  lit) so that energy is flow- 
ing back to a smaller wavenumber .  

A smooth function (analytic in a finite strip) 
u(z) has very little energy at high wavenumbers .  

As a singularity forms, however,  energy flows 
out to high wavenumbers .  Thus we expect the 

singularity formation to be dominated by energy 
outflow which is much stronger than the energy 
backftow. The approximation here is to neglect 
energy backflow. This cannot be valid for a 
steady state, in which outflow and backflow must 
balance,  but it is expected to be at least quali- 
tatively correct for the transient problem of sin- 
gularity formation.  

According to the classification (ii) above,  
Moore ' s  approximation then amounts to neglect- 
ing interactions between positive and negative 
wavenumbers .  This can be formulated mathe- 
matically as follows: Suppose that 

u(z)  = u , ( z )  + u ( z ) ,  (2.3) 

k .o  

u ( z ) =  ~ l~ e 'k: (2.4) 
k II 

assuming at first that u has no constant term. If 
A is an opera tor  (linear or non-linear) which is 
analytic in u and with A[0] = 0, then Moore ' s  

A[u I ~ A[u~ + ",,I + A[u e ", ,1 AIu,,I- 
(2.7) 

This will be applied to thc equations for axi- 
symmetr ic  flow with swirl in the next section. 
Note that the notation u+ is used sometimes for 
the sum of all the positive wavenumbers  (not 
including u~) and other times for the sum of all 

the non-negative wavenumbers  (including u,,). 
The validity of this approximation for singu- 

larity formation problems has not been rigorous- 
ly established. For the Kelv in-Helmhol tz  {351 
and Rayle igh-Taylor  [5] problems,  however,  

comparisons between solutions of Moore 's  ap- 
proximation and of the full problem show excel- 
lent agreement  for the time. location and type of 
singularity, as well as the overall shape of the 
solution. Moreover  in the latter problem,  the 
singularities occur at times when the solution has 
large per turbat ions in its shape and is fully non- 
linear. A related approximation method has 
been used in a variety of other problems [19.21]. 

On the other hand Moore ' s  approximation can 
be easily used to show that singularities do not 
form in the original problem if they do not form 
for Moore ' s  approximation,  since ignoring the 
energy backflow biases the problem in favor of 
singularity formation.  For example in 1131, the 
solution of the B i rkhof f -Ro t t  equation for the 
Ke lv in -He lmhol tz  problem was shown to remain 
smooth as long as the solution of Moore 's  ap- 
proximation remains smooth.  
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3. Axi-symmetric  flow with swirl 

In this section, the equations for axi-symmetric 
flow with swirl are formulated, Moore 's  approxi- 
mation is applied to them and, finally, traveling 
wave solutions with imaginary wave speed are 
investigated. 

In primitive variables u = (Ur, UO, Uz) and p 
the equations for axi-symmetric flow with swirl 
are 

1 
Ozu z + r Or(rUt) = 0 ,  (3.1) 

O,U z + u ' V u z  = - O ~ p ,  (3.2) 

O,Ur 4- U ' V U  r --  r - l u ~  = - - O r p ,  (3 .3)  

O,U o + u ' V u  o + r  IUrU o = 0 ,  (3.4) 

in which u .V=  u.Oz + UrO r. The vorticity is 

, o  = (o~r, ,o0, , o . )  

= ( - - O z U o ,  Ozl~l r -- Orl~z, r- 'Or(rUo) ) . ( 3 . 5 )  

3.1. M o o r e ' s  approximat ion 

Denote  the system (3.1)-(3.4)  as 

E[u] = 0 (3.6) 

and set 

u = u + + u  + u  o (3.7)  

in which 

u+ = u+(r,  z,  t) = ~ ,  gtk(r, t) e ikz (3.8) 
k > 0  

u_ = u  ( r , z , t ) =  ~ ,  t i k ( r , t )  e ikz (3.9) 
k < 0  

uo -- a ( r )  = a o ( r )  o . (3.10) 

Moore 's  approximation is to replace (3.6) by 

E[u+ + u o ] + E [ u  + U o ] - E [ u o ] = O .  (3.11) 

Since E[uol, E[u+ + u o l - E [ u 0 ]  and E[u_  + 
uo] - E[uo] consist of all zero, all positive and all 
negative wavenumbers respectively, then each of 
them must be zero separately, i.e. 

E[u+ + uo] = 0 ,  (3.12) 

E[u_  + u0] = 0 ,  (3.13) 

E[u0] = 0 .  (3.14) 

The equation (3.14) for u 0 is satisfied for any u o 
of the form in (3.10). Moreover  if u is real, then 
u 0 is real and u = ti+, so that it suffices to solve 
(3.12) for u+. The corresponding real velocity 
field is then 

U =  U o + U +  4 - U _  

= u 0 + 2 R e ( u + ) .  (3.15) 

3.2. Traveling wave solutions 

For simplicity redefine the notation so that 

u = u o + u+ = ~ ti~(r, t) eik: (3.16) 
k = 0  

Following Siegel [37] look for a traveling wave 
solution with an imaginary wave speed 

u = u ( r ,  z - io-t) 
oc 

= ~ tik(r ) e i~z+~k' (3.17) 
k = 0 

Such solutions can also be thought of as consist- 
ing of pure growing modes and are partly moti- 
vated by a set of solutions for the Hele -Shaw 
problem derived by Saffman [22, 34]. Such solu- 
tions are only possible if u is complex. For such a 
traveling wave the Euler equations (3.1)-(3.4)  
become 

- 1  
a zU z 4- r O r ( r U r )  = O , 

- iO'3zU z + u . V u  z = - O z p  , 

-1  2 
- i~rOzu r +  u ' V u  r -  r u o = - O r p  , (3.18) 
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icrO:u o + u " ~ u ,  + r luou , . = 0 .  (3.19) 

Since u will be a per turba t ion  of  the basic flow 

u(r)  write 

oo; i K u ' ,  . 

