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Moore’s approximation method, first formulated for vortex sheets, is generalized and applied to axi-symmetric flow
with swirl and with smooth initial data. The approximation preserves the forward cascade of energy but neglects any
backflow of energy. It splits the Euler equations into two sets of equations: one for u, =u, (r, z,t) containing all
non-negative wavenumbers (in z) and the second for u_ = &, . The equations for u, are exactly the Euler equations but
with complex initial data. Traveling waves solutions u, = u_(r, z — iot) with imaginary wave speed are found numerically
for this problem. The asymptotic properties of the resulting Fourier coefficients show a singularity forming in finite time at

which the velocity blows up.

1. Introduction

In three-dimensional inviscid, incompressible
flow, the vorticity can grow through vortex
stretching, and it is possible that singularities
(infinite vorticity) may develop in finite time
from smooth initial data. The interest in these
possible singularities is mathematical, numerical
and physical: Singularities in any solutions of the
three dimensional Euler equations would pre-
vent establishment of global existence theorems.

Special numerical methods would be required for

singularities or nearly singular behavior in nu-
merical solutions. Finally, singularity formation
may be a primary mechanism for transfer of
energy from large to small wavelengths and thus
an essential ingredient in the onset of turbu-
lence. Moreover singularities, which can be de-
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scribed through a small number of parameters,
may provide the simplest possible description of
a complex flow.

The main analytic result on singularity forma-
tion in 3D is that of Beale, Kato and Majda [7],
who showed that

t
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0 (1.1)

for some smooth function ¢ and for any Sobolev
norm || - ||, with s = 3. This establishes that if any
smoothness is lost at time ¢, then in fact f; max,
|w|dt’ = . A similar result, that loss of analyti-
cally implies blow-up of vorticity, was proved by
Bardos and Benachour [6]. For inviscid, incom-
pressible flow in two dimensions, an initially
smooth velocity field u (x, 0) will stay smooth for
all time due to the conservation of vorticity.
The numerical search for singularities was star-
ted on the Taylor—Green flow [10], for which the
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results indicate a singularity for a complex value
of r but not for real r. Experimental results
showing vortex reconnection for high-Reynolds
number flows inspired a study of singularities for
a filament model of two interacting vortex tubes
by Siggia [38]. The singularitics in this model
equation are smoothed out however due to flat-
tening of the vortex cores, as scen in computa-
tions of Anderson and Greengard [2]. Pumir and
Siggia |31] and Shelley, Meiron and Orszag [36].
More recently Kerr [23] presented a new set of
computations for this problem which exhibit in-
tensification of vorticity that may indicate singu-
larity formation. Several related studies of singu-
larity formation arc in [8.9,16-18.39].

Swirl in axi-symmetric flows amplifies vorticity
by stretching, and the axi-symmetry may prevent
core flattening, so that such flows scem a likely
candidate for singularitics. Grauer and Sideris
[20], Meiron and Shelley [26} and Pumir and
Siggia [32] have performed computations of axi-
symmetric flow with swirl that show significant
vortex stretching but no singularities within the
computational time. In [32] however. an adap-
tive numerical method. with nonlinear scaling of
x and 1, was used on an asymptotically reduced
cquation to produce singularities for axi-symmet-
ric flow with swirl. Some critical remarks on the
results of [32] are presented in {43].

The present study of axi-symmetric flow with
swirl is motivated by the computations of Ca-
flisch, Li and Shelley [12] for axi-symmetric,
swirling vortex sheets, with vorticity mainly in
the Z direction. The sheet is destabilized by
adding a vortex line on the axis of symmetry with
vorticity in the —Z direction. This basic flow is
drawn figuratively in fig. la. Nonlinear computa-
tions in {12] then show reconnection of the sheet
with itself and with the vortex line.

The basic flow in the present study is a
smoothed version of that vortex sheet problem.
To avoid geometric singularities at r =0 and
r == the flow is put in an annulus 1 = r=3. The
vortex line is included through an azimuthal
velocity u, = —1'/2wr, which can also be thought

Singudarity formation for Luler equations

(a)

Fig. 1. (a) An axi-symmetric. swirling vortex sheet with a
vortex line on the symmetry axis. (b) Smooth swirling How in
an annulus. formed by smoothing out the vortex sheet.

of as vorticity on the boundary r = 1. The vortex
sheet is replaced by a smooth rotational shear
layer of small amplitude, so that the resulting
basic flow is

with vorticity
w(ry=r "a,(ra,(r) 3. (1.3)

which is primarily in the +2 direction to make
the flow unstable. The geometry of this flow is
sketched in fig. b and determined in section 4
below.

The Euler solution found here consists of a
complex valued velocity field u that is a small
perturbation of «. The velocity field u is periodic
in z and contains inward and outward radial jets
accompanied by rolls in the r—z plane. The
determination of these perturbations is described
in section 4, and the real part of the flow 1s
drawn in fig. 2. The singularities found in this
study correspond to infinite values of the radial
and axial velocity and occur at the centers of
these rolls. In contrast the singularities ot Pumir
and Siggia |32] occur at the tips of the outward
jet.
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Fig. 2. Streamlines in the r-z plane for the unstable mode.
Singularities in complex Euler solutions are found at the
centers of these rolls.

