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Abstract. Shock waves in gas dynamics can be described by the Euler Nav ie r -  
Stokes, or Boltzmann equations. We prove the existence of shock profile 
solutions of the Boltzmann equation for shocks which are weak. The shock is 
written as a truncated expansion in powers of the shock strength, the first two 
terms of which come exactly from the Taylor tanh (x) profile for the Navie r -  
Stokes solution. The full solution is found by a projection method like the 
Lyapunov-Schmidt  method as a bifurcation from the constant state in which the 
bifurcation parameter  is the difference between the speed of sound c o and the 
shock speed s. 

1. Introduction 

Shock waves are one of the most  important  features of gas dynamics. They can 
be understood from several different theories, and for steady plane shock waves 
the different descriptions have been well developed mathematically. By the Euler 
equations, and the resulting Rankine-Hugonio t  conditions, a shock is described 
as a jump discontinuity in density, velocity, and temperature from (p_ ,u_, T_) on 
the left to (p+,u+,  T+) on the right, which translates steadily at speed s[4]. I f  
viscosity and heat conduction are included through the compressible Navie r -  
Stokes equations, the shock wave is found to be a smooth profile which translates 
uniformly at speed s and smoothly interpolates between the asymptotic values 
(p_,u_,  T_) at x = - oo and (p+,u+, T+) at x = + oo [9,21]. 

For  a weak shock this provides shock profiles very close to those observed 
experimentally. But for strong shock waves more realistic results are obtained 
from the Boltzmann equation of kinetic theory, which includes a statistical 
description of the molecular interactions within the gas. The Boltzmann shock 
profile translates uniformly at speed s and interpolates between two velocity 
distribution functions F_(~) at x = - oo and F+(~) at x = + oo which are uniform 
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Maxwellians given by 

F±(¢) = p+_(2~zT+_) 3/2 exp { - 1¢ - u+ 12/2T_+ }, (1.1) 

and in which (p_, u_, T_), (p+,u;+,T+), and s satisfy the Rankine-Hugoniot  
conditions. The distributions F+ and F_ are independent of x and t and are 
equilibrium solutions of the Boltzmann equation. The resulting profiles, determined 
either numerically [19] or by analytic approximation [13, 20], agree very well with 
experiments. The excellent review article by Fiszdon, Herczynski, and Walenta 
[7] contains detailed comparisons of the Navier-Stokes and Boltzmann solutions 
with experimental results. 

In this paper we prove the existence of shock profile solutions of the Boltzmann 
equation for weak shocks and demonstrate the agreement of these solutions with 
the Navier-Stokes profiles for such shocks. The solution is found as a truncated 
expansion in powers of the shock strength. The first term is the uniform Maxwellian 
state; the next has spatial variation given by the tanh(x) profile of a weak 
Navier-Stokes shock. The higher order terms approach constant values at x = +_ oo, 
but at the rate e -~txt + e -lxt~ with 0 < fl _< 1, which depends on the intermolecutar 
tbrce law. By contrast the tanh profile decays like e '~lxl. 

The intermolecular forces considered here are those which derive from hard 
cut-off potentials as defined by Grad [11]. They are related to power law forces 

s - 5  
~'(r) =r-~;  the decay exponent is then given by fl = 2 (3 -  7) -1 with 7 -  

s - 1  
Nicolaenko and Thurber [15] already proved an analogous result for the hard 
sphere potential with s = to and fl = 1. The slower decay rate /3 < 1 for other 
potentials was previously indicated by several authors [17, 24, 25]. It is caused by 
the long mean free paths of molecules of high velocity. Their collision frequency 
is given by the function v (0~  (1 + I~1) ~ (cf, (2.8)) and their mean free path by 
Cv(~)- 1. For s < o% ~ < 1 and the mean free path T to as l~l'~ oo. Thus fact particles 
travel a long distance before equilibrating, i.e. before becoming part of the 
Maxwellian distributions at x = +_ oo. This slow equilibration is balanced against 
the small number of large velocity particles in the distribution (1.1) to obtain the 
overall decay rate e-Ixla. There is a similar phenomenon in the initial value problem 
for soft potentials investigated by Caflisch [2] and Ukai and Asano [22]. 

Shock profiles for a model Boltzmann equation with discrete velocities were 
constructed by Gatignol [8] and Caflisch [1]. The agreement between the 
Boltzmann equation and the Euler or Navier-Stokes equations away from shocks 
was shown by Nishida [16], Kawashima, Matsumura, and Nishida [12], and 
Caflisch [3]. The projection method used here is compared with the Chapman-  
Enskog expansion in [23]. 

The nonlinear Boltzmann equation is described in Sect. 2 and Appendix A and 
is specialized to Eq. (2.13) and (2.14) for the steady plane shock profile. The main 
result on the existence of shock profiles is stated in Theorem 2.L The equations 
are analyzed by a projection method, like the Lyapunov-Schmidt method, in 
Sect. 3 to find the weak shock profile as a bifurcation from the constant state, in 
which the perturbation parameter e is the difference between the sound speed c o 
and the shock speed s. This is the same as the method introduced in [14] and 
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[15] by Nicolaenko and Thurber. In this problem we are unable to find an exact 
eigenfunction for the projection method; instead an approximate eigenfunction is 
used. After a partial expansion of the solution and a modification to eliminate the 
null space in the second Lyapunov-Schmidt  equation, the equations are written 
as (3.52)-(3.55). The first two are solved explicitly;the third is a simple near-linear 
scalar equation. 

The analysis of Eq. (3.55) occupies Sect. 4, 5, and 6. Basic estimates on the 
linear collision operator are derived in Sect. 4. These use new estimates on the 
collision kernel and a new result, Proposition 4.4, showing compactness in the sup 
norm for the collision operator (a more limited result was proved by Grad [1 i]). 
In Sect. 5 these estimates are used to construct a semi-group to solve the linearized 
equation. Decay of the linearized solution is demonstrated in Sect. 6. Using this 
decay, the full nonlinear equations are solved in Sect. 7. 

We use italics for a vector  ~ER 3 and non-italics for its magnitude ~ = i¢t- We 
also write ¢1 for the first component of ~. 

2. The Boltzmann Equation for a Shock Profile 

The nonlinear Boltzmann equation of kinetic theory is 

+ ~- ~" = Q(F, ~3, (2.1) 

in which F = F(~, x, t) is the distribution function for gas particles with velocity 
~ R  3 at position x e R  3 and time t eR  ÷. The collision operator Q is a quadratic 
integral operator over ~ and is described in detail in Appendix A. In the collision 
process mass, momentum, and energy are conserved, i.e. for any distributions F 
and G 

< 1, Q(F, G)> = 0, 

(~I,Q(F,G)> =0 ,  i =  1,2,3, (2.2) 

(~2,Q(F,G)> =0 ,  

in which ( f , g )  = ~ f(~)g(~)d~. The local equilibrium distributions for the scatter- 
R3 

ing are distributions F with Q(F, F ) =  O; the only solutions are the Maxwellians 

F(¢) = p(2r~T)-3/2 exp { - (¢ - u)Z/2T}. 

Since x and t are mere parameters in Q, the constants p, u, T may depend arbitrarily 
on x and t. For any distribution F, symmetry and posifivity properties of F imply 
that 

f log (F(~)) Q(F, F)(~)d¢ < 0. (2.3) 

A plane steady shock profile is a continuous solution F(¢, x, t) = F(q, x - st) 
which depends on only one space variable x = x 1 and translates at uniform speed 
s. Its values at x = + co are Maxwellians F_+ given by (1.1) with p+_,u+_, T+_ each 
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constant. By shifting and rescaling ~, F, and s we can replace them by 

F(~, - oo) = 0)_(4) -= (2~)-3/2e-¢~/2, (2.4) 

F(~,  oo) = 0)+(4) ~ p + ( 2 n T + ) 3 / 2  exp  { -  ((~1 - u+)  z 

+ 42 z + {2)/2T+ }, 

and ask that F solve 

(41 - s) ~-~ -F = Q(F, F). (2.5) 
OX 

Next we linearize F about ~o_ by setting F = 0)_ + 0)1/2f  SO that f solves 

(41 - S ) ~ x f  = - L f +  vr(f , / ) ,  (2.6) 

f(¢, - oo) = o, 

f(¢,  - co) =f~(~) = (0)+ - 0)_)0)_- 1/2 (2.7) 

- Q ( 0 ) -  f ,  0 ) -  o) The operators L f =  20)5_l/2Q(0)_,0)[/zf)  and vF( f ,o )=0)7~  1/2 ,/2 1/2 
and the function v(~) are described in detail in Appendix A and in [10]. Several 

important properties are that 

L f ( ¢ )  = v(¢) f (¢)  - K f (¢) ,  

K f ( ¢ )  = ~ k(¢, t i ) f ( t l )dq,  
R 3 

(2.8) 

vl(1 + ~)' < v(¢) < v~(1 + 0 ~, 

0 < 7 <  1, 0 <v  1, and 0 < v 2  each constant. The function v(4) is locally with 
uniformly continuous and the operator L is self-adjoint and non-negative with 
N(L)  = R(L)  ~ spanned by the orthonormal sequence {Xo . . . .  , ;~4} defined by 

X0 = O)1-/2, 

Z/= 4~ 0) 1-/2, 

X4 = 6-112(~2 _ 3)0)~/2. (2.9) 

The operator K is compact in La(~). 
The spatially uniform distributions f =  0 and f = f ~  are both solutions of (2.6). 