[ - t 
~o: r d r ( r U  o ) . 

w'~ iK '(Ku' + D ) .  (3.27) 

u = K + u ' ,  p f i + p ' .  
(3.2(I) Expand  u '  r in a Fourier  series as 

Also  to r emove  the i's denote  

u ' . = i U '  , K =  ii~,. (3.21) 

The  equat ions  for u '  are then 

r L O , ( r u ' )  - KU' ,  = 0 , 

c r K U '  + K p '  = A , 

¢ r K u  I - 2 r  ll~ol4' " + O r p '  = B , 

crKu 0 + w:u ;  - C ,  (3.22) 

in which the nonl inear  terms are 

a - ( U ' K  - u;Or)U' :  , 

B = ( U i K -  u ; O r ) u ;  + r 'u;,'-, 

C = ( U ' . K  U ; O r ) l : l ;  - -  r IU;14[; 

= U : K u ;  c o : u ; .  (3.23) 

The  system (3.22) can be simplified to a single 
second  order  equat ion  for u:  as 

O~[r 1Or(rtA:) ] [ K :  + K(r) lu;  = D , (3.24) 

in which 

2 u  o w .  
K(r) 2 (3.25) 

or  r 

D =  ~r l ( O r A - -  K B ) -  2t7°, C .  (3.26) 
O" r 

The  remaining  componen t s  of  velocity and vor- 
ticity are expressed in terms of  u'r as 

u', = i U '  = i K  l((~rlZl' r -~ r 'U'r) , 

U; -- cr I K  I(--ff) U; + C ) ,  

.;(r, z) = (" L(r) e'* (3.28) 
k = o  

The  equat ions  for J~ are then f rom (3.24) 

I 
L k f k - = i % l r  r,.(r]k)] ( k e + K ) L  Da (3.29) 

for  k = 1,2 . . . .  and 1 -<- r ~ 3, in which D,  is the 

k th  Four ier  coefficient of  D. The boundary  con- 

dit ions are 

j ~ , ( r = l ) = j ~ ( r  3) 0 .  (3.31)) 

The  infinite system of  O D E ' s  (3.29), (3.3(t) are 

the equat ions  that will be solved numerical ly to 
p roduce  a solution of  the axi-symmetric  Euler 

equa t ions  with swirl. 

Several significant advantages  have been 

gained by restricting at tent ion to solutions with 

only non-negat ivc  wavenumbers  k and to travel- 

ing wave solutions: 

(i) The  original equat ions  in three space and 

one t ime variable,  have been reduced to one 

space and one wavenumber .  
(ii) Since D is purely quadrat ic  in u I and since 

the wavenumber s  in u '  r are all positive, then 

* " . . . .  ) . ( 3 . 3 1 )  

This shows that the coupl ing between the equa- 
t ions in (3.29) is only in one direction. Therefore  
any finite number  of  componen t s  )~ . . . . .  J~ can 
be c o m p u t e d  without  reference to ,f) for l > k ,  

i.e. wi thout  t runcat ion error.  
(iii) As  a special case of (ii), D~ = 0 ,  so that J; 

satisfies 

L1J'l = 0 . (3.32) 
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This  is exact ly  the equa t ion  for  a l inearly un- 
s table  m o d e  u r ( r , z ,  t ) = f l ( r ) e  iz+~' a round  the 

s teady  swirling flow u = Uo(r ) 0 with growth  rate  
0-. A sui table  s teady flow and growing m o d e  will 
be  d e t e r m i n e d  in the next  section.  

(iv) The  t ravel ing wave  speed 0. is thus de- 
t e rmi ned  f rom the l i near  eigenvalue  p rob l em 
(3.32) and is i ndependen t  of  the ampl i tude  of the 
t ravel ing wave.  This  r e m a r k a b l e  p rope r ty  of  

u p p e r  analyt ic  t ravel ing waves  was d iscovered  by 
Michael  Siegel [37] and is in m a r k e d  contrast  to 
usual  non l inear  t ravel ing wave  p rob lems ,  for  
which the de t e rmina t ion  of the wave  speed  is the 
mos t  non l inear  part .  

(v) Since u = u( r ,  z - i0.t) is a t ravel ing wave 
with imaginary  wave  speed,  singularities t ravel  in 

the complex  z p lane  at speed i0.. Thus  a singu- 
lari ty with imaginary  c o m p o n e n t  p = - I m ( z )  at 
t = 0  will hit the real z line at t = p/0..  The  
singulari t ies posi t ion should also depend  on r, 
i.e. P = p ( r ) ,  and the first singularity will occur  
for  r which minimizes  p ( r ) ,  as indicated in fig. 3. 
Thus  a singulari ty will occur  at a real ,  finite 
space  and  t ime point ,  if the c o m p u t e d  initial data  
u ( r ,  z )  has a singulari ty at any complex  value of  

Z .  

-0.1 

-0.2 

-0.3 

-04 

-0.5 

-0.6 

-0 7 

-0.8 
I 2 3 4 5 6 

Real z 

Fig. 3. Singularity positions in the complex z plane. For each 
value of radius r, there is a symmetric pair of singularities on 
these curves. 