The motivation for considering complex-
valued velocity fields comes from a generaliza-
tion of Moore’s approximation. Derived by
Moore for the Kelvin—Helmholtz problem
[27,28], this method has been generalized to
additional fiuid interface problems by Caflisch,
Orellana and Siegel [15], and in section 2 it is
formulated as a general approximation for singu-
larity formation. When applied to the Euler
equations for axi-symmetric flow with swirl, the
velocity u is split into two complex velocities u
and u#_=u_, in which u, consists of the non-
negative wavenumber components of u. The
complex velocity u, (as well as u_) evolves
according to the Euler equations (without any
changes), so that Moore’s approximation leads to
the same Euler equations for axi-symmetric flow
with swirl but with complex initial data.

The special solution u_ (r, z, t) found here is a
traveling wave u, = u (r, z —ict) with an im-
aginary wave speed, which is motivated by the
traveling wave solutions discovered by Siegel
[5,37] for Moore’s approximation to the
Rayleigh-Taylor problem. Singularitics move in
from the complex z-plane at speed io and occur
physically when they hit the real z line at finite
real time ¢. The solution is found through a

numerical method that is very accurate but ex-
tremely unstable; growth of round off error is
controlled by using a multi-precision package
MPFUN developed by Bailey [3,4] which allows
precision of arbitrarily high order. Round off
error levels of 107 and 10~ '*® were employed in
the computations described below.

The computation is performed for f,(r), the
k-wavenumber (in z) component of the radial
velocity. There is no singularity in f, () for finite
k; rather singularities are detected through the
asymptotic properties of f, as k— o, as in [40].
This procedure is described in section 6.

The resulting singularity in the radial velocity
u, has the form

u= (0> —r+i)"", (1.4)

in which 7 and ¢ are orthogonal spatial coordi-
nates and 7 is a scaled time coordinate, all
centered at the singularity. The simplicity of this
singularity form may indicate that it is generic
for this problem.

The complex-analytic approach to singularities
used here follows similar earlier investigations on
a variety of simpler problems; including the
Kelvin—Helmholtz problem [14,25,27,28,35], the
Rayleigh-Taylor problem [5,29,30,42], the
Hele-Shaw problem [22,41], and nonlinear hy-
perbolic or elliptic systems with exactly 2 speeds
[11]. For the first two problems, Moore’s approx-
imation was shown to give excellent predictions
for the time, location and type of singularity
formation. For nonlinear hyperbolic (or elliptic)
systems, a method was developed for “unfolding
singularities” and the generic (stable) types of
singularities were found in [11].

2. Moore’s approximation

As presented here, Moore’s approximation is
a general method that can be applied to singu-
larity formation problems. It is based on the
following consideration of energy cascade and
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inverse cascade due to non-linearities. Since e’

e i(f+kyz . N . .

¢ = ¢ . the action of nonlinearity on
wavenumbers k& and / is to add them to get
wavenumber k& + /. Decompose these interac-
tions into two groups:

(1) energy outflow (forward cascade). If
sgn(k) = sgn(!) (2.1)
then [k + [[ > max(|k[, |{[) so that energy is flow-

ing out to higher wavenumbers.
(ii) energy backflow (inverse cascade). If

o
|89
~—

sen(k) = —sgn(/) (

then |k + I < max(| k| |{]) so that energy is low-
ing back to a smaller wavenumber.

A smooth function (analytic in a finite strip)
u(z) has very little energy at high wavenumbers.
As a singularity forms, however, energy flows
out to high wavenumbers. Thus we expect the
singularity formation to be dominated by energy
outflow which is much stronger than the energy
backflow. The approximation here is to neglect
energy backflow. This cannot be valid for a
steady state. in which outflow and backflow must
balance, but it is expected to be at least quali-
tatively correct for the transient problem of sin-
gularity formation.

According to the classification (ii) above,
Moore’s approximation then amounts to neglect-
ing interactions between positive and negative
wavenumbers. This can be formulated mathe-
matically as follows: Suppose that

u(z)=u (z)+u (z), (2.3)
u,(z)= >, a, e’
k-0

u (z)= 2 i, et (2.4)
k-0

assuming at first that v has no constant term. If
A is an operator (linear or non-linear) which 1s
analytic in « and with A[0] =0, then Moore’s

approximation is

Alu|= Alu, |+ Alu ]. (

(g
‘I

The neglected terms all are nonlinearities involv-
ing both «, and v . i.c. both positive and nega-
tive wavenumbers.

More generally if

H-—=u,+u, +u . (2.6)

in which u, 1s constant in z. then Moore’s ap-
proximation is

Alu] = Alu, +u,| + Alu + ) — Alu] -
(2.7)

This will be applied to the equations for axi-
symmetric flow with swirl in the next scction.
Note that the notation w4, is used sometimes for
the sum of all the positive wavenumbers (not
including u,) and other times for the sum of all
the non-negative wavenumbers (including u,,).

The validity of this approximation for singu-
larity formation problems has not been rigorous-
ly established. For the Kelvin—Helmholtz [35]
and Rayleigh—Taylor [5] problems. however,
comparisons between solutions of Moore’s ap-
proximation and of the full probiem show excel-
lent agreement for the time. location and type of
singularity, as well as the overall shape of the
solution. Moreover in the latter problem. the
singularities occur at times when the solution has
large perturbations in its shape and is fully non-
linear. A related approximation method has
been used in a variety of other problems [19.21].