The desired continuous solution connecting these two states must satisfy the 
following conservation properties, which come from (2.2) and (2.6): 

<Z,(4~- s ) , f ( ~ , x ) >  =0,  for all x, (2.10) 

and for i = 0  . . . . .  4. For  x =  Go, these are just the Rankine-Hugoniot  jump 
conditions for the states (p +, u +, T+) and (1, 0, 1) and the speed s, viz. 

- s ( p +  - 1) + p + u +  = O,  

- sp+u+ + p+u2+ + p+7+ - 1 =0,  (2.11) 

+ ~u+) + + ~ u + ) - ~ } + p + u + ( 2  + p + u + T + = O .  - s{p + (~ T+ i z 3 3 T 1 2 
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Note however that the Rankine-Hugoniot  condition (2.10) holds for all x. 

(2.3) it follows that ~--7~(~l-s)FlogFd¢<O and in particular From 

~(~1-s)co_logco_d~ >~(~1-s)co+logco+d¢. This is the analogue of the Boltz- 
mann H-Theorem for the shock problem. The integrals are calculated using (2.4) 
to obtain the inequality 

s3(log 2rt + 1) > p +(u+ -- s)(-- log p + + 3log 2~7+ -- 3)- 

The entropy function for an ideal monotonic gas as considered here is S = 3. 
log(}p-2/aT). So this inequality can be rewritten using (2.11) as s(S_ - S + ) >  O, 
the entropy inequality across a shock in which S+ and S_ are the entropies of 
the fluid states (p+, u+, T+) and (1, 0, 1) at x = ___ co. This is equivalent to the usual 
entropy condition 

s(1 - p + )  > 0. (2.12) 

The relations (2.11) and (2.12) are conditions on the choice of co+. We take 
s > 0; then ifs > c o = (5/3) 1/2, the sound speed of an ideal monatomic gas, the only 
choice is co+ = co_ and the solution of (2.6), (2.7) is f =  0. If 0 < s < c o, there is a 
solution co+ 41 co_ (cf. [4]). 

We shall study only weak shocks with c o - s = e > 0 small; (2.11) then implies 
that co+ - c o _  = 0(e) (cf. [4]). We shall also find that the spatial variation of f is 
at the rate e. Thus we replace x, f, and f~  in (2.6) and (2.7) by x ' =  ex, f ' =  
e - * f  f~o = e- l f~ o. Dropping the primes, the equations are rewritten as 

({1 - -  s) Q~-- f = - 1-Lf + vr(f,, f ) ,  (2.13) 
OX 8 

f(¢, - co) = O, 

f(¢, co) = f~(~) = g- 1(co+ _ co_)co2 1/2 (2.14) 

The solution f of (2.13), (2.14) will be compared with the solution of the 
Navier-Stokes (NS) equations, which in the original unscaled variables are 

- SUxP + (pu) =o, 

0 _~x(PU 2 0 2 - S~xPU + + p) = ~rl~xzU, (2.15) 

0 o • . 2 0  0 4 0 / /  (?u~  
_ s~xp(e + ½,z)+ _~x{PU( e + 2,_u 2) + p,} = ~_~x2~xe +Xtl~x~U_~x) ' 

p = pT= 2pe. (2.16) 

The viscosity and heat conduction coefficients q and 2 are determined by the 
first term F 1 in the Chapman-Enskog expansion [6] as 

4 / ~ ~  u = - -  ( {1 £0~/2' ({1 - -  s)F1 }- (2.17) 
UA, 
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~x 4 0u 22 e -]-~-qU~xx = - \2~/!'~2~"'1/2~- ,,t'~lt~ _ s ) F 1 ) .  (2.18) 

Oe ~u 
For a weak shock s = c o - e  and ~xx = (Co 1+ o(e))~  x and the equations (2.15) 

can be combined to yield approximately 

~¢oU ~ - 2~CoU = ~c0(n + ~ ) u ~ ,  (2.19) 

with the right hand side given by 

1 2 (Co~1 + g~ , (~1-  s)F1).  (2.20) 

The solution of (2.18), after rescaling as above, is 

UNs = ¼(tanh ( -  ¼(q + ½,~)- ~x) + 1). (2.21) 

Denote the corresponding density and temperature profiles by Pus and TNs and 
define 

fNs(~, x) = co_- 1/2(¢)pys(2r~ TNs )- 3/2 

• exp { -- ((~t -- UNs) a + ~2 2 + ~)/2TNs}. (2.22) 

The results will be proved using weighted sup norms on ~ defined by 

IIfll~,r = sup(1 + ~)~e~lf(~)[, 

and function spaces 

II/iti, = l l f  11o,. 

G~,r= { f  :ltfH~,r < m},  

Gr  ~ G0,1"" 

Decay in x will be measured by the function 

A(x) = e-"fx/~t~ + e-  ~ J~l, 

in which #,[•, and z 1 will be chosen later. 

(2.23) 

(2.24) 

(2.25) 

Moreover f is unique, up to translation in x, among those solutions satisfying (2.26). 
It can actually be shown that f is unique, up to translation, among those 

solutions which are bounded in G,,I,. This means that F is unique among solutions 
of the form F = co_ + O(e). 

(2.26) 
]t f ( x )  - f'~s tl ~,, < c~;. 

I1 f ( x )  --fNs(X)[It N ceA(x), 

Theorem 2.1. Let s ,p +,u +, T+ satisfy conditions(2.11) and (2.12) with ~ = c o - s > 0 
sufficiently small. Let  f ~s be the distribution defined by (2.22). Then there is a shock 
profile solution f o f  the Boltzmann equation (2.13) and (2.14). It  satisfies: 
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3. The Projection Method 

We shall solve (2.13), (2.14) by a projection method similar to the Lyapunov-  
Schmidt method, in which the principal part of f is found as an eigenfunction ~b~ 
of the linearized problem (2.t3), and the bifurcation parameter is e = c  o - s .  
Decompose f as f ( x ,  ~) = z(x)(p~(~) + ew(x, ~). The equation for z ((3.32) or (3.52) 
and (3.54)) will be fully nonlinear but easily solvable since z is a function only of 
x. The equation for w ((3.31) or (3.53) and (3.55)) will be weakly nonlinear since 
it makes only a small contribution to f The function qS~ is chosen to have the 
following properties: 

(i) f ( x  = o e , ¢ ) -  f ( x  = - oe,~) = z~qS,(¢) + O(e2), for some constant z~, so 
that q~ contains the dominant variation of f 

(ii) L4~, = ~z(~l -s)qS~, so that qS~ is a generalized eigenfunction for the linear 
operator L in which the eigenvalue ez can be thought of as the Laplace transform 
variable for x. 

(iii) qS, satisfies the constraints (2.10). 
This method was used by Nicolaenko and Thurber [15] in their study of a 

shock in a gas composed of rigid spheres and further developed by Nicolaenko 
[14]. A similar eigenvalue problem was solved in [5,26]. For other intermolecular 
force laws, we are unable to solve the eigenvalue problem exactly. The difficulty is 
that the (generalized) eigenvalue ez is embedded in the (generalized) continuous 
spectrum. Since L = v(~) + K with K compact, an easy extension of Weyl's theorem 
[18] implies that the (generalized) continuous spectrum for the problem in (ii) is the 
set {z:v(~) = ez(~ 1 - s)} which is the whole real line if v(~) satisfies (2.8) with 7 < 1. 
However it is sufficient in the projection method to use an approximate eigen- 
function ¢,  solving 

A. The  Approximate  Eigenfunction 

We shall find ¢~ as a sum of the form 

¢~ = ¢0  + ~'~, 

O~ = 4~1 +eO~. 

with ~b o and ~bl independent of e and satisfying 

L~b 0 = 0, 

L~b 1 = z(¢ 1 - Co)~b0, 

0, bounded, 

( ( ¢ 1 -  s)zi, ~b~)= 0, i = 0  . . . . .  4, 

( ( ~  - s ) ¢ ~ , ¢ ~ >  = - ~. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

By including more terms in the expansion of ~b~ we could make the error ~2/~ as 
small as desired, but we are unable to show that the resulting series converges to 
an eigenfunction. 
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Proposition 3.1. Let e = c o - s  > 0 be sufficiently small. Then there are qS~eG~_3, 
#e6G¼-3, and z > 0 which solve (3.2)-(3.8) with 

JJ/~Jl~,-3 <c  independent of~, (3.9) 

<Zi,#,> = 0. (3.10) 
4 

Proof From (3.4) and (3.5) it follows that  q5 o = ~ oqZ i and <Zi, (41 -Co)qSo)=  0. 
i = 0  

The solution, constructed in Appendix B, is 

¢o = ~¢~ = ~(Zo + CoZl + (2/3)i/2z,), (3.11) 

with c°=(5/3)l/2 and ~ an undetermined scalar Let ¢ l = ~ @ ' l  + ~ lSiXi) 

which 

Lq~i = * (~  - Co)4;, (3.12) 

<Z,,~'a)=O, i = 0 , . . . , 4 .  (3.13) 