4. The steady flow and its unstable mode 

T h e  e igenvalue  p r o b l e m  (3.32) for  fl and 0. 
m a y  be difficult to solve in general .  H e r e  we 
fo rmu la t e  a special direct  p rocedure  by which f l ,  
o- and the s teady state ~o(r)  are de t e rmined  with 
a m i n i m u m  of  numer ica l  approx imat ion .  Rewri te  
(3.32) and (3.25) as 

(L  - 1)f~ 
K f~ (4.1)  

and 

2 1 
K = ~ Uo¢O z = ~ Or(rtto) , (4.2) 

0 . r  c r r  

- I  
in which L = Or(r Off). Then  

t~o(r ) = r -1 0. 2 r3K(r)  d r  + [ r l u o ( r , ) ]  2 

rl 
2 

0. rK 
d ~ z ( r ) -  2 a  ° (4.3) 

T h e r e f o r e  if f l ( r  ) and or are specified, then  (4.1) 

de t e rmines  K in t e rms  of f1  and (4.3) de te rmines  
ti 0 and o3. T h e  only restr ict ion is that  the quant i -  
ty inside the square  root  for  t~ 0 must  be  posit ive.  
T o  insure this a special choice of  fl and 0- is 
made :  The  uns table  m o d e  f l  is a smoo thed  ver-  
sion of the  uns table  m o d e  3~ for  a vor tex  sheet  
p r o b l e m ,  and 0- is the cor responding  growth  rate.  

Cons ide r  the p r o b l e m  of a cylindrical swirling 
vor t ex  sheet  at r = r 0 and with a background  
ro ta t ing  flow inside an annulus r 1 < r < r 2. The  
circulat ion is F 1 inside the sheet  and F 2 outs ide 
the  sheet ,  i.e. 

~ F 1 / 2 n r  ' rl  < r < r° ' (4.4) 
Uo = [ F z / 2 n r  ' r o < r < r 2 .  

Accord ing  to Rayle igh ' s  cr i ter ion,  if IFI[ >IF21 
this swirling flow is unstable ,  and the k = 1 un- 
s table  m o d e  has radial  veloci ty 

~r ( r ,  z ,  t )  = a f ( r )  e iz+~` (4.5) 
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The  ampl i tude  a is arbi trary,  and the velocity 

profile f ( r ) ,  derived in appendix B, is given by 

{ b l l l ( r ) - b 2 K l ( r ) "  r l < r < r ° "  (4.6) 
f ( r ) =  b~l~(r)  b 4 K , ( r  ) r o < r < r , ,  

in which 11 and K~ are the modified Bessel 

funct ions [1 ], 

bl _ c r K l l ( K l l l l t  I _ I I I K , I  ) i 

h~ - ( rKI : (KI~I I I  , -  I teKio  ) 1 

b ~ -  b l l l l / K i i  , 

b 4 - b ~ l l ~ / K  I. , (4.7) 

and the nota t ion 

11i-- ] l ( r i )  , K l i =  ! , ( r , )  (4.8) 

is used. The  growth rate for this mode  is given 

by 

q S ( r l ) - - - 1 ,  & ( r ~ ) - I  . (4.13) 

If & is m o n o t o n e ,  then j~ > 0 for r t < r < r~ since 

f > O .  
In order that the ratio ( L - 1 ) J l / j  ~ makes 

sense,  several condit ions must be met. Using 

a , l  I - 1 ,  r J l  1 , 

a~K I -  K, r tK I ,  (4.14) 

calculate 

( L  l ) J ~ - ( & ~ , . -  r ~&,) 

x ! l ( b ~  - t , , ) l ,  (b~ - b ~ ) K , l  

+ q S r l ( b ; - b , ) l , , + ( b 4  b~)K,,I  . 

(4.15) 

Since j~ vanishes at r -  r I and r = r~, also L 1J't 
must  be zero there:  it suffices to require 

Cv= _+ ~ k / ~ ~ ,  (4.9) ~ , r = q 5  = 0  at r = r  I a n d r = r , .  (4.16) 

in which 

b - - ( K , , l , , ,  I, IK , , , ) (K I : I , ,  , -  I l z K , , , ) ,  

c -  K l l 1 1 2 - 1 1 1 K w _ ,  

G = (F~ - F - ] ) / ( 2 ~ r f .  (4.10) 

For  the unstable mode  in the smooth  problem,  

take f~ to be a s m o o t h e d  version of  j7 i.e. 

/ ) ( r )  - e~(r) l l ( r  ) - / 3 ( r )  K , ( r )  (4.11) 

in which ~ goes smooth ly  f rom b 1 to b s and /3 
goes smooth ly  f rom b~ to b 4. Set 

~ ( r )  ' ~ ( b , + b s ) +  ½(bs - b , )ch( r )  , 

/3(r) = ~(b 2 + b4) + ½(b 4 b2)ch(r ) , (4.12) 

in which 4~ goes smoothly from -1  to 1 as r goes 
from r, to r~, i.e. 

A function 4~ satisfying (4.13) and (4.16) can 
be chosen,  in terms of  an odd function tO,,. as 

dp(r)= c d k o ( p )  (c~p + c2p~)  . (4.17) 

in which p E (  1,1)  for r E ( r ~ . r ~ )  and 

G , - ( t ) 0 ( 1 ) -  tO/,(1)+ ',t01',(l)) ' 

c ,  = c , , ( + [ , ( 1 ) -  ! # , i ; ( 1 ) ) ,  

c, = G , ~ ; ( 1 ) / 6 .  (4.18) 

A suitable choice for p(r )  and 4to(p) is 

( r - r , )  r r o r -  r 2 + (4.19) 
p ( r ) -  r,  r~ . r  l -- r ,  r,  r .  