On the other hand Moore’s approximation can
be casily used to show that singularitics do not
form in the original problem if they do not form
for Moore’s approximation. since ignoring the
energy backflow biases the problem in favor of
singularity formation. For example in [13], the
solution of the Birkhoff—Rott equation for the
Kelvin—Helmholtz problem was shown to remain
smooth as long as the solution of Moore’s ap-
proximation remains smooth.
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3. Axi-symmetric flow with swirl

In this section, the equations for axi-symmetric
flow with swirl are formulated, Moore’s approxi-
mation is applied to them and, finally, traveling
wave solutions with imaginary wave speed are
investigated.

In primitive variables u = (u,, u,,u,) and p
the equations for axi-symmetric flow with swirl
are

du,+r o, (ru)=0, (3.1)
du,+u-Vu,=-9,p, 3.2)
du,+u-Vu,—r'u;=-d,p, (3.3)
du+u-Vu,+r 'uu,=0, (3.4)

in which u-V=u_d, + u,d,. The vorticity is
w = (0, 0, ©,)

=(—d,u,,o,u,—o,u_,r 'a,(ru,)). (3.5)

rzo

3.1. Moore’s approximation

Denote the system (3.1)-(3.4) as

E[u]=0 (3.6)
and set

u=u,+u_+u, (3.7)
in which

u,=u.rz,1t)= Zo i, (r, 1) e (3.8)
u_=u_(r,z,)= kEO i, (r, 1) e** (3.9)

u, = a(r)=i,(r) 0 . (3.10)
Moore’s approximation is to replace (3.6) by

Elu, +u,)+ E[u_+uy]— E[u,]=0. (3.11)

Since E|u,]|, Elu, + uy| — E[uy] and Elu_ +
u,] — E[u,] consist of all zero, all positive and all
negative wavenumbers respectively, then each of
them must be zero separately, i.e.

Elu, +u,]=0, (3.12)
Elu_ +u,)=0, (3.13)
E[u,]=0. (3.14)

The equation (3.14) for u, is satisfied for any u,
of the form in (3.10). Moreover if u is real, then
u, is real and u_ = u ., so that it suffices to solve
(3.12) for u,. The corresponding real velocity
field is then

u=u,t‘u, +u_

=u,+2Re(u,). (3.15)

3.2. Traveling wave solutions

For simplicity redefine the notation so that

x

u=u,tu, = > i (r, t)e* .
k=0

(3.16)

Following Siegel [37] look for a traveling wave
solution with an imaginary wave speed

u=u(r,z—iot)

o
— 2 12 (r) eikz+akr
k .

k=0

(3.17)

Such solutions can also be thought of as consist-
ing of pure growing modes and are partly moti-
vated by a set of solutions for the Hele—Shaw
problem derived by Saffman [22, 34]. Such solu-
tions are only possible if u is complex. For such a
traveling wave the Euler equations (3.1)-(3.4)
become

du,+r'a,(ru)=0,
—iod,u, +u-Vu,=-4a,p,

—ioa,u, +u-Vu, —r 'u;=-3.p, (3.18)
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—iod.u, +u-Vu, +r 'uu, =0, (3.19)

Since u will be a perturbation of the basic flow
u(r) write

u=u-+u ., p=p+p. (3.20)
Also to remove the i's denote
u. =10, K= —i0._. (3.21)
The equations for u’ are then
rta(rul) - KU =0,
oKU + Kp'= A .
oKu! =2r 'iu,+a,p' =B .
oKu, + wu = C, (3.22)
in which the nonlinear terms are
A=(UK~ulor)u. ,
B=(U.K—udryu. +r 'u.
C=(U'K—uld)yu,—r 'uu,

= U Ku, — w.u, (3.23)

The system (3.22) can be simplified to a single
second order equation for u/ as

alr o (ru))— K + k(n]u.=D . (3.24)
in which
i e
K(r)= 0% (3.25)
ar
L 2u,
D=0 '(3,A-KB)- 5 C. (3.26)

The remaining components of velocity and vor-
ticity are expressed in terms of u/ as

u, =il =iK "(gu.+r 'uly,

u,=o 'K '(~w.u. +C).

fr=1)=f(r=3)=0.

w. = —iKuj .

w =r ‘9. (ruy) .

w, = —iK "(ku, + D). (3.27)
Expand u! in a Fourier series as

wr.z2)= 2 fi(re* (3.28)

k=0
The equations for f, are then from (3.24)

L f,=alr 'a(rf)]—(k+x)f, =D, (3.29)
for k=1.2.... and 1 =r =<3 in which D, is the
kth Fourier coefficient of D. The boundary con-
ditions are

(3.30)

The infinite system of ODE’s (3.29), (3.30) are
the equations that will be solved numerically to
produce a solution of the axi-symmetric Euler
equations with swirl.

Several significant advantages have been
gained by restricting attention to solutions with
only non-negative wavenumbers & and to travel-
ing wave solutions:

(1) The original equations in three space and
one time variable, have been reduced to one
space and one wavenumber.

(ii) Since D is purely quadratic in «] and since
the wavenumbers in u) are all positive, then
D.=%(fi-.-. . f.). (3.31)
This shows that the coupling between the equa-
tions in (3.29) is only in one direction. Therefore
any finite number of components f,,.. .. /, can
be computed without reference to f, for [ > k.
i.e. without truncation error.

(ii1) As a special case of (i1), D, =0, so that f,
satisfies

L. f,=0. (3.

‘o
|95
o
~—
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This is exactly the equation for a linearly un-
stable mode u,(r, z, 1) = f,(r) ¢“*’" around the
steady swirling flow & = i,(r) @ with growth rate
o. A suitable steady flow and growing mode will
be determined in the next section.