This determines ~b~ uniquely. The  scalars z,8, and fl~, and the function 0~ are now 
found by the constraints (3.7) and (3.8), which can be written as 

r ' "4- (Zi, gPo)+<(~l-Co)Z~,(#l ~ f l j Z j > = 0 ,  i = 0  . . . .  ,3, (3.14) 
J 

<~b;, ~b; > + <(~l - Co)~b;, q~i ) = 0, (3.15) 

<~bo, q~o) + 2<(~ 1 - Co)~bo,~bl > = - 1, (3.16) 

<Z~,¢ l )+<(~l -s ) z i ,  O,)=O, i = 0 , . . . , 4 ,  (3.17) 

2<~o,~1) + <({~ - s ) ¢ 1 , ~ )  + <({1 - s)(2~bo + 2eqS~ + ez0~),0,) =0 .  (3.18) 

First we can rewrite (3.15) and (3.16) as 

z = - <L49;,c~{>/(qYo, C~'o) < 0 ,  (3.19) 

~2 = _ z < L~'~, (9~ ) -1 = 3/10. (3.20) 

The remaining equations can be solved for fli and 0~ as shown in Appendix B, 
with fli independent  of  e and 0, bounded  independently of e. F r o m  (3.15) and (3.t 6) 
the following useful relation is derived (which is not  needed in this proof) :  

(q~o,q~o) = - < ( ~  -Co)(9o, dp~) = 1. (3.21) 

The error  term is #, = ,~b o - ~(~ - s)$~ + L0, which satisfies (3.9) and (3.10) due 
to (3.7) and (3.5). 

B. The Projection-Operators and the Lyapunov-Schmidt Equations. 

Next  we define projections 

P f =  - (~i - s)qS,< $,, f > ,  

H f  = - e -  14~<(~ 1 - s)¢~, f ) ,  

(3.22) 
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with the following properties, which are consequences of (2.9) and (3.1)-(3.10): 

(i) 17 z =/7,  p2 = p; (3.23) 
(ii) I f ( ( ~ l - s ) x , , f ) = 0 ,  0<i_<4 ,  

P(¢1 - s ) f  = (41 - s)/T f ; (3.24) 

(iii) I f ( (~  1 - s ) Z , , f ) = 0 ,  0_<i<4 ,  o r ( z i ,  o ) = 0 , 0 < i < 4 ,  

<Y, P o  ) = < r / f ,  a ) ,  (3.25) 

(iv) L 1 = (t  - P ) I4 t  - H) is self-adjoint, 
(v) (I - P )L  f = L I  + ehl,  

P L  f = e~(~ 1 - s )H f + ehz, (3.26) 

h 1 = - <(~1 - s)@,, f ) ( 1  - P)#~ = ez(l  - P)#~, 

hz = - (41 - s)4,~(#~,f). (3.27) 

In other words H and P are adjoints of each other for functions satisfying (2.10), 
for such functions P passes through (¢1 -  s) to become/7, and P nearly passes 
through L with errors h 1 and h z. We have replaced ~b, by ~k, in P to eliminate the 
factor e- 1 If (~bo, f )  = 0, this does not really change P. 

Decompose f as 

f ( ~ ,  x) = z(x)4)~(~) + ew(¢, x), (3.28) 
with 

z ~  = / T f  w = ~-  1(1 - 1-l)f (3.29) 

The Lyapunov-Schmidt equations are found by multiplying (2.13) once by P and 
once by e - 1 ( 1 -  P) and using (3.24) and (3.26) to obtain 

(41 - s )S~z4~  = - ~(~1 - s)zO~ - hz + P v F ( f  f ) ,  (3.30) 

(~l -- S)~xW = - e - l L l w - e - l h l + e - l ( I - P ) v F ( f f ) .  (3.31) 

If (3.30), is divided by (~  -s)q~ we find 

- - Z  = -- "CZ + "yZ z + ~h3, (3.32) 
Ox 

h 3 = ( # ~ , z O ~ + w )  - ( ~ , v F ( 2 4 o ~ z  + e w ,  w). (3.33) 

C. Remova l  o f  the N u l l  Space.  

Next we modify (3.31) to remove the null space of L 1. Define two more projections 

P o f  = - (41 - Co)Oo< O .  f ) ,  
(3.34) 

H o f =  - ¢1 ((41 - Co)4o, f ) ,  
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which are independent of  e, and denote 

L z f  = (I - Po)L(I - IIo) f (3.35) 

Then P - Po = O(~) and L(H  - / / o )  = O(~) so that  

L l f  = L 2 f  + g Z 3 f  , (3.36) 
with 

L 3 f  = e -  i{ _ (p _ P o ) L f _  L(H - H o ) f  + (PLH - PoLIIo) f} ,  (3.37) 

and L 3 is bounded.  For  convenience in notat ion define 

Z- i = q~l. (3.38) 

Proposition 3.2. N(L2) is spanned by {Zi, i=  - 1 , . . . ,4} .  

Proof. For  any f a n d  h, (f, Poh> = ( H o f ,  h )  and thus ( f ,  L 2 f  > = ( ( I - H o ) f ,  
L(1 - H o ) f ) .  Since L >  0 then L 2 f  = 0 if and only if L(I  - Ho) f = 0 which means 
that  f solves L f  = c L ~ l  with c = - ((~l  - Co)q~ o, f > .  Other  than multiplication 
by a factor and addit ion of~i(i = 0 , . . . ,  4), this can have at most  one solution; thus 
dim N(L2) < 6. O n  the other  hand  L)~ i = H0X i = 0 so that zioN(L2) for i = 0 . . . .  ,4. 
Also by (3.21), L~b 1 = cLdPl, and q~i~N(L2), which concludes the proof. 

N o w  define 
4 

K t f =  ((~l - s)Oe, f ) ( ¢ l  - s)O~ + E ( (¢ i  - s)zi, f ) ( ¢ a  - s)z,, 
i = 0  

4- 

K 2 f =  ~ ( (~ i -Co)Z i ,  f> (~ i -Co)Z i ,  
i = - 1  

K 3 = g -  a(K 1 - Kz) , (3.39) 

M = L z + K 2, 

M 3 = L 3 + K 3. 

The operators K 3 and M 3 are bounded.  As in (2.8) the operator  M, which is 
independent  of e, can be represented as 

M y  = v(~) f  + H.f ,  

H f (¢)  = ~k(¢, q)f(q)dq. 

4 

k(~ ,~ t )  = - k ( ~ , ~ )  + y~ (~1 - C o ) Z , ( ¢ ) ( ~  - Co)Z,(~) 
i = - I  

+ ( ~  - Co)~bo(¢)LqS,(1/) + Lq~l(¢)(t/i - Co)q~o(~/) 

+ (¢~ - Co)~bo(~)( q~, L4) 1 ) ( r  h - Co)qSo0/). (3.40) 

The equation (3.31) will be replaced by the following equat ion:  

~X 1 (~l - s) w = - - M w  - M 3 w  q- e -  lh4,  (3.41) 
8 

h4 = ~z(I - P)#, + (I - P)vr( f ,  f ) .  (3.42) 
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This is mot iva ted  and  justified by the next proposi t ion.  

Proposition 3.3. (i) M is self-adjoint and strictly positive; (ii) I f  w solves (3.41)and 
( ( ~1 - s)O~, w ) = ( ( ~1 - s))~, w ) = 0 ,  i = 0  . . . .  ,4  at x =  +_ oo , then w solves (3.31). 

Proof. Since L2 and K 2 are self-adjoint, so is M. First  note that  K2 > 0 and L 2 > 0. 
In  Append ixB ,  it is shown that  

- 1 . . . . .  4} ¢ 0. Now 
det { ( ( ~  - c0)zz, gj) ,  i = - 1 . . . . .  4 , j  = 

°~izi, K2 ~iZi = 2 ~ j ( (~ l -Co)Xi ,  Z j )  > 0 ,  
i ...... 1 i = - - 1  i = - 1  j = - I  

(3.43) 

since at  least one of the squared terms must  be nonzero. Thus K 2 is strictly posit ive 
on {~e~Z~} = N(L2) and the combina t ion  M = L z + K 2 is strictly positive. 

To  demons t ra te  (ii) we first rewrite the right hand side of  (3.41) as 
-e-I(L 1 + K O w  + ~- ~h 4. For  any 9 and h, 

(O , , ( I  - P)h)  = ( z ~ , P h )  = (Z~, vF(g,h)> = <Z, ,~ , )  = 0, (i = 0 . . . . .  4). 

Therefore the inner p roduc t  of  (3.41) with 0~ and 7~i results in 

b x (  ~ ~ - s)O~,w ) = - ~- 1(  ¢~,I':1w > 

=--~-l{a((~l--S)~l~'W)-I-~aJ((~l--s)zj'w)} 
~-~((~ 1 -- s )x i ,w)  = -- g- l ( z i ' g l  w ) 

= - e - l { b i ( ( ~ l - s ) z i ' w ) + ~  b ' J ( ( ~ l - S ) Z J ' W ) }  (3.44) 

with a, aj, b, b~j constants.  The  bounda ry  condit ions at x = +_ oo in (ii) insure that  
( ( ~ 1 -  s)zi, w )  = ( ( 4 1 -  s ) O , , w ) = 0 ,  so tha t  K , w  = 0  and (3.41) becomes  exactly 

(3.31). 