0o(P) = tanh( p / 6  ) .  (4.2(i) 

so that 
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q,; = ( 1  - 4 , ~ ) / a ,  

q/o = - 2 qJo Oo/ 6 , 

Off = - 2 ~ ( 1  - 3 0 2 ) / a  2 , 

q/o' = - 2 ( - 8 g ' o  + 12q '3)q 'o /6 '  (4.21) 

following computat ions,  the modified Bessel 
functions are evaluated through a series expan- 
sion, and the integral in (4.3) is evaluated using 
4th-order accurate finite difference-like for- 

mulas. 

with the arbitrary paramete r  6 representing the 
thickness of  the rotational shear layer (smoothed 

vortex sheet) at r = r 0. 
In particular the limiting values of 

K = ( L  - l ) f l / f l  at r = r 1 , r 2 are computed from 
l 'H6pi ta l ' s  rule as follows: Using (Kl Io  + 

) (  ) --1 
KoI  1 r = r , 

5. Numerical method 

The numerical method for solving the system 
of 2-point boundary value problems (3.29), 
(3.30) is summarized as follows: 

5.1. Discre t i za t ion  

{ b l ( K l l r ~ )  -1 i = 1 , 
O r f l ( r =  r s ) =  b3(K~2r2)_l ' i = 2  

O, (L  - 1) f  I 

{ K~21b3, 
m l ~ t ) r r r ( K 1 2 1 1 1  - -  l 1 2 K l l  ) g l l l b l  ' 

i = 1 ,  

i = 2 ,  

so that 

K(rl ) = 1 ~rlgarrr(K,21,1 - I 1 2 K l l ) K ,  lb3/ (K12b1)  

K ( r 2 )  = l ~r2~rrr(K12I~ -- I12K11)KI2bl / (K11b3)  , 

(4.22) 

in which 

(~rrr = ~JttrDt3 ( 4 . 2 3 )  

a t  r = r 1 o r  r = r 2. 

To summarize,  for any choice of the parame-  

ters rl ,  r0, r2, ~I, /2, • and a, satisfying r I < r 0 < 
r 2 and IF 1 I >  ]F2I, there is an unstable mode fl 
and growth rate o-given by (4.11) and (4.9). The 
corresponding steady flow fro(r) can be computed 
through a single integration from (4.3), in which 

the function K(r) = ( L  - 1)L/fl is given by (4.15) 
for r~ < r <  r 2 and by (4.22) at the endpoints 
r = r 1 or r = r 2. There  is a restriction that ti 0 is 
real, i.e the quantity inside the square root in 
(4.3) must be non-negative,  which is the case for 
the choice of parameters  used below. In the 

A 4th-order finite difference method is used 
for the r -dependence,  with centred differences in 
the interior and one-sided differences at the 
boundaries.  The extra terms near  the edges are 
first removed  by Gaussian elimination, so that 
the resulting linear system can be solved with a 
pentadiagonal  solver. The number  N r of points in 
r is 512, 1024 or 2048 in the computat ions pre- 
sented here. 

The computat ion is for a finite number  N z of 
wavenumbers ,  with N z = 64 in the computations.  
The  nonlinear terms D k on the right side of 
(3.29) are evaluated by an accelerated method 
involving both direct and pseudospectral  sums, 
as described in appendix C. As pointed out in 
section 3, there is no truncation error in the 
restriction to finite N z. Also since D is quadratic, 
anti-aliasing (i.e. padding with enough zeroes) 
completely  eliminates aliasing error from the 
pseudo-spectral  part  of the computat ion.  The 
resulting complexity of the algorithm is 
Nr N3/2 log N z. 

5.2. R o u n d - o f f  error  

The k-dependence  of the system (3.29) turns 
out to be extremely unstable so that roundoff  
error  is amplified and may ruin the computation.  
This is similar to the amplification of roundoff  
error  found in vortex sheet computat ions by 
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Krasny,  where the computa t ion  was stabilized by 

filtering [25] or  smooth ing  [24]. Filtering is inef- 

fective here because the problem is not periodic 

in r (this could perhaps  be ove rcome  using a 
Chebyshev  representa t ion) :  smooth ing  is too 

crude to allow detect ion of  singularities. 

The  roundof f  er ror  problem was ove rcome  

th rough  high precision computa t ion  using the 
mult iple precision package M P F U N  developed 

by David  Bailey at N A S A  A m e s  Research Cen-  

ter  [3,4]. This package allows arbitrary spec i fed  

precision and includes a t ranslator  that converts  

a s tandard  For t ran  p rogram into one that calls 
special subrout ines  for multiplication and other  

built-in functions.  For  N, = 512, quadruple  preci- 

sion with roundof f -e r ro r  ~-,. ~ 10 >, available on 

an IBM 3090 running A I X  was found to be 

sufficient. For  N,. = 1(124 and 2048, roundof f  
e r ror  e, = 10 ~,4 and 10 12s respectively was used. 

The  instability with respect  to k, as well as its 

e l iminat ion for sufficiently small a,., is illustrated 
in fig. 4. This graph shows max,j~.(r) vs. k 

c o m p u t e d  with N, = 5 1 2  for single precision 
(s, ~ 10 7), double  precision (,', ~ 10 ~4), quad-  

ruple precision ( ~ , ~  10 -'~) and multiple preci- 
sion using M P F U N  with 10 ,~4, the last two of  

which are indistinguishable.  

5.3. Choice q['parameters 

The computa t iona l  results here are for the 

fol lowing choice of parameters  in the basic flow 

z~, (0th mode)  and 1st mode  .ft. as described in 
section 4: 

1] = - 1 . 0 ,  / i - ( ) . 1  , 

0 . 3 ,  a-- 0 .028,  

r I : 1 , r , , - 2 ,  r , - 3 .  

This put the singularity time close to () to give a 
g o o d  range for the Fourier  coefficients. 