(iv) The traveling wave speed o is thus de-
termined from the linear eigenvalue problem
(3.32) and is independent of the amplitude of the
traveling wave. This remarkable property of
upper analytic traveling waves was discovered by
Michael Siegel [37] and is in marked contrast to
usual nonlinear traveling wave problems, for
which the determination of the wave speed is the
most nonlinear part.

(v) Since u = u(r, z —iot) is a traveling wave
with imaginary wave speed, singularities travel in
the complex z plane at speed io. Thus a singu-
larity with imaginary component p = —Im(z) at
t=0 will hit the real z line at r=p/o. The
singularities position should also depend on r,
i.e. p=p(r), and the first singularity will occur
for r which minimizes p(r), as indicated in fig. 3.
Thus a singularity will occur at a real, finite
space and time point, if the computed initial data
u(r, z) has a singularity at any complex value of
z.

-0.1r

-0.2k

-03F

041

Imagmnary z

<051

-0.6

07

-0.8
0 1 2 3 4 5 6

Real z
Fig. 3. Singularity positions in the complex z plane. For each

value of radius r, there is a symmetric pair of singularities on
these curves.

4. The steady flow and its unstable mode

The eigenvalue problem (3.32) for f, and o
may be difficult to solve in general. Here we
formulate a special direct procedure by which f,,
o and the steady state u,(r) are determined with

a minimum of numerical approximation. Rewrite
(3.32) and (3.25) as

(L—l)fl
K= ——— 4.1
7 (4.1)
and
2 _ 1 _
K= 7 ut)wz: 2.3 ar(ru!))z ’ (42)
gr ag’r

in which L =9 ,(r™'9,7). Then

u,(r)= r‘1<a'2 J; rix(r)dr + [rlﬁg(rl)]z)l/2 ,
a’rx !

w.(r) = TR (4.3)

Therefore if f,(r) and o are specified, then (4.1)
determines « in terms of f, and (4.3) determines
i, and w,. The only restriction is that the quanti-
ty inside the square root for u, must be positive.
To insure this a special choice of f; and o is
made: The unstable mode f, is a smoothed ver-
sion of the unstable mode f; for a vortex sheet
problem, and o is the corresponding growth rate.

Consider the problem of a cylindrical swirling
vortex sheet at r=r, and with a background
rotating flow inside an annulus r; <r<r,. The
circulation is I inside the sheet and I outside
the sheet, i.e.

ri<r<r,,

- I/ 2nr,
(4.4)

Yo T\ 2mr, ry<r<r,.
According to Rayleigh’s criterion, if |I}|>|[;]
this swirling flow is unstable, and the k=1 un-
stable mode has radial velocity

a(r,z,t)=af(rye” " . (4.5)
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The amplitude a is arbitrary, and the velocity
profile f(r), derived in appendix B, is given by

b I (r)=b.K/(r). r <r<r,,

f(r):{b;ll(r)bﬂ‘K,(r), ra<r<r,, (4.6)

in which [, and K, are the modified Bessel
functions [1].

b= oK (K lL,—1,K,) ".

b.=oK (K. 1,-1,K,) .

b.=b1,/K, .

b,=b,l,,/K,. 4.7)

and the notation

L, =1(r), K,=1(r) (4.8)

]

is used. The growth rate for this mode is given
by

o=x\(blc)GIr, (4.9)

in which

b=—(K 1, — I, K )NK 1L, = 1,K) .
c=K, 1, 1,,K,.

G=(I7-T3)/2n). (4.10)

For the unstable mode in the smooth problem,
take f, to be a smoothed version of f, i.e.

filr)y = a(r) 1,(r) = B(r) K,(r) (4.11)

in which « goes smoothly from b, to b, and 8
goes smoothly from b, to b,. Set

a(r)= %(bl +by)+ %(b,x”b])d)(")»

B(r)=3(by + b))+ (b, — by)d(r) (4.12)

in which ¢ goes smoothly from —1 to I as r goes
from r, to r,, i.e.

d(ri)=—-1, &(ry)=1. (4.13)

If ¢ is monotone, then f, >0 for r, <r<r, since
f>0.

In order that the ratio (L - 1)f,/f, makes
sense, several conditions must be met. Using

gl =1,—r 'l .

Is

oK, =—K,—r 'K, , (4.14)

calculate

(L-1f, =(,~r ')
X é[(b;‘» - b[)ll 7(b4 B bz)KII
+ d)r[(b} - b])ln +(b4 B b:)K(»l -

(4.15)

Since f, vanishes at r=r and r=r,. also L, /,
must be zero there: it suffices to require
b,=¢,=0 atr=r andr=r,. (4.16)

A function ¢ satisfying (4.13) and (4.16) can
be chosen. in terms of an odd function ¥,. as

d(r)y = codpy(p) — (('1/’+('2p;)~ (4.17)

in whichpe(—1.1) for r&(r,.r,) and

Cy =~ (‘//0(1) - 'J/(’)(l) + ls d’;;(] ) .

¢y = c(P(1) = 24(1)) .