D. Elimination of  the Asymptot ic  Values 

F r o m  (2.11), (2.14), and (3.11), it follows that  

f~  = e-10~- l(p+ _ 1)q~ + e0~, (3,45) 

with g - l ( p+  _ 1) bounded.  Therefore  the asymptot ic  values of z and w are 

z ( -  oo) = w(x = - oo) = 0, (3.46) 

z(oe) =z~o --- - e -1 ( (~1  -s)d)~,_fl~) = - ((~1 - s ) O ~ , f o ~ ) ,  (3.47) 

w(x = oo) = wo~(~) = e-  1(1 - H)fo~ = (I - I1)go~. (3.48) 

Since ((31 - S ) 4 o ,  g ~ )  = O, w~ is bounded;  this justifies the scaling of w in (3.28). 
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Relat ions  between Zoo and  w~ are  found by app ly ing  P and  (I - P) to  the  equa t ion  
1 

- - L f ~  + v F ( f ~ ,  f~ )  = 0 to ob ta in  
8 

- -  TZ~ + ~'ZL+ 8 ( ~ , Z ~ O ,  + W®) -- 8(Oe, vr(2?)~z~ + 8w~,w®))  = O, 
(3.49) 

-- 8 -  i M w ~  --  m 3 w~2 - z~o(I - P)#~ + ~-  1(1 - P)vF(zooqb~ + eWo~, z~oO~ + ewe)  } = O. 
(3.50) 

Define % and z' by 

To = z~7 = z - ~:~' < 0. (3.51) 

We write z = z o + ez~ and  w = w o + w 1. The  function z 0 is chosen to be the d o m i n a n t  
pa r t  of  z wi th  its comple te  a sympto t i c  values;  w 0 is artificially p icked to assume 
the a sympto t i c  values of  w. The  equat ions  for these functions are 

8 
-~xZo = - Toz o + ~zg, 

w 0 = ½ { t a n h ( -  ½ZoX) + 1}w~, 

0 
~ x Z l  = - zz  1 + 27z0z I + a, 

with 

( ~ i -  s ) ~ w l  = - l M W l  + ~ b ,  

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) a : - z ' z  o + ~6z 2 + (#~, z0~ + w> - (0~, vF(2qS~z + ew, w)>, 

b = - E(~l - s)~--~Wo - M w o  - e M 3 w  + ez(I  - P)#~ 

+ (I - P)vr ( z4 ,  + ew, z4~ + ew). (3.57) 

The  so lu t ion  of  (3.52) is 

zo(x) = ½{tanh ( - ½Zo x) + 1}z®, (3.58) 

which is unique up  to a shift in x. C o m p a r i s o n  of (3.56) and  (3.57) with (3.49) and  

(3.50) shows tha t  the asympto t i c  values of z 1 and wi are  

z i ( -  oo) = Zl(OO ) = w l ( -  oo) = wl(oo ) = 0, (3.59) 

since a = b = 0 at  x = + oo with these values of z 1, w 1. The  so lu t ion  of (3.54) a n d  

(3.55) occupies the remainder  of this paper .  
We can "see the necessity of  the  en t ropy  condi t ion  (2.12) by  cons ider ing  a 

so lu t ion  with s(1 - p) < 0. Then we would  have s > c o, which wou ld  change  the 
sign of  a number  of  terms in the previous  section. The  result  wou ld  be tha t  ~: > 0 
and  the so lu t ion  of  (3.52) would  no t  assume the required a sympto t i c  values. 

To check agreement  wi th  the N a v i e r - S t o k e s  profile we need only show that  
the  shock widths  in (2.21) and  (3.58) are identical,  i.e. z o = ~(r /+ 12)-1.  One  can  
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show that  F 1 - ( % % )  ~b~u~, when substituted in (2.20) this shows that  
1 ! ! 4- 5-Co(r / + ½2) = - (4%, (%Co)- 1 (41 - Co)~b'l ) = (ZoCo)- (4o ,  q~o ) which verifies that 

identity. 

4. Basis Estimates 

In this section we prove basic estimates which will be used in Sect. 5-7  to analyze 
Eqs. (3.54) and (3.55). First define the characteristic functions 

ZN = Z(I¢I < N), 

and the (generalized) resolvents 

which act on G~,, and 

z~ = z(IG - st < 6), 

G = (,t(G - s) + At) -~ ,  

s~ = ( ;~ (~  - s) + v(~)) ~, 

(4.1) 

(4.2) 

(4.3) 

RNX = (ZN(2(s;1 -- s) + M)2 ;N)  1, (4.4) 

which acts on G~,,([~l < N). The following five propositions are the main results of 
this section, In each of them we assume that  

r~R ~, s~R 1, 0~7__<1, 0 < ~ < ¼ ,  0_<_<0G1. (4.5) 

Constant  factors are omitted from the following estimates. They are uniformly 
bounded in any closed, bounded set of the parameters (r, s,7, ~, 0) satisfying (4.5) 
and are inessential. 

Proposition 4.1. Resolvent Estimates. Let IRe Z] < 2]Im ZI, then 

II (41 - S)°R;fllt~,r < t?-1 -° llhll~,r -~(1-0), (4.6) 

It R~(~I - s)°h]]~,r <= IXI-°ll h[l ~.r -~(1-0), (4.7) 

If ire21 < 21Im21 or if tRe2[ < ½v 1N ~- t, then the same estimates are true for RN~. 

Proposition 4.2. Estimates on Sx. I f  IRe 2t < 21Im 2J and 0 <_ 0 <_ 1, then 

12°(~1 -S)°S;J <= (1 + 4) -m  -0), (4.8) 

1(~1 - S)°Szt <= (1 + ~)°-L (4.9) 

/ f  IRe 2[ < 21Ira 2[ or if [Re 21 < ~ N  ~- 1, then the same estimates are true for ZNS~. 

Proposition 4.3. Estimates on H. 

IIHhll~,~+ a_, =< IlhlF~,~, (4.10) 

]IHz~((~I - s) -°h) II~,~+ 2- ,  < 61-oil h II~,r. (4.11) 
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I f  ]Re 21 < 2jim 2[, 

I f  IRe 2] < 2lira 2[ 

[lHSzh[[~,~+ 2-~ < (1 + I21)- 1/21iht[~,,. 

or ] R e 2 [ < ~ N  ~-1, 

IlH)~uSxh!l.,~+ z-~ < (1 + 2)- 1/211h11~, r. 

(4.12) 

(4.13) 

Proposition 4.4. Sup CompaetnessofH. ( i ) I f  Ilf~][=,~l for all n, then H f .  
has a subsequence which converges in G~,~+2_~,_~1, for any e 1 > O. 

(ii) The same is true for H(~ 1 - s)-° 

Proposition 4.5. Bounds on the Integral Kernel. 
The integral kernel ~ from 0.40)  satisfies 

S lql -- st -°/~{~, q)( 1 +~/) re-="2dq<61-°( 1 q-~)  - r - 2 + ~ e - ~ { z ,  (4.14) 
I,l-sL-<a 

]f~(~, t/)[ < v-1(1 + ~ + r/)- ~ +'exp { - (1 - fi~)(~v z + ½~z)}, (4.15) 

for any 0 < fll < 1, in which v = ~ - ~1 and ~1 is the component of  ½(~ + 11) parallel 
~, ~2 = ¼(2~'v + vZ)Zv- 2. t o ~ - r l  1 

The properties are all still true if the modified operators M and H are replaced 
by the original operators L and K after the null space L is removed. Grad [9] 
proved the compactness of K as an operator on L 2, which can be used to show 
its compactness in sup norm; the refined bounds (4.14) and (4.15) enable us to 
prove it in O,,~ even including factors of(~ 1 - s)-°. This leads to the strong estimates 
(4.6) and (4.7). In Propositions 4.1, 4.2, and 4.3, the factors 2 and 1/2 could be 
replaced by numbers with magnitude > 1 and < 1 respectively. The proofs of these 
propositions will be presented in five subsections. 

A. The Integral Kernel 

Proof of (4.15). This was already proved for k(¢, ~l) in Proposition 5.1 of [2] (there 
is a change of sign in the definition of 7). The functions )G qSo and ~b 1 are all in 
Gt/4- 3 according to (2.9) and Lemma 3.1. Then Lq51 = v(¢)q51 + Kd?1~G1/4-¢l,o for 
any fil > 0 by Proposition 6.1 of [2]. This shows that each term in the expression 
(3.40) for k satisfies (4.15). 

Next we state some auxiliary lemmas. 

Lemma 4.6. 

I)2 +4~2 _ 2~2 + 2t/z > 0, (4.16) 

S e-XL 2.~ydx <_ 1 o _ ~ y  for y > 0 ,  (4.17) 

I 

S (1 - x 2 )  - 1/2dx < c. (4.18) 
- 1  
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L e m m a  4.7. (i) Let  4', v', 41, l)l all be > O. Denote  9(x) = exp{ - K(2x~'v' + 241V 1 -I- 
V '2 + v2)2/(v 2 + v'Z)}, then 

1/2  

i (1 - xZ) - 1/Zg(x)dx < c{(v 2 + v'2)l/z~c - 1/2/(~v' + 1) + 1}. (4.19) 
- 1 / 2  

l ~ - t  t (ii) I f  m a x  {~lvl,  v '2, v~} < ~ v ,  then 

(1 - x 2) -1/2g(x)dx < cexp  { - ¼,c(~'v')2/(v~ + v'2)} 
1 _>_ Ixl >= 112 

< c(1 + ¢'v'(v~ - v'2) - 1/2)- 1. (4.20) 

Proof. Omi t  ( 1 -  x2) -a/2 and  in tegra te  over  all x to  get (4.19). To  p rove  (4.20) 
es t imate  lZx~ 'v '+  2¢1v 1 + v '2 + v~l > ½14'v'[ for  Ix[ > ½. 