6. C o m p u t a t i o n a l  resul t s  and  s ingular i t i e s  

The  numerical  computa t ion  described above 

for the traveling wave determines  the solution at 
a fixed time t -  0.(I. From lhese results, a singu- 

larity t imc t* is found through the singularity 

detec t ion me thod  described in section 6.2 below. 

Moreove r .  the solution can bc reconstructed at 
any time t,, f rom the numerical  data  at time t -- () 

th rough  the traveling wave formula  in (3.17):  

i .e. .  th rough  multiplication of the kth Fourier  
coefficient by a factor  e ''k' 

1U t 6.1. Spatial t'elocitv proliles 

i 
! 

i 
ma× 
6 ( k ) i i 

i !I 

~C, 1} 

[ 

( ' 

1:' z" !0  2E' ]:] 40 " 5 ~  - ~5',5 10 

k 

[ " i g .  4 .  E f f e c t  o f  r o u n d o f f  e r r o r  o n  t h e  s o l u t i o n  f o r  N a = S "~ 

Graph is ""~ single (-); double preci- max u (k) for precision 
sion ( • ); quadruple precision ( ); precision 10 ~4 (..). 
The last two are indistinguishable, showing sufficient accura- 
cy for this value of N,. 

Fig. 5 shows thc velocity profilc at a timc 
t I ,  I.(l before the singularity. The radial and 
axial velocities u, and u (poloidal  componcn t s )  

are illustrated through the level surfaces of  the 
real part  of s t ream function & satisfying 

1 
R e ( u , , u  ) =  Re( -- &, , q,, ) (6.1) 

r 

in fig. 5a. This shows an outward  radial jct 
a ccompan ied  by r -z  rolls that are tilted toward 
the center  of  the jet. In figs. 5b and 5c, con tour  
plots of  the cor responding  real functions .(2 ru,, 
and s r - - r w ,  are drawn. 

The  profile of  thc solution at (approximate ly)  
the singularity time t = t ,  is presented in fig. 6 in 
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3b 

I (a) 

1 

i I 

1 1.2 1 4  16  1 8  2 2 2  2 4  2 6  2 8  

3~ 
2l 

(a) 

-3 

12 14 16 1.8 2 2 2  2 4  2 6  2 8  

r 

(b) 

.E 
1 1.2 1.4 1.6 1.8 2 2,2 2 4  2,6 2.8 3 

-I 

2 

-3 

0st 10694/  > o385 

12 1.4 16 18 2 2 2  2 4  2'.6 2 8  

,c,] 
312 

-0.312 

-3 

1 2  1.4 1.6 1.8 2 2.2 2 4  2.6 2 8  

r 

Fig. 5. C o n t o u r  plots  of  (a) O, (b)  /2, (c) r at t = t* - 1.0, in 
w h i c h  t* is the numerica l ly  de termined  singularity t ime.  

I 

2.76 

(c) 

y 9 

12 1 4 1.6 18 2 2.2 2,4 2.6 2 8 

r 

Fig. 6. S a m e  as fig. 5, but at the singularity t ime t = t*. 
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the same way. This shows that the singularities 

occur  at the centers  of  the rolls, which will also 
be verified th rough  analysis of  the Fourier  co- 

efficients. This is in contrast  to the computa t ions  

of  Pumir  and Siggia [321 and of  Graue r  and 
Sideris [20], in which the greatest  amplification 

of  vorticity and possible singularities occur at the 

tip of  the ou tward  jet. 

The  funct ions ~ and ~" are odd while £2 is even. 

The  max imum values of  l~" I and I~Q{ are plot ted 

versus t ime in fig. 10. These  values are approxi-  

mate ,  since they are fo rmed  through a sum of 

the 64 Four ier  modes ,  as de te rmined  in this 

computa t ion ,  each multiplied by e '~k' to get the 

correc t  I dependence .  As a result, the values 
cannot  grow faster than e ~4'~' and are necessarily 

finite at the singularity time t . .  Nevertheless ,  

over  a time interval of  length 2.0, the value of  

the azimuthal  vorticity % is seen to increase by a 

fac tor  of  more  than 20, while the circulation ~Q 
increases by a factor  of  less than 3. This suggests 

that  ~o,, blows up, while ,(2 remains bounded .  

Clean evidence for the b lowup of w0 follows f rom 
the singularity analysis of  the next two subsec- 

tions. A similar asymptot ic  fit to the Fourier  

coefficients of  ~2, which could provide clean evi- 

dence  that  it does not blow up, was not suc- 

cessful. 

6.2. Numer ica l  detection o f  singularities 

Following the results for the spatial profiles of  

velocity and the general  formula t ion  of  section 3, 

two singularities are expected to occur  at posi- 

t ions 

z + ( r ) -  ipi +_pe. (6.2) 

Nea r  each of  these singularities the structure of 
the radial velocity u, is sought  in the form 

totic form 

]~, ~ c~k " 'e  '''~ sin(c 3 + a ,  log k + p , k )  /6.4) 

for k > 1. In (6 .2 ) - (6 .4 )  the parameters  (c~, ~'~, 

a~, %,  p~, P3) depend  on r, i.e. 

( e l ,  C2" {gl, ¢t2, t°i , P_" ) 

(c i , c ~ , ~ l ,  a~, Pl" p : ) ( r ) .  (~.5) 

Following [5,29,3(1], (c' I, %. ~tt, % ,  Pt, P:) are 
de te rmined  through a sliding fit: i.e. for each k,  

the parameters  are chosen to exactly fit the 6 

values .1~, .1~+ ~ . . . . .  .l~ .,- The asymptot ic  lit is 

successful if the values (c~, c_,. %.  % ,  p~. p~_) arc 

(nearly)  independent  of  the starting index k, as 

well as independent  of  the discretization size 

d r -  21v/N,. 