¢, =c¢p(l)/6. (4.18)

A suitable choice for p(r) and ¢,(p) is
rery (T r—r) ’

P = (ﬂ — 7%). (4.19)

Y,(p)=tanh(p/d). (4.20)

so that
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Y =(1-y3)/s,
l)l/()l: -2l/l(,)¢0/6 bl
b= —2¢5(1—3y5)/8%,

b= =2(=8¢y + 1240) /8 (4.21)
with the arbitrary parameter & representing the
thickness of the rotational shear layer (smoothed
vortex sheet) at r=r,.

In particular the limiting values of
«=(L —1)f,/f, at r=r,, r, are computed from
I'Hopital’s rule as follows: Using (K, +
Kl )(r)=r"",

_ _ bl(Kllrl)ul’ i=1,
a'fl(’""')‘{bz(Kurz)“, i=2,

3,(L — 1)f,

Kby, i=1,
= %d)rrr(KlZIll - IIZKll){Ki_jlb?’ i=2,

so that

k(r;)= %’1¢m(K12111 - 112K11)K11b3/(K12b1)
k(r,)= %r2¢,,,(K121” —1,K,))K;b,/(K;b5),
(4.22)

in which

&, = ¢"p" (4.23)
atr=r,orr=r,.

To summarize, for any choice of the parame-
ters ry, rg, 75, 17, I3, 8 and a, satisfying r, <r, <
r, and |I3|>|I,], there is an unstable mode f
and growth rate o given by (4.11) and (4.9). The
corresponding steady flow 1Z,(r) can be computed
through a single integration from (4.3), in which
the function «(r) = (L — 1)f,/f, is given by (4.15)
for r,<r<r, and by (4.22) at the endpoints
r=r, or r=r,. There is a restriction that u, is
real, i.e the quantity inside the square root in
(4.3) must be non-negative, which is the case for
the choice of parameters used below. In the

following computations, the modified Bessel
functions are evaluated through a series expan-
sion, and the integral in (4.3) is evaluated using
4th-order accurate finite difference-like for-
mulas.

5. Numerical method

The numerical method for solving the system
of 2-point boundary value problems (3.29),
(3.30) is summarized as follows:

5.1. Discretization

A 4th-order finite difference method is used
for the r-dependence, with centred differences in
the interior and one-sided differences at the
boundaries. The extra terms near the edges are
first removed by Gaussian elimination, so that
the resulting linear system can be solved with a
pentadiagonal solver. The number N, of points in
r is 512, 1024 or 2048 in the computations pre-
sented here.

The computation is for a finite number N, of
wavenumbers, with N, = 64 in the computations.
The nonlinear terms D, on the right side of
(3.29) are evaluated by an accelerated method
involving both direct and pseudospectral sums,
as described in appendix C. As pointed out in
section 3, there is no truncation error in the
restriction to finite N,. Also since D is quadratic,
anti-aliasing (i.c. padding with enough zeroes)
completely eliminates aliasing error from the
pseudo-spectral part of the computation. The
resulting complexity of the algorithm is
NN log N,.

5.2. Round-off error

The k-dependence of the system (3.29) turns
out to be extremely unstable so that roundoff
error is amplified and may ruin the computation.
This is similar to the amplification of roundoff
error found in vortex sheet computations by
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Krasny, where the computation was stabilized by
filtering [25] or smoothing [24]. Filtering is inef-
fective here because the problem is not periodic
in r (this could perhaps be overcome using a
Chebyshev representation): smoothing is too
crude to allow detection of singularitics.

The roundoff error problem was overcome
through high precision computation using the
multiple precision package MPFUN developed
by David Bailey at NASA Ames Research Cen-
ter [3.4]. This package allows arbitrary specified
precision and includes a translator that converts
a standard Fortran program into one that calls
special subroutines for muitiplication and other
built-in functions. For N, = 512, quadruple preci-
sion with roundoff-error ¢, = 10" available on
an 1BM 3090 running AIX was found to be
sufficient. For N, =1024 and 2048, roundoff
error &, = 10 " and 10 " respectively was used.

The instability with respect to &, as well as its
elimination for sufficiently small ¢, . is illustrated
in fig. 4. This graph shows max, f,(r) vs. k
computed with N =512 for single precision
(¢, =10 7), double precision (¢, =10 '), quad-
ruple precision (¢, =10 ") and multiple preci-
sion using MPFUN with 10" *, the last two of
which are indistinguishable.

1

max
Bek) i

IRE - s SR S

0 20 20 40 5C 60 ne
13

Fig. 4. Effect of roundoft error on the solution for N, = 512.
Graph is max, 4" (k) for single precision (-): double preci-
sion (——): quadruple precision (——); precision 10 ™).
The last two are indistinguishable, showing sufficient accura-
cy for this value of N, .

3.3. Choice of parameters

The computational results here are for the
following choice of parameters in the basic flow
u, (Oth mode) and Ist mode f,. as described in
section 4

Ii=—10. I"=0.1,
6=03. a=10.028.
rp=1, r,=2, r.=3.

This put the singularity time close to 0 to give a
good range for the Fourier coefficients.

6. Computational results and singularities

The numerical computation described above
for the traveling wave determines the solution at
a fixed time 1 =0.0. From these results, a singu-
larity time ¢ is found through the singularity
detection method described in section 6.2 below.
Morcover, the solution can be reconstructed at
any time ¢, from the numerical data at time 1 =0
through the traveling wave formula in (3.17):
1.e.. through multiplication of the kth Fourier

. 5 Tk
coefficient by a factor ¢”"".