P r o o f  o f (4 .14) .  D e n o t e  ¢ = ( ¢ 1 , ¢ ' ) ,  t / = ( t h , q ' ) ,  v = ~ - I / = ( v l , v ' )  in which  ¢ ' =  
(42, ~3), etc. T h e n  

¢ ' . v ' = x ~ ' v '  with x = c o s < ( ~ ' , v ' ) ,  (4.21) 

dv = v'(1 - x2) - 1/2dv'dx, 

tl 2 = tl ~ + ~,2 + v,2 + 2x~'v' .  (4.22) 

If  ~ < ¼, it fol lows f rom (4.15) and  (4.16) tha t  

/7:(¢, t/) = [ql - s[-°(  1 + t/)- r( 1 + ~)l +r- ,@~(¢2-q2)~5(¢ , t l )  

< It h - s ] - % - 1  exp { - K(v 2 + 4~ 2) 

< ]th - sl ~°(v2 + v 'a ) - l /Zexp  { - ~c(v 2 + v '2 

+ (2x~'v'  + 2¢1v 1 + v'Z)(v 2 + v '2)- 1)}, (4.23) 

for any ~c < ¼ - ~ ( there  is a cons t an t  depend ing  on ~ which  has  been  omit ted) .  
Us ing  the no t a t i on  of  L e m m a  4.7, we wri te  

c~ 1 

k(~,rl)d~l< ~ dr h ~ dr' ~ dxirll - s [ - ° ( 1  - x Z )  a/2 
]r/t - s ]  <_--di trh - s l=<6  0 1 

• Vt(V 2 "t- v'2) -- X/2exp { -- /¢(v 2 + v '2 )}g(x) .  (4.24) 

N o w  use L e m m a  4.7 to es t imate  this 
(1) Le t  f21 = O1(¢ )=  { q : ) h  - s ]  < 5 a n d  m a x  {v 'z, v 2} > 1¢'v'}. T h e n  

i / ~ ( ¢ , q ) d t / <  i d t h S d v ' l t h - - s [ - ° ' e x p { - - ~ c ( v ~ + v ' 2 ) }  

(30 

< ~ It h - s I - ° e - ~ d r h  • j" e ½~(~'2+¢~')dv' 
I'h -s[  ~a 0 

< 5 1  o(1 + ~ ) - l ,  (4.25) 

by  d r o p p i n g  the  terms v'(v 2 + v'Z) - ~/2 < 1 and  (2x~'v'  + v '2 + v~)2(Vl a + v '2)-  t > 0 
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in the first step and using (4.17) and the identity v~ = ¢1 - t/, in the third step. 
2 I , , (2) Let f22 { t / : [ r / l - s [ < 6  and ~iVl >1~'/2'}. In this set Vl>g¢/2  - - / ~ 1 / 9 1  . 

As above estimate 

~(¢,q)dn =< j an1 S &'tnl - st-° 
g22 ] t l~-sl<a 0 

• exp { - ½I¢(v~ z +/2,2 + s* ¢'v' - rhv,)} 

co 
"f  exp{--½~c@ '2 + ~¢'/2')}dv' 

0 

< ji -Oe--~¢~( t + ~,)- 1 

(3) Let f23 = {!/: 1~/, - s[ < a 
(4.20) to derive 

j ~(¢,n)dn < 
~3 

8 1 - 0 ( 1  -t- ~) - 1. (4.26) 

and m a x { ¢ i h ,  ,2 2 ~ - 1 - ,  , <,g~ v.  /2 ,vl~ Use (4.19) and 

co 

dr, S d/2'l< - ~1-%'(/2~ +/2'~)-1/~ 
In,-sl<=a o 

-(1 , ,  2 q_ ~ /2 (121 AV /2,2)-  i / 2 ) -  i e-~(~]+ ~'~) 
co 

_-< j tth - s t - ° e - ~ ' , ~ a . t  j (1 + ¢ 3 - * e  -~'~cl/2` 
In~-sl<~ o 

< 61 -Oe- k ~ (  1 + ¢,)- 1 

< a 1-0( 1 + 0 - 1  

Finally (4.14) follows from (4.25), (4.26), (4.27) and the definition (4.23) of It. 

(4.27) 

B. Estimates on Sa 

Lemma 4.8. I f  a>=O, b>O,  1>_0>_0, then 

(a + b)-  ia ° < b ° - I  (4.28) 

i f  a >= O, b >= (a/2)L 0 >= O, then 

(a + b)- ia° < 2°b °/~- i. (4.29) 

Lemma 4.9. I f  JIm2L > 2]Re~l or if ~ < N  and IRES[ <½v lN  ~-1, then 

12(~ i -- s) + vl > ~([2(~1 - s)} + v). (4.30) 

Proof of Proposition 4.2. It follows from (2.8), (4.28) and (4.30) that 

I(,z(~ 1 - s))°&l < 81,~(~1 - s)[°(I,~(~l - s)l + v)- 

< 8v2 1 +o(1 + ¢)-~(I-o), (4.31) 

which is exactly (4.8) (with constants omitted). Since for ~ large v(¢) > vit)~(~l - s)/2iL 
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(4.9) follows from (4.29) in the same way. The estimates on )~NSx are proved 
analogously. 

C. Est imates  on H :  P r o o f  o f  Proposi t ion 4.3 

As in Proposit ion 6.1 of [2], (4.10) follows from (4.15). From (4.t4), (4.11) easily 
follows. We only need to prove (4.12) and (4.13) for large 2; otherwise they follow 
from (4.10) and (4.9) with 0 = 0. Denote Zl = Z(l¢~ - sl < 12] -~a/2) and X2 = 1 - Zl. 
It follows from (4.14) and (4.9) that  

IIH)~IS~fllI~.~+ 2-  ~ < 121- t/2tlhtl~,r- ~. (4.32) 

But if 1¢1 - s[ > 2 -  ~/2, then 12(~ 1 - s) + vl > ½(12(~1 - s) l + v) > }1,~11z2 by (4.30), 
so that  

II H)~zSah ti ~,, + 2 -~ < 121 - ~/2 ti h ]1 .... (4.33) 

using (4.10). This proves (4.12); (4.13) is proved the same way. 

D. Compactness  o f  H 

The compactness of H comes from continuity properties of its kernel. First we 
prove continuity for k, then for k. The formula for k is given in (A.5)-(A.7), and 
we use that  notat ion in the following. We also abbreviate "locally uniformly 
continuous" by LUC. 

Lemma 4.10. Ii(~,r/)= Sexp{--~-lw +(212}q(v,w)dw is L U C  in ~ and ii. 

P r o o f  The integrand is LUC in ¢,~/,w, but the domain of integration {w_k(¢ - ii)} 
is infinite and changes continuously as ¢ and q change. So the integral I2(¢, r/) over 
tw[ < N is L U C  tbr any N. 

Now fix ~ and t/ and let e 1 > 0. Pick N large enough that ~ < N, r /<  N, and 
e -¼~'~ < el. Then ~2 < N, v < 2N and 

I3(¢,q)= S exp{-½lw+~212}q(v,w)dw 
w>~2N 

< N~e- ~:/4)N,, (4.34) 

using (A.9). Thus if I¢ - ¢ 1 t  < 6 and I t / -~hl  < 6, with 6 small enough, 

II1(~1,/~1) - -  I1 (¢ ,  ~)I < 113(~1,/71) - -  13(¢, ~)t 

+ 112(¢1, th)  - Iz(¢, q)l 

< 2~ 1. (4.35) 

Lemma 4.11. For any e I > O, c~ < ¼, and any r 

S(1 + n)- '+ ~-~-~'e-~"~l (1 + ~)~e~k(¢, q) - (1 + ~)~e~k(~, 't)l a't --' 0, 

as ~--* ¢ locally uniformly in ¢. 

(4.36) 
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Proof  Denote 

h = (1 + ¢)'(1 + r/)-'+~-~-"~e~(¢2-"-~k(¢,tt). 

According to (4.15) for k instead of k, 

~[hldq < (1 + ¢)-% 

(4.37) 

(4.38) 
j Ihldff<(1 + N ) - %  

q>N 

which shows that large ~ and t/can be ignored. Let e2 > 0 and pick N large enough 
that N -~ < e2. According to (4.37), (A.7) and Lemma 4.10, h = gl + v-2,q2 in which 
gl and g2 are LUC and uniformly bounded. The integral in (4.36) is 

~lh(~,q)-h(¢,q)[dq<=2X -~', if ~ > N ,  

< 2 N - " ~ +  ~ Ih(~,q)-h(~,q)Idq,  if ~ < N .  (4.39) 
: ' I<N 

Estimate 

Ih(~,q) - h(~,q)tdq < 
~<N 

j" { tgl(~, q) -- gl(~, q)[ + [~ -- t/j- Ztg2(~, q) -- g(~, q)l 
U-<_N 

+ Ig2(¢,t/)]'l[ ~ - i/I-2 _ I~ - q[- 2 [}dri • (4.40) 

By the fact that ga and ga are LUC and the integrability of [~ _ q [ - 2  in t7 < N ,  
the first two integrals go to 0 as ~ 1 ~ .  Furthermore ~ dt/11~-t/f - z -  

~1 < N  

1~1 - -q l -  2[ ~ cN-3 ,  and g2 is uniformly bounded. Therefore the integral in (4.39) 
can be made arbitrarily small by first taking N large, then I ~ -  ~ t  small, which 
proves (4.36). 