Fig. 7 shows these 6 parameters  as functions of 
k at r - 2  for two values N , -  1024 and 2(148. 

This shows convergence  as N - - , - x  as well as a 
successful fit with pa ramete r  values that arc in- 

dependen t  of  k. Note  that lila~ is plot ted so thai 

the variat ions in a ,  on the graph are actually 

quite small. The fit is equally good  for o ther  

values of  r. 

Thc  r -dependence  of  the parameters  (c~. a , .  

111) and (c 2, ¢~, P3) is plot ted in tigs. 8a and 8b. 
The  parameters  a~ and o~ are given by ~ : 

+- 0.01 and c~, 0.0_+ 0.01 independent  of r. 

The  ampl i tude  term c~ is also nearly constant :  

while the phase c~ and the real position p, arc 

approximate ly  linear in r. 
As poin ted  out in section 3, the lirst singularity 

in time cor responds  to the min imum value of  the 

complex  posit ion Pt(r) for r -  rm, ,. This is seen 
to occur  at approximate ly  r - - 2 .  The deriwitive 

d p t / d r  is p lot ted in fig. 9 which shows that Pt is 
quadra t ic  in r at r ...... . 

u , ( z ,  r) ~-- c, ei'~-(z - z~ ) ' ~'~' i<~, (6.3) 6.3. Local  analysis o f  the singularities 

for z near  z + .  A s  shown in [40], this implies that 

the Four ier  coefficients fk will have the asymp- 

Now the time dependence  is included by re- 
placing z with z -  i~rt. Using the above results, 

localadmin
Note
replace exponent by 1+(alpha1-i alpha2)
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Fig. 7. Resul ts  f rom sliding fit for Fourier  coefficients at 
r = 2.0 as a funct ion  o f  k. In (a) the graphs are of  5pl ( - ) ,  a~ 
( - - ) ,  and 5c t ( . . ) .  In (b) the graphs are of  JOe (--), 10~2 (----), 
and c 2 ( . . ) .  For each parameter  the shorter  curve is for 
N,  = 1024, whi le  the longer  is for IV, = 2048. The  fit is judged 
to be successful  since the results are nearly independent  of  k 
and N .  

for r near rmi n and z near z+ + io-t w e  approx- 
imate  

C1 = C 1 ,  C2 = C2 ' 

P l  ~-- JO1 -}- JOll ( r  - -  r m i  n ) 2  

P 2  = ~E~2 -I- ~E)21 ( r  - -  r m i n )  , 

Or, - -  i ~  2 --  _~ . (6 .6 )  

D e f i n e  n e w  or thogonal  variables centered  at the 

real singularity pos i t ion and t ime  by 
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Fig. 8. Singulari ty  parameters  as a funct ion of  r f rom the 
sl iding fit. In (a) the graphs are of  5p, ( - ) ,  e~ ( - - ) ,  and 5 G 
( . . ) .  In (b)  the graphs are of  P2 ( - ) ,  10% ( - - ) ,  and c 2 ( . . ) .  
For  each parameter  the shorter  curve is for N r = 1024, whi le  
the longer  is for N = 2048. N o t e  that % = 0 . 0 - +  0 . l .  

d~ l  0 
d r  

05 

1 

] 5  

-2 

2 

15 

Y 

175 l 8 ].85 19 ] 95 2 2.05 2 1 2 15 2.2 225 
r 

Fig. 9. dpl/dr as a function of r, showing that p~ is a 
nondegenerate quadratic at its minimum. 
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T ~ ( . r l - -  Pl " 

£ = ( z  P2) Pc,( r rmi~)" 

r/ ~ [(r rmi.) + p2,(z - ¢S~) I . (6.7) 

The spatial variable r / runs in the direction of the 
major  semi-axis of the (nearly) elliptic rolls in 
the spatial profile of figs. 5 and 6; while ,~ runs in 
the direction of the minor semi-axis. The form of 
the singularity in (6.3) is then 

Ur(Z, r, t ) ~ c ~  ~3 (6.S) 

in which the singularity variable ~ is 

: r / : - r  iff. (6.9) 

This remarkably simple form for the singularity 
may indicate that the results are generic for the 

Euler  equations. 
The corresponding stream function is 

&(z ,  r ,  t )  ~ c~- '  +~ . ( 6 . 1 0 )  

This shows that singularity occurs at the centers 
of oval-shaped rolls which are flattening as the 

singularity forms. 

7 .  C o n c l u s i o n s  

The computations and analysis presented 
above demonstrate development of singularities 
from smooth initial data for complex-valued 
Euler  solutions. A clean analysis of the singulari- 
ty is possible because of the unusual nature of 
the computation: The degrees of freedom have 
been reduced by looking for a traveling wave, 
and computational errors are minimized since 
there are no truncation or aliasing errors in the 
computat ion of a finite number of Fourier com- 
ponents. Most important,  the computation is for 
the Fourier coefficients, none of which blow up 
at the singularity. Instead, the singularity is 
found by analyzing the asymptotics of the 
Fourier  coefficients. 

Although the motivation for considering such 

solutions is through Moore's approximation, the 
complex-valued velocity fields constructed here 
arc solutions of the usual Euler equations. On 
the other  hand, there is no evidence that the 
singularities in these complex solutions have any 
relevance for real solutions; i.e., the singularities 
found under Moore's approximation could be 
spurious. 

The significance of these results is that they 
provide simple examples of solutions with singu- 
larities, as well as a reasonable conjecture for the 
location and structure of singularities in real 
flows. We also conjecture that errors in Moore's 
approximation are small, so that the combination 
u = u , + 2  R e u ,  (which is real) will be an ap- 
proximate solution of the Euler equations. 