6.1. Spatial velocity profiles

Fig. 5 shows the velocity profile at a time
t=1,— 1.0 before the singularity. The radial and
axial velocities «, and u_ (poloidal components)
are illustrated through the level surfaces of the
real part of stream tunction . satistving

]
Re(u,. u )= P Re(—w. . ) (6.1)

in fig. 5a. This shows an outward radial jet
accompanied by r—z rolls that are tilted toward
the center of the jet. In figs. 5b and 5c, contour
plots of the corresponding real functions {2 = ru,
and { = —rw, are drawn,

The profile of the solution at (approximatcely)
the singularity time 1 = ¢_ is presented in fig. 6 in
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Contour plots of (a) ¢, (b) 2, (c) {at t=*—1.0, in Fig. 6. Same as fig. 5, but at the singularity time ¢ = t*.

which ¢* is the numerically determined singularity time.
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the same way. This shows that the singularities
occur at the centers of the rolls, which will also
be verified through analysis of the Fourier co-
efficients. This is in contrast to the computations
of Pumir and Siggia [32] and of Grauer and
Sideris {20]. in which the greatest amplification
of vorticity and possible singularities occur at the
tip of the outward jet.

The functions ¢ and ¢ arc odd while (2 is even.
The maximum values of |{| and [£2] are plotted
versus time in fig. 10. These values are approxi-
mate, since they arc formed through a sum of
the 64 Fourier modes, as determined in this
computation, cach multiplied by e¢”* to get the
correct t dependence. As a result, the values
cannot grow faster than ¢*”' and are necessarily
finite at the singularity timc ¢ . Nevertheless.
over a time interval of length 2.0, the value of
the azimuthal vorticity w, is seen to increase by a
tactor of more than 20, while the circulation ()
increases by a factor of less than 3. This suggests
that w, blows up, while {2 remains bounded.
Clean evidence for the blowup of w, follows from
the singularity analysis of the next two subsec-
tions. A similar asymptotic fit to the Fourier
coetficients of {2, which could provide clean evi-
dence that it does not blow up. was not suc-
cesstul.

6.2. Numerical detection of singularities

Following the results for the spatial profiles of
velocity and the general formulation of section 3.
two singularities are expected to occur at posi-
tions

z.(r)=—1p, = p.. (6.2)

Near each of these singularities the structure of
the radial velocity u, is sought in the form

@ (6.3)

tor z near z, . As shown in [40], this implies that
the Fourier coefficients f, will have the asymp-

—1- Lag - ias)

ulz,nN=c e (z—=z,)

totic form
[ =k e M sin(es + as log k + pak) (6.4)

tor k> 1. In (6.2)—(6.4) the parameters (¢, ¢,.
«,. a,, p.py) depend on 7. i,

(Cr Cooapanprops)

= (). Cry oo praopa)(r) . (6.5)

Following {5,29.30]. (¢,, ¢». @, a5, p,. p,) are
determined through a sliding fit: i.e. for each k.
the parameters arc chosen to exactly fit the 6
values f,, fi.,-. ... 1. <. The asymptotic fit is
successtul if the values (¢,. ¢,
(nearly) independent of the starting index k., as
well as independent of the discretization size
dr=2m/N,.

Fig. 7 shows these 6 parameters as functions of
k at r=2 for two values N, = 1024 and 2048,
This shows convergence as N — > as well as a
successful fit with parameter values that arc in-
dependent of 4. Note that 10« is plotted so that
the variations in «, on the graph arc actually
quite small. The fit is cqually good for other
values of r.

The r-dependence of the parameters (¢,. «,.
p,) and (¢,. a.. p.) is plotted in figs. 8a and 8b.
The parameters «, and o, are given by «, =
—3 0.0l and @, = 0.0 £ 0.01 independent of r.
The amplitude term ¢, is also nearly constant;
while the phase ¢, and the real position p. are
approximately linear in r.

As pointed out in section 3, the first singularity
in time corresponds to the minimum value of the
complex position p,(r) for r=r_, . This Is seen
to occur at approximately r = 2. The derivative
dp,/dr is plotted in fig. 9 which shows that p, is
quadratic in r at r

LWL L, P pPs) are

min’

6.3. Local analysis of the singularities

Now the time dependence is included by re-
placing z with z —igt. Using the above results,


localadmin
Note
replace exponent by 1+(alpha1-i alpha2)
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Fig. 7. Results from sliding fit for Fourier coefficients at
r=2.0 as a function of k. In (a) the graphs are of 5p, (-),
(—-). and 5¢, (--). In (b) the graphs are of p, (=), 10a, (—),
and ¢, (--). For each parameter the shorter curve is for
N, = 1024, while the longer is for N, = 2048. The fit is judged
to be successful since the results are nearly independent of k
and N,.

for r near r_,, and z near z, +igt we approx-

imate

n

€ =Cp, 6 =6y,

plzp_1+ﬁll(r_rmin)2’

P2 =Pt poy(r = roin)

@, — i, =—5. (6.6)

Define new orthogonal variables centered at the
real singularity position and time by

0.8}
06}
o4\

0.2

195 2 2,05 2.1 215 2.2 225

05

05 L L s n
175 18 185 19 1.95 2 2.05 2.1 2.15 2.2 2.25

Fig. 8. Singularity parameters as a function of r from the
sliding fit. In (a) the graphs are of 5p, (-), a, (—-), and 5c¢,
(-*)- In (b) the graphs are of p, (), 10a, (--), and c, (-*).
For each parameter the shorter curve is for N, = 1024, while
the longer is for N, =2048. Note that a,=0.0+0.1.