We say that h(~) is LUC in G~# if h ~ G~,~ and 

(1 + ~)~e<~h(~) - (1 + ~)e~2h(~) ~ 0, (4.41) 

as ~ locally uniformly in ~. 

Lemma 4.12. (i)/.f~,(~) is LUC in G .... then Ltp(~) is LUC in G~,~+,; (ii) I f  O(~ ) 
is LUC in G .... and tc(~)eG~#+v with L~: = O, then ~c is LUC in G~.,+.~. 

Proof. Since v(Q in LUC, v(~)O(~) is LUC in G~,r+~. By (4.36) 

(1 + ~)"e~2KO(~ - (1 + ~)re~e'-K0(¢) < t[ 0 N~#j'(1 + rO-"e-~'"~l 

• (1 + ~)r+2-~-"~e~2k(~,q)-(1 + ~)~+2-'-~e~¢;k(~,q)[dq-~O, (4.42) 

as ~-~ ~ locally uniformly. Since 2 > ? + ~,  this shows that Lu = v u -  Ku is LUC 
in G~,r+~. 

As in (4.42) we have K~c LUC in G~,~+r Thus ~c(~)= v(~)-1.(K~c(~)+ ~(~)) is 
LUC in G~+~,. 

Proposition 4.13. The kernel ~(¢, q) satisfies (4.36). 

Proof. The functions Zi (i =0 , . . . , 4 )  and ~b o are LUC in GI/<_ 2. By Lemma 4.12, 
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qS~ is L U C  in G~/4, ~_ 3- It follows from Lemma 4.12 that every term in the expression 
(3.40) for E + k is L U C  in G,,, for any e < ¼ and any r. An easy estimate shows 
that  k + k  satisfies (4.36)(for k replaced by k +  k) and hence so does k. 

Finally a use of  the inequality (4.42) with k replaced by k shows 

Lemma 4.14. Let llfll~.~ < c, then H f is L U C  in G~,r+2_~_t~ , with a modulus of 
continuity which depends on c. 

To show compactness  we shall employ the following version of Arzela-Ascol i  
theorem. 

Lemma 4.15. Arzela-Aseoli .  Let h,(x), x e R  m be a sequence of functions with 
(i) [h,(x)t < g(lxl) with g(lx[)--*0 as Ix[-~ oe and g uniformly bounded;  (ii) h n 

uniformly (in n) equi-continuous, locally uniformly (in x), i.e. for each e > 0, N > 0, 
3 ~ > 0 such that if Ixt < N, tx - Yl < f), then Ihn(x ~ - hn(y)I < e. 

Then f ,  has a subsequence which converges uniformly (in x). 

Proof of O) in Proposition 4.4. Let Ilf, LI~,~<c. By (4.10), h , ' - - ( l + ~ )  r+2.~-"~ 
• Hf~(~) < c(1 + ~)-¢1/2)~, for any e 1 > 0. Thus h~ satisfies the uniform bound  required 
by (i) of Lemma 4.15; by  l ,emma 4.14 it also satisfies the continuity requirements 
of (ii). Therefore  H f ,  has a convergent  subsequence in G~,r+ 2-~-~,. 

Proof of (ii) in Proposition 4.4. Denote  Z~ = X([~l - sl < 3) and )~ = 1 - Z~. Let e > 0 
and pick ~ so small that  

IIHz~(~l - s ) -° f ,  It~.~+ 2 - ,  _-</~i -0 < e, (4.43) 

using (4.11). By part  (i), H2~(u + ~ ) - ° f ,  has a convergent  subsequence with indices 
n~ so that  i f j  > N, i > N, then IJHzo(~ 1 - s) -o.(f . j  _ f,~)il~,~+ 2 - ~ - ~ ,  < ~ and so the 
same is t rue of  H(~ 1 - s ) -o( f ,~_  f , ) .  By a diagonalization procedure there is a 
subsequence of H(~ i - s ) - ° f ,  which converges in G~,,+2-~,-~,. 

E. Resolvent Estimates 

Proof of(4.7) in Proposition 4.1. Suppose to the contrary  that  there are 2n satisfying 
IRe2nT < 21Im 2,1 and s n, fn, g~ such that  s, are uniformly bounded and 

e , ~ n ( ~  1 - -  s~)° f ,  = g., 

IlL L,r-,~l-0) = 1, 

[[g, r[~,, = 2]°a,,  a, ~ co. (4.44) 

Denote  G = a2 i f ,  and 0 ,  = 2%2 lg ,  so that  

I I G t G =  1, 

2°(~1 - s,)°G = (2,(~ i -- s.) + v + H)O,. (4.45) 

Multiply by Sa, , which is bounded  according to (4.9), to get 

2°(~1 - s,)°Si, G = O, + SI HO,. (4.46) 
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F rom (4.8) and (4.44), it follows that  

[12°(~1 - s.)°S~.~c. ]I~,r < LI~c. ][~,r-~o-0) ~ 0, (4.47) 

Also, lJ tp. fI:,~ = 1 so that  by Proposi t ion 4.4 there is a subsequence of ~,. (which 
we again call 0.) with HO. ~ ~b in G.,~ + z - ~ - ,  and hence also in G~, r. Since Sx. is 
bounded  uniformly, ~b. + Sx.qS--*0 in G~, r. 

N o w  by taking a subsequence we may assume that  s.--, s~o < co. Also either 
2.---2o~ with ]2o~1 < 0o or [2.l--' co after possibly taking a subsequence. 

1. Suppose 2 . ~ 2 ~  4:0. Then  ] R e ~ ]  <2J Im2~[  and S ; ~ . ~ S x ~ 4 a  = ( 2 ~  
'(~1 - s ) + v ) - ~ (  ° = - 7~ in G~,r+~ and so q J . ~  in G~,.. Since H~O. ~qS, we must 
have 4, = H5 v, i.e. 

2 ~ ( ~  - s®)~ + v7 j + H ~  = 0. (4.48) 

Moreover  It ~fI~,~ = limlj 5~.11~,~ = 1. But this is impossible, since M = v + H is self- 
n 

adjoint and positive ( ~g*,(v + H)ku) > 0, and .~® is complex, s® is real, and ( 5 t'*, 
/too(~1 - s ~ ) ~ )  is complex. 

2. Suppose I2 . [~co .  We show that ~ , .~0 .  Let ~a be small and write 
~ b . = ~ l + ~ ,  2 with ~.~=~k.ll~_~.l<~. Then since S ~ 0  on [ ~ - s . I > ~ ,  
tick. z tI. , ,~ 0. For  n large enough IIHO, 211.,. <e l -  Also 

[[Hq~. ~ [[~,~ < ~ ,  (4.49) 

by (4.45) and (4.11) with 0 = 0. It follows that  HO. --> 0, ~b = 0 and hence 11 ~.  11~,~ ~ 0, 
which contradicts the fact that 11~. I[.., = 1. 

3. Suppose that  2. ~ 0. We show that  

~,. ~ - v- X~b = 7 j, (4.50) 

which implies that  M 7  ~ = H~g + vh v = 0. This is a contradict ion since M is positive. 
To  show this we split ~b = ~b t + ~b a, ~,. = ~.~ + ~2 with 

b~ = ~bll~l _>-A, 0 ,  ~ = 0,ll~l aa- (4.51) 

Then clearly 0 .  ~ 142  in G~.. But ]lS~.q5 ~ ~ A  -2+~ since -- ~ ~G~,r+ 2 - ~ - ~  , ~ t , r  - ~ -  - -  

and lSa] <(1  + ~)-~. Similarly ]tv-aq~ ~ II. < A-2+~t. By choosing n and A large 
enough we can make 

lit~~ n - -  V -  1 ~  {Iv ~5 Ht~I2 - -  "9- 1~2 [Ir -}- t{t]lln --  $ 2 . ~  1 Hr -~- !1S)..@ 1 - v -  1(])1 l[r, (4.52) 

as small as we please which shows (4.50), and finishes the proof  of (4.7). 
The rest of Proposi t ion 4.1 is proved in a similar way. 

5. Solution of the Linearized Lyapunov-Schmidt Equation 

We shall solve the linearized L y a p u n o v - S c h m i d t  equat ion 

(~1 -- s)~-x-W "= -- M w  + h, (5.1) 
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as an-initial value problem integrating forward in  x over that  par t  ofh  corresponding 
to negative spectrum and backward in x over that part  corresponding to positive 
spectrum. Define contours  

and operators  

F+ = {2 = z + 2iz, z > 0}, 

F_ = {Z = - z 4_ 2iz, z > 0}, 

U+(x) = (2rti)- 1 ~ e;.XRzd2, for x < 0, 
F+ 

(5.2) 

(5.3) 

First estimate 

We use the resolvent identity 

Rx = S~ - RxHS  x. 