Although this conjecture has not been ver- 
ified, several consistency conditions arc met by 
the complex solutions: First, although the real 
energy f lul ~ dx is not conserved for a complex 
solution, it is finite at the singularity computed 
here. Second for a traveling wave solution, time t 
and axial position z are linearly related. The 
time integral of vorticity is thus related to a 
spatial integral of vorticity, which is a velocity. 
Therefore  the Bea l e -Ka to -Ma jda  result 17] that 
J" m a x l w l d t - - , ~  at a singularity should imply 
[u[---+ :~ at this singularity, in agreement with the 
results above. Third the circulation ,2 remains 
bounded,  as indicated in fig. 10. 

11 . . . . . . . . . . . .  ii 
I 
L i 
t i 
I 

2 l g  1 ~  ] a  1 2  I 0 8  0 6  ta4 ' 2 LJ 

t t  0 

Fig, 10. Max imum wdues  of £ ( ) and g2 ( ) as a function ol 
f. compu ted  using the Four ier  sum ~)f (~4 modes.  
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Appendix A. Alternative formulations of the 
Euler equations 

The Euler  equations (3.1)-(3.4)  for axi- 
symmetric flow with swirl can be written in two 
other  useful representations. 

_ _1 (ar18z _ Ogzl~r ) ' [a ,  t8] = r 

which satisfies the Jacobi identity 

[[~, 181, 3,1 + [[~, 3,1, ~1 + [D, ~l , /~1 = 0 .  

(A.5) 

(A.6) 

A .  1. S t r e a m  f u n c t i o n  a n d  vor t ic i ty  

Define circulation a2 = ru o, azimuthal vorticity 
= - r w  o and stream function ~b with 

(Ur, Uz) = r - ' ( - O z q ,  , Or4, ) . (A.1) 

Denote  

U ' V  = Ur3 r + UzO z , 

- 1 2 (A.2) O 2 = rOr(r  Or) + 0 z . 

Then (3 .1)- (3 .4)  is equivalent to 

(0, + u . V ) O  = 0 ,  

(0, + u "V)(r-2~ ") = - - r  4 0 z ( a 2 )  , 

D2~b = ~" . (A.3) 

If Moore 's  approximation is applied to this sys- 
tem and a traveling wave solution is sought, the 
equation for the Fourier coefficients qt(~ r)= 
- i tp( r ,  k) is 

d ~ d 
r drr r drr ~o'k - -  (k2 + K)q-tk = E k '  ( a . 4 )  

in which K is defined by (3.25) and E~ is a 
nonlinear function of q t0 , . . . ,  q*,-1 and their de- 
rivatives. 

Denote  p = g22, ~" = - r w  o and let D 2 and ~b be 
defined as above. Suppose that ~" can be ex- 

pressed as 

= - r 2 [ a ,  p] (A.7) 

for some function a ( r ,  z ) .  If this is true initially it 
will remain true, and the Euler equations (3 .1)-  
(3.4) for axi-symmetric flow with swirl are equiv- 
alent to the following system: 

o, = [,/,, p ] ,  

1 
a , =  [q,, ~ ]  + - -  

2r 2 ' 

D 2 0  = -r2[a, srl. (A.8) 

If the initial data for such a flow is smooth, then 
a will stay bounded for all time. 

The 1 / 2 r  2 term in the equation for a intro- 
duces an artificial time dependence which may 
be removed by setting a =/3 + t% The equations 

for p, fl, 3' and th are then 

p , = [ q , ,  p ] ,  

1 
t~, = [ 0 , / ~ ] -  3, + - 2r 2 , 

D2~  = - - r 2 [ / ~ ,  P l ,  (A.9)  

A . 2 .  C l e b s c h  var iab les  with the condition that 

For a restricted class of axi-symmetric initial 
data, the flow can be described through a special 
form of Clebsch variables, as pointed out to us 
by M. Shelley and M. Vishik. Define a bracket 
[ . , . ]  by 

[% p] = 0 .  (A.10) 

Since 

d 
d t  [% p] = [0, [% P]] (A.11) 



I~ R.L'. Caflisch / Singularity jormation Jbr Euler equation.s 

the condi t ion (A. IO) is mainta ined by the evo- 
lution. 

A traveling wave ( p ,  f i ,  Y, gO( r, z - i~rt) solves 
the equa t ions  

i(r& : I4', O],  

- i o w :  14,, " / I ,  

i o - &  = [ 0 , / ~ l  - - / +  - -  

DeC, = r-'[/3, P ] .  

1 
2 r  2 , 

(A.12) 

Use of  the Jacobi identity (A.5)  shows that 

i 
1~, P] = - - -  0,[ ' / ,  p] (A. 13) 

o-r  

so that  [% p] = 0 as required.  

The  s teady swirling flow d in section 3 corre-  

sponds  to 

Clebsch solution with gp = () at some point,  then 

small per turba t ions  of  u need not be Clebsch. 
First if Vp = 0 but ~ # 0 (which will general ly be 

t ruc after a small per turbat ion) ,  then clearly 

therc  can be no such solution ~ of  (A.7).  The 

o ther  solvability condi t ion for (A.7)  is an inte- 

gral condi t ion a round  closed loops of the vector 

field ( - p , ,  p~) in (r. z). Inside such a loop there 

must  be a singular point of  the field at which 
Vp : 0. 