€

doy,  of
dr

2 " " N L " 1 " L
175 1.8 1.85 19 195 2 2.05 21 215 2.2 225
r

Fig. 9. dp,/dr as a function of r, showing that p, is a
nondegenerate quadratic at its minimum.
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T= ot~ [;] .
é’: zZ— ﬁz)i ﬁz|(r7 rmln) N
T,:\/pTl;[(rirmin)**pill(z_ﬁZ)l' (67)

The spatial variable 5 runs in the direction of the
major semi-axis of the (nearly) elliptic rolls in
the spatial profile of figs. 5 and 6; while ¢ runs in
the direction of the minor semi-axis. The form of
the singularity in (6.3) is then

ulz,r.t)y=cé v (6.8)
in which the singularity variable ¢ is

E=n"—1-if. (6.9)

This remarkably simple form for the singularity
may indicate that the results are generic for the
Euler equations.

The corresponding stream function is
Wz, r )= (6.10)
This shows that singularity occurs at the centers
of oval-shaped rolls which are flattening as the
singularity forms.

7. Conclusions

The computations and analysis presented
above demonstrate development of singularities
from smooth initial data for complex-valued
Euler solutions. A clean analysis of the singulari-
ty is possible because of the unusual nature of
the computation: The degrees of freedom have
been reduced by looking for a traveling wave,
and computational errors are minimized since
there are no truncation or aliasing errors in the
computation of a finite number of Fourier com-
ponents. Most important, the computation is for
the Fourier coefficients, none of which blow up
at the singularity. Instead, the singularity is
found by analyzing the asymptotics of the
Fourier coefficients.

Although the motivation for considering such

solutions is through Moore’s approximation, the
complex-valued velocity fields constructed here
arc solutions of the usual Euler equations. On
the other hand. there is no evidence that the
singularities in these complex solutions have any
relevance for real solutions; i.c., the singularitics
found under Moore’s approximation could be
spurious.

The significance of these results is that they
provide simple examples of solutions with singu-
larities, as well as a reasonable conjecturc for the
location and structure of singularities in real
flows. We also conjecture that errors in Moore’s
approximation are small, so that the combination
u=u,+2 Reu, (which is real) will be an ap-
proximate solution of the Euler equations.

Although this conjecture has not been ver-
ified. several consistency conditions are met by
the complex solutions: First, although the real
energy [ |u|” dx is not conserved for a complex
solution, it is finite at the singularity computed
here. Second for a traveling wave solution, time ¢
and axial position z are lincarly related. The
time integral of vorticity is thus related to a
spatial integral of vorticity. which is a velocity.
Therefore the Beale—Kato—Majda result [7] that
J" max|w|dt—>= at a singularity should imply
|u| — = at this singularity. in agreement with the
results above. Third the circulation {2 remains
bounded. as indicated in fig. 10.

103, ey ey ey S e

102 -

aar T R

Ky —

18 1o 14 12 1 08 06 04
tt?

Fig. 10. Maximum values of { (=) and {2 (—-) as a function ot

t. computed using the Fourier sum of 64 modes.
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Appendix A. Alternative formulations of the
Euler equations

The Euler equations (3.1)-(3.4) for axi-
symmetric flow with swirl can be written in two
other useful representations.

A.l. Stream function and vorticity

Define circulation {2 = ru,, azimuthal vorticity

{ = —rw, and stream function ¢ with
(u,,u,)=r"'(=a,4,9,9). (A1)
Denote

u-V=ud, +u,i,,

D*=ra,(r 'a,)+0>. (A2)
Then (3.1)-(3.4) is equivalent to

(3, +u-V)2=0,
(0, +u-V)r’0)=—r"0,(27),
D =1¢. (A.3)

If Moore’s approximation is applied to this sys-
tem and a traveling wave solution is sought, the
equation for the Fourier coefficients ¥{’ =

—ig(r, k) is

d ., d
ror g b (K %= Ey (A.4)
in which « is defined by (3.25) and E, is a
nonlinear function of ¥, ..., ¥, _; and their de-
rivatives.

A.2. Clebsch variables

For a restricted class of axi-symmetric initial
data, the flow can be described through a special
form of Clebsch variables, as pointed out to us
by M. Shelley and M. Vishik. Define a bracket

[-.-]by

1
[a’ B] == ; (arBZ - azBr) ’ (AS)
which satisfies the Jacobi identity

e, BL ¥l + 1B, vl a] +[[v, «], B]=0.
(A.6)

Denote p = 2% { = —rw, and let D and ¢ be
defined as above. Suppose that { can be ex-
pressed as

{=—ra, p] (A7)

for some function a(r, z). If this is true initially it
will remain true, and the Euler equations (3.1)—
(3.4) for axi-symmetric flow with swirl are equiv-
alent to the following system:

p. =¥, pl,
1
a,=[¢,a]+577

D= —r’la, {]. (A.8)

If the initial data for such a flow is smooth, then
a will stay bounded for all time.

The 1/27° term in the equation for a intro-
duces an artificial time dependence which may
be removed by setting « = 8 + ty. The equations
for p, B, v and ¢ are then

p. =¥, p],

v, =, 7],

Bt:[waﬂ]_‘y+i7’

D’y =—r’[B, o], (A.9)

with the condition that

[v. p1=0. (A.10)
Since
d J—
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the condition (A.10) is maintained by the evo-
lution.