II(~l - s)R~HSxh [l~,~ _-< I1(~1 - s )  ~ -*RzHS~h [l~,~+e 

< 2 -  (1 - ~) iI HS~h 11 ~,~ + ~- ~ 

(1 -1- 1.~1)- 1/2/~- (1 -~)lt h f1~,,- 2 +y+~_~, 

<(1  + tZI)-x/zZ-(1-~)tlhtt~,~_,, (5.8) 

for 0 < 7 < 1, g small. So this quanti ty is absolutely integrable along F+ and 

ice 

I (~1 - -  s )RzHSzhd2 = .( ( ~  - s)R~HSzhdZ, (5.9) 
F+ - ice  

by a shift of contour .  Next  evaluate 

(2~i) - I  S ( ~ 1 - s ) e ~ S z  d2 = (2r~i) -1 ~ eZX(Z+(¢a--S)V) - ld~-  (5.10) 
I'+ F+ 

For  x < 0, the exponential  factor assures absolute convergence and the contour  

(5.7) 

Proof  o f  Proposition 5.2. 

U_(x)  = (2hi)- 1 S eZXRz d2, for x > 0, 
F -  

WEh](x) = i U_(x  - z)h(z)dz + S U+(x - z)h(z)dz. (5.4) 
ce  x 

Theorem 5.1. Let h be a continuous function of  x with values in G~,r_ ~ with 
0 <--_ ~ <¼. Then w(x) = W[h](x)  solves (5.1) and is continuous as a function of  x 
with values in G,, r satisfying 

sup liw(x) tJ~,r < sup [I h(x) Ll~,r- ~. (5:5) 
x x 

This is proved with the aid of  

Proposition 5.2. 

lim (~i - s)U+(x) + lira ((1 - s)U_(x) -- 1. (5.6) 
x~O x~O 
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can be closed (with arbi t rary accuracy). There is a singularity at 2 = - (¢~ - s)-~v 
if ¢ ~ - s  <0 ,  and no singularity if ~ 1 - s  >0 .  So the integral is e (~ ' -~)- '~ or 0 
in these two cases and 

~ ( 1 ,  s )<  
lim (2~zi)- 1 ~ o  r+ S (¢1 - s)e S ~ d 2 = ~  O, (¢1(¢1-- s) > 0.0' 

So 

lim(~ I - s)U+(x) = X(¢l - s < 0) + (2hi)- 1 ~ (¢1 - s)RxHS~d2, 
x~0 - i ~  

(5.11) 

(5.12) 

and similarly 

lim(~ 1 - s)u_(x) = Z(~I - s > 0) - (2~0-1 S (~l - s)RzHS~d2, (5.13) 
xlO - i co  

with the minus sign coming from the orientat ion of F_  in the direction of decreasing 
imaginary part. The  result (5.6) comes from combining these. 

Proof  of  Theorem 5.1. First  we prove (5.5) to show that W is well defined. Using 
(5.7) we rewrite 

U+(x - z)h(z)dz = S dz ~ e ~(x-=)(S~ - R~HS~)h(z)d2(2rci)- i. (5.14) 
x x F +  

(i) By differentiating we see that  

~-~RzHSz = - Rz(~l - s)R~HS~ - RzHS;.(~ 1 - s)S~. (5.15) 

Use Proposi t ion 4.1, 4.2, and 4.3 to estimate 

IIRzHSz(~ 1 - s)S~ [l~,r < 2-1  +~(l + 121)- 1/2tlhl]~,r- 2+#(1 -y) 

< 2-1/2 It h II ~,r- r, (5.16) 

[[RznSz(¢l - s)Sah H~,, ~ 2-1  +a(1 + 1).1 ) -  1/211 h II~,,- z+a(1 -r) 

"< )~- 1/211 h I I , , r_  r ,  (5.17) 

after choosing fl = 1/2. Now use integration by parts  to obtain 

dz ~ d2e-Z(*-~'R~HSzh(z) 
x + l  F+ ~,r 

= ~ d z ( x - z ) - l ~  d2eZ(X-=){Rz(¢l-s)R;flS~. 
x + l  F+ 

+ Rd- lS~(~l  - s)Sz} h(z) ~,~ 

o0 

< c sup II h(z)II ~,~-~ ~ dz(x - z ) -  1 S eZ(, - ~)2-1/2 d2 
z x + l  0 

c sup tlh(z)It~,~- (5.18) 
z 
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So 

and 

So 

(ii) Est imate 

II RxHSxh  tl~,, ~ It HSxh tt=,,-v 

~(1  q- 2.)- 1/2 Ilhjj=.,_ 2. 

X + 1 ~W 

i dx I dXeX{~-~)RxHSzh(z) 
x F +  

x + l  c~ 

< ~ dx ~ d2eX(X-=)(1 +2 ) -~ /2 sup  IIh(z)lle,r_2 
x 0 Z 

__< c sup It h(z)II  ~ , , -  2.  
z 

(iii) Finally by a con tour  integrat ion 

e ~(~ - z)s z d2 = { 2rci(~ ~ - s)e-  (~ - ~)-~ ~ - ~), 
r+ 0, 4~ - s > 0 ,  

41 -- S < 0, 

(5.19) 

(5.20) 

(5.21) 

S dx ~ d2eZ(X-~)Szh(z) < csup [Lh(z)II~,,r-r (5.23) 
X F + ct,r 

Combining (5.18), (5.20), and (5.23) using (5.14) yields 

dzU + (x - z)h(z) ~,., < csup  IIh(z) ]l~,,,-v. (5.24) 
z 

A similar inequality can be found for U_ to  deduce (5.5). 
(iv) Next  we show that  w solves (5.1). We can differentiate to get 

(41 - S)~x W(X) = lira ( i t  - s )U_(x  - z)h(z) + lira (41 - s)U +(x - z)h(z) 
z~x z~x 

+ i dz ~ d22eZ(X-~)(41 - s ) R z h ( z  ) 
- -oo F -  

oo 

+ ~ dx ~ d2).eZ(X-~)(41 - s ) R a h ( z  ). (5.25) 
x 1"+ 

By (5.6) and the continuity of h, the sum of the first two terms on the right is h(x). 
A resolvent identity tells us that  2 ( ~ -  s)Rx = - M R z  + I. By deformat ion of 
contours  we easily see that  

e ~'(x-~)d2 = O, x - z > O, 
F -  

eZ~-~d2  = ,  x - z < 0, (5.26) 
F +  

~ (41 - s) e- (e l -~)-~(x-z)dz  = v-1, if(41 - s) < 0. (5.22) 
x 
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and  so the  s u m  of  the  last  t w o  t e rms  on  the  r ight  side of  (5.25) is: 

- i dz f d e ' Z'MR h( z ) -  dz I - M w  
- ~  F -  x F +  

There fo re  

(41 - s)f-~w(x) = h(x) - M w .  
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(5.27) 

(5.28) 

6. Decay of the Linearized Solution 

Define  the  decay  func t ion  A(x) as in (2.25). 

Theorem 6.1. Suppose that h(x, ~) is continuous in x as an element o f  G~,~ and that 

s u p  [Ih(x)fj~,,_~ < Co, (6.1) 
X 

Hh(x) II~ < clh(~x). (6.2) 

Then w defined as in Theorem 5.1 is continuous in x as an element o f  G~,~ and 

satisfies 

sup  II w(x) ll~o~ < eco, (6.3) 
x 

]tw(x) lit < C(Co + cl)A(ex), (6.4) 

if # < 2 -  z/(~ - r)~. 
T h e  p r o o f  of  this t h e o r e m  d e p e n d s  o n  a p r o p e r  choice  o f  N, the  cu to f f  used  

in Sect. 5, as  a func t ion  o f  x. C h o o s e  

N(x) = ( 1 2 / o ~ ) l / 2 1 x l f l / 2  , fl = 2(3 -- 7) -  1 

]g = ~(~ - 1)/(7- 3)(4/Vl)/~, (6.5) 

so  t ha t  

~N z = # l x f  

½vxN ~, - 1 = 2#ix f - 1. 

W e  use t w o  e l e m e n t a r y  l e m m a s  

Lemma 6.2. I f  N is large enough and if  4 < N, 

1(41 -- s ) -  lv(¢)l > v l N  ~- 1 

I f  also x > 1, ~l - s > 0 ,  

(41 - s) -~  exp  { - (41 - s ) -  av(~)x } < N -  l e -  ,~N,-Ix. 

Lemma 6.3. If 0 </3 < 1, 

Ixt ~ - l l x  - z l  + I z f  > Ixl ~, 

lxl a - l lx - zl + ~tzl _-__ rain (Ixt a, ~Ix t), 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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oo 

N ~ - ~e - * ~  - '(~ - ~)max (e- "l~I~, e-  4Zl)dz < max (e -"1~I~, e - ~l~I). (6.11) 
x 

Proof of  Theorem 6.1. The bound (6.3) was proved in Theorem 5.1. To prove 
(6.4), we split the velocity space into two parts: {1~1 <g} and {1¢I > N} and define 

~ = z(t¢l < N) ,  

~N = Z(l~l > N) ,  

R ~  = (ZN(,~(~ - s) + v + H ) Z ~ ) -  ~, 

S ~  = z~( ;~(~  - s) + v ) -  ~, 

SN), = )~N();({1 - -  S) -~- V ) -  1. ( 6 . 1 2 )  

We define Rua, SNa and Sua on G=,r({ER 3) in the natural way, i.e. RNz f = g means 
that  XN(2({, - s) + v + H)g = f and suppg c {1¢1 < N}. Then 

(2(~ 1 - s) + v + zNHzN)- ~ = RNz + SN~, (6.13) 

R a = (RNz + SNz)(1 - -  (~NH + zNHzN)Rz) 

= Ruz + ,~N~ - Tz, (6.14) 

T,z = RN,zzNHzuR~ + Su,~uHR,~. (6.15) 

Integrate each of the three terms in (6.14): 

(i) By contour  integration 

(2~i)-1 ~x r+S e~ '~-z 'SNf l2dz={  v - l i f ¢ l - s < O ' O ,  otherwise, 1¢1> N, (6.t6) 

(2rc0-1S S e~-~)SN~h(z)d2dz <ell~Nh11~_~ 
x F +  r 

<= ¢Co e-c~Nz 

< CCo e-~'lxt~. (6.17) 

A similar estimate is proved for the integral over F_.  

O-2T~ = - RN~(¢ 1 -- s)RNzzNHZNRz -- RNzzNH~NR~(¢I -- s)R~ 

- SNz(~I -- s)SN~2NHRz -- $Nz2t~HRz(¢I - s)Rz. (6.18) 

Now estimate using first (4.6) for RNz and (4.8) for $Na with 0 = 0, then the resolvent 
identity Ra = S ~ ( I -  HR~), and finally (4.12), that  

[l Tzh [l~ < [I HZNRzh [I,-~ + [[ zNHRz h [I~-~ 

< I l n s z z N ( I ,  URz)h tl,- ~ + l l~ns~( I  - HRz)h If~- 

_--< ( -1- J r ) -  X/Ze - ~N2 II h H ~,, - 2. (6.19) 
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Similarly we find that  
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0-~ T) h ~ < 2 -  t/2e - ~ II h it et,r - 1" (6.20) 

These are integrated as in the proof  of Theorem 5.1. Employing (6.20) we get 

x + l  

dz r+ ~ d)°e~'(~-~)Txh(z) 

= S d z ( x - z )  -1 f d 2 e a ( ~ - ~ ) - -  ~ T~h(z)  
~+ i r+ 02 

<= CCo e - e N z .  

(6.21) 
Using (6.19) we estimate 

Therefore 

x + l  

dx ~ d2e~(X-Z)T,h(z) < CCo e-~N~. (6.22) 
x F+ r 

S dz ~ d2eX(~-~)Tzh(z) ~ < CCo e-~N~. 
X 1"+ 

(6.23) 

(ii) Define new paths 

t 
(6.24) 

By proposi t ion 4.1 the contours  F+ and F_  can be deformed to N+ and X_ 
without passing through singularities of  RNa. Thus 

e~'~RN~d2 = ~ eX~Ruj2. (6.25) 
FJ: ~± 

Next  calculate 

RN~ " = SN; ~ -- RNxHSu;., (6.26) 

-~  RruHSNz = - RNz(~ 1 - s)RNzHSNx + RNzHSNz(( ~ - s)SNa, (6.27) 

and estimate 

l! R~v;~HSNah lit ~ (1 + 2) - 1/2 tl h ltr- z, 

-f-2RNaHSNih ~ ~ (1 + 2)- IIh lit- 1-~- 1 / 2  

(6.28) 

(6.29) 
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Calculate the integral in three parts. By a contour integration, 

dz S = dz(~ 1 - s)- ie-(¢l-s)- 
X ~:k r X r 

<clN  -i  ~ e-viN~-l(x-~)max(e-Ul=l~,e-~J~l)dz +v-iN-~A(ex),  (6.30) 
x + l  

< CC~A(ex), 

using (6.2) and Lemmas 6.2 and 6.3. Next use (6.28) to obtain 

4t I dz ~ d2e~(~-=)Ru~HSN~.h(z) 
x Z +  r 

x + l  

<= c 1 ~ dz d2(1 + 2)- a/2eZ(~-=)A(ez) <= cciA(ex ). (6.31) 
x ( 1 / 2 ) v l N v  - l 

By integration by parts in 2, (6.6), (6.9), and (6.10), we can estimate 

dz ~ d2ea(~-~)gNzHSNah(z) 
x +  i I+ r 

<= t ~+ ~1 d z ( x - z ) - i  ~ d2eZ(~-~)d(RNzHSN~)h(z) 

Z Cl ~ dz(x - z) - i  S e ~'~-~)(1 + 2)- i/2A(ez)d2 
x +  1 ( l / 2 ) v i N ~ ' -  i 

< c 1A(ex). (6.32) 

Combining (6.30), (6.3t), and (6.32) and using (6.25) and (6.26) shows that 

I S ~ ~ c-qA(~x). (6.33) dz f d2e~(~-~)Rszh(z) 
X F +  

Estimates similar to (6.17), (6.23), and (6.33) can also be obtained for the integrals 
over F_. Combining these and using (6.14) results in (6.4). By setting y = e- ix we 
can change Theorem 6.1 to: 

Corollary 6.4. 

with 

satisfies 

The solution of 

(~l -- S)~xW = ~- iMw + ~- lh, 

sup llh(x)tf~,,-~ < Co, 
x 

ilh(x) If, < cla(x),  

sup 5tw(x) lt~,r <-- C'Co, 
x 

It w(x)lit < C(Co + ei)A(x). 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 
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Finally we also wake  estimates on the linearized version of equat ion (3.54) 
with asymptot ic  conditions (3.59). 

Lemma 6.5. (i) For any zl > O, 

x 

e-~(~-Y)-u~-~¢dy < c(xe - ~  + e-"~-o~);  (6.39) 
0 

(ii) There is an X > 0 and ½% > vl > O, such that 

- z  + 27Zo(X) > 2z l, if x > X, 

< - 2 z  l, i f x < - X .  

Theorem 6.6. If 
Ib(x)l ~ coA(x), 

then the solution z I of(3.54) and (3.59) satisfies 

[zl(x)[ < C'coA(x ). 

(6.40) 

(6.41) 

(6.42) 

7. Solution of the Nonlinear Equations 

Using the preceding estimates on the linearized version of Eq. (3.55), we are 
ready to solve the full nonlinear equations (3.54) and (3.55) with the asymptotic  
conditions (3.59). 

Theorem 7.1. There is a solution o f  (3.54), (3.55), and (3.59) with 

[zl(x)[ _-< cA(x), (7.1) 

Hwl(x) I1~,~ < c, (7.2/ 

Ilwl(x) lI~ < cA(x), (7.3) 

for any r, 0 < a < ¼ and for #, fl as in (6.5). 
Once this is proved we have finished the construction of the shock profile and 

the proof  of Theorem 2.1. First we make  estimates on the inhomogeneities a and 
b in (3.54) and (3.55). 

Lemma  7.2. Suppose that 

IZ,(x) t <- coA(x), (7.4) 

iIwl(x) tl=,r < cl, (7.5) 

llg'l(x) II, < c2A(x)- (7.6) 

I f  gt and b are defined by (3.56) and (3.57) with z 1 = Z 1 and w 1 = wl then 

l~(x)t < c(1 + ec o + c 2 + e(c o + c2)2)A(x), (7.7) 

ll~x) ll~.r-, =< e(1 + e(c o + el) + e2(Co + cl)2), (7.8) 

fig(x) I!r-~ < c(1 + e(Co + c2) + e2(eo + c2)2)A(x). (7.9) 

Lemma 7.3. Suppose Z 1 and z2 both satisfy (7.4) and wl and wl both satisfy (7.5) 
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and(7.6). Let (~, ~) and (a, b) be defined by (3.56) and (3.57) using (51, Wl) and (f~, ~ ~) 
respectively. Suppose also that 

[(5~ - fO(x)l =< doA(x), (7.I0) 

t[ (~3~ - #O(x)[[,,.r __< dx, (7.11) 

I[(v?~ - v?O(x)t1~ < dzA(x). (7.12) 
Then 

I ( a -  ~i)(x)[ < {(~do + dz) + e(Co + Q)(do + d~) } A(x), (7.13) 

I t (~-  b)(x)tl~,,-~ <-_ e(do - d~) + ~2(c o + Q)(d o + dl), (7.14) 

l l (~-  b)(x)It,-r =< {e(do -t- d2) + e,2(Co + c2)(d o + d2)}A(x). (7.15) 

These will be proved using the following estimates on z o and Wo: 

lZo(X)I < e -(~/-')~°1.1, x < O, (7.16) 

IZo(X ) - zoo [ < e -(~/~)~°t~1, x > 0, (7.17) 

llWo(X)L. ~ < e  -~/2~°1~1, x <0 ,  (7.18) 

IlWo(X) - w ~ II~,~ < e -(1/z),°l~l, x > 0, (7.19) 

and a nonlinear bound  coming from Proposi t ion 5.1 of [2]. 

L e m m a  7.4. I f  0 <= c~ < ¼, 

I1vF(f,g) TI~,r <= c(l[ fllr{]g ]1~,~+~ + ]1 f l1~+,,~]]g l[~ + [] flJ~,,+ ~- 1 Jig 1]~,~ +~- 1). (7.20) 

Proof  of  Lemma 7.2. Denote  

41 = - ¢ %  + (#~, Zo~ + Wo)> - ( ~