The lack of  structural stability implies that if a 

real flow ~ can be const ructed  f rom the present 
complex  flow as 6 ~  u 0 + 2 R e ( u ,  ). then it need 

not be Clebsch. This is significant since for a 

Clebsch flow with O ~ c~-" ¢, as in (6.10), either p 

or  ~ must  blowup.  Since thesc are both bounded  

for an initially smooth  Clebsch solution, a real 
flow ff can be close to u .  -~ 2Re(u~ ) only if li is 
not  Clebseh. 

p : p ( r )  = [ r u . ( r ) l  e , 

y = 9 ( r )  (2r  e) ' 

(A.14) 

The  e q u a n o n  for a traveling wave O = iq-'(r, z 

i¢rt) as in section 3 is then,  after some manipu-  

lation, 

r a , r  ~ O , ~ P - ( K - ' + K ) q t = A ,  (A.15) 

in which K = - i a  and the A is quadrat ical ly 
nonl inear  in ~ .  In part icular  the k = 1 Fourier  

c o m p o n e n t  ~v satisfies 

r a r  ] a r l / ~ - ( l  + K ) I / * = 0  ( A . 1 6 )  

which is identical to (3.32) for fl = r - l ~ .  Since 
both  the solution u of  section 3 and the Clebsch 
solut ion tp are de te rmined  by their 0th and first 
Four ier  modes  and since these can be chosen to 

coincide,  then every upper  analytic traveling 
wave solution u as in section 3 has a Clebsch 
representa t ion .  

On  the o ther  hand the class of  Clebsch solu- 
t ions is not  structurally stable, i.e. if u is a 

Appendix  B. IAnear instability of  an axi- 
s y m m e t r i c  vortex sheet with swirl  in an annulus 

Consider  the steady flow genera ted  by an axi- 

symmetr ic  vortex sheet r -  r,, with a background  

rotat ion in an annulus r~ < p .... r , .  The circula- 

tion is taken to be F~ inside the sheet and / \  

outside the sheet.  The potential  for the un- 
pe r tu rbed  flow is then 

q ~ = O I ; / 2 v  r I ,  r<  r . ,  

q ) ~ = O l \ / 2 ~ r ,  t',~< r < r , .  ( B. l )  

For  the pe r tu rbed  flow there is a free surface at 
r =  r,, + 8(z, l) and the potential  is 

q~l O F l / 2 r r + & l ( r . z . t ) .  r~ r <  r,, + e .  

q), = Ol\/2q-r + O~(r.  z .  t)  . i,, + ~ < r < r ,  . 

(B.2) 

Fol lowing [12,33], the linearized equat ions  for 
&,, &2 and ~ are V2&t V2d)2 0 (in cylindrical 

coordina tes)  with linearized free boundary  condi- 
t ions 
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( ] ) l r  = ~92r = ~ t '  

~bl, - ro3(F~/2~r)2~ = &2, -  ro3(F2/2"rr)2~ (B.3) 

on r = r o and 

&1,(r = r l )  = ~be,(r = r2) = 0 .  (B.4) 

The  kth mode  for these equations is 

t r l  z l  x l  i k z + c r t  
~ ) 1  = [ bllo( kr) + 02IkoI,  K r ) J e  

r ~  z ~  x l  i k z + ~ t  
62 = [b3Io(kr) + o41X-oI, Kr)Je , 

= e ikz+~' , (B.5) 

in which the coefficients are 

b l = o r k  1 K l l ( K l l I 1 o - I u K l o  ) 1, 

b 3 = ~ k  IK12(KI2110 - I12K10)  I , 

b 2 = b l l l l / K l l  b 4 = b3112 /K12  , (B.6) 

with 110 = I i(kro),  etc. The growth rate is 

or = +_V(b/c)G/r~ , (B.7) 

in which 

k - I  

Dk ~ ~(~) ~(k) (C.1) 
l = l  

in which al ~) is linear in fl for each k. A direct 
computat ion of the sums (C.1) for each k <-N z 
would require N~ operations.  Since this is not an 

initial value problem a standard pseudo-spectral  
formulat ion does not work. Here  we formulate 
an accelerated method using N 3/z operations. 

Choose an increasing sequence of number  M 1, 

M 2 . . . .  ,Mn,  with M n = N  z. Suppose that the 
computat ion of the modes k-< M~ have been 

completed.  For M i < k <-M~+ 1 split the sum D k 
in (C.1) into two parts D k = D ~ I ) + D ~  2) in 

which D~ 1) includes all terms with both l - M i  
and k -  l-< M i and D~ 2) contains the remaining 
terms. For  each i the terms in D~ 1) involve only 

k '<-Mg so are already known. Thus D~ 1) for 
M~ < k -< M i+ ~ can all be computed  together by a 
pseudo-spectral  method,  requiring only 

M~+ 1 log Mz+ 1 operations.  The remaining terms 
D~ 2) must be determined sequentially in k and 
are computed  by direct sums, requiring (Mi+ l - 
Mi) 2 steps. The total operat ion count is 

Nov = ~ Mi log M i + ( M i +  1 - M , )  2 . (C.2) 
i = 1  

9 
c : k - (K11112  - I l l K 1 2  ) , 

b = - ( K l l I ,  o -  1 ,1Klo)(Kl2I lo-  I12K10), 

G = (r21 -- F 2 2 ) / ( 2 ~ )  2 . (B.8) 

Since K is decreasing and I is increasing, then 
c > 0, and b > 0. Therefore  the steady flow is 
unstable exactly if G > 0 ,  which is precisely 
Rayleigh's  criterion for this flow. 

Appendix C. An accelerated method 

The nonlinear terms D k in (3.29) are the 
Fourier  components  of the function D defined in 
(3.26). Since D is quadratic and k is non-nega- 
tive, D~ is a finite convolution 

An optimal  choice is M i = i 2, n = N~/2 for which 
Mop = {~(N~/2 log Nz). 
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