A traveling wave (p. B. vy, ¥)(r. z — igt) solves
the equations

~iop. = [ pl .

‘]OWYI = ll\l,‘ 71 .
. i
“ioB =By o5
D= —r’[B. p]. (A.12)

Use of the Jacobi identity (A.5) shows that

i
[v. pl =~ ;d/,[%/)] (A.13)

so that [y, p] =0 as required.

The steady swirling flow @ in section 3 corre-
sponds to
p=p(r) = [ri, ()"
y = y(r)=(2r’)
B=uy=0.

!

(A.14)

The equation for a traveling wave ¢ =i¥(r. z —
iot) as in section 3 is then, after some manipu-
lation,

rar o, W — (K + k)W = A, (A.15)
in which K = —id_and the A is quadratically
nonlinear in ¥. In particular the & =1 Fourier
component ¥, satisfies

rar e, V- (1+ k)W =0 (A.16)
which is identical to (3.32) for f, = r '¥,_. Since
both the solution u of section 3 and the Clebsch
solution ¢ are determined by their Oth and first
Fourier modes and since these can be chosen to
coincide. then every upper analytic traveling
wave solution u as in section 3 has a Clebsch
representation.

On the other hand the class of Clebsch solu-
tions is not structurally stable. i.c. if u is a

Clebsch solution with Vp = () at some point. then
small perturbations of # need not be Clebsch.
First if Vp =0 but ¢ # 0 (which will generally be
truc after a small perturbation), then clearly
therc can be no such solution « of (A.7). The
other solvability condition for (A.7) is an inte-
gral condition around closed toops of the vector
field (—p,. p,) in (r. z). Inside such a loop there
must be a singular point of the field at which
Vp = 0.

The lack of structural stability implies that if a
real flow & can be constructed from the present
complex flow as = u, +2Re(u, ). then it need
not be Clebsch. This is significant since for a
Clebsch flow with = ¢£° * as in (6.10). either P
or a must blowup. Since thesc are both bounded
for an initially smooth Clebsch solution, a real
flow u can be closc to u, + 2Re(u, ) only if & is
not Clebsch.

Appendix B. Linear instability of an axi-
symmetric vortex sheet with swirl in an annulus

Consider the steady flow gencrated by an axi-
symmetric vortex sheet r = r, with a background
rotation in an annulus r, < r< r,. The circula-
tion is taken to be [ inside the shect and [,
outside the sheet. The potential for the un-
perturbed flow is then

@ =602m r e,

D, =0[2%. ry<r<r,. (B.1)
For the perturbed flow there is a free surface at

r=r,+ &z, 1) and the potential is

D=0 2w+ d(r.z. ). 1

D, =027+ b(r.z 1) ryHE< ..
(B.2)

Following [12.,33], the linearized equations for
&,. b, and £ are V¢, =V°¢, =0 (in cylindrical
coordinates) with linearized free boundary condi-
tions
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d)lr = d)Zr = g! )
by, —ry (L127) €= ¢y, — 1y (L2716 (B.3)

on r =r, and

b, (r=r)=dy(r=r,)=0. (B.4)
The kth mode for these equations is
¢1 = [b]l()(kr) + szO(kr)]eikz+g; ’

&, = [b31,(kr) + b4K0(k’)]eikz+m )
f — eik:+at , (BS)

in which the coefficients are

bl U'kilKU(KUIm_IIIKIO)il 4
b, a'kilKlz(Klzlm - 112K10)71 ,
b,=0b1,,/K,, b,=b;l,/K,,, (B.6)

with I,, = I,(kr,), etc. The growth rate is

o==\(blc)GIrk, (B.7)

in which

c=k (K, I, ~ I,,K,,),
b= _(Knlm - 111K10)(K12110 - [12K10) ’
G=(I'}-T})/2w). (B.8)

Since K is decreasing and [/ is increasing, then
¢>0, and b>0. Therefore the steady flow is
unstable exactly if G >0, which is precisely
Rayleigh’s criterion for this flow.

Appendix C. An accelerated method

The nonlinear terms D, in (3.29) are the
Fourier components of the function D defined in
(3.26). Since D is quadratic and k is non-nega-
tive, D, is a finite convolution

k-1
D, =2 a®al,, (C.1)
=1

in which a\® is linear in f, for each k. A direct
computation of the sums (C.1) for each k= N,
would require N? operations. Since this is not an
initial value problem a standard pseudo-spectral
formulation does not work. Here we formulate
an accelerated method using N.'? operations.

Choose an increasing sequence of number M,
M,,...,M,, with M, =N,. Suppose that the
computation of the modes k=< M, have been
completed. For M, <k =M, , split the sum D,
in (C.1) into two parts D, =D+ D® in
which D" includes all terms with both /=< M,
and k — = M, and D'” contains the remaining
terms. For each i the terms in D" involve only
k'=M, so are already known. Thus D!" for
M, <k =M, can all be computed together by a
pseudo-spectral  method,  requiring only
M, log M, , operations. The remaining terms
D must be determined sequentially in k and
are computed by direct sums, requiring (M, , —
M,) steps. The total operation count is

Nop = 2 M;log M; +(M,,, _M.')z- (C.2)
i=1

An optimal choice is M, = i’, n = N}'? for which
No, = O(N??1og N,).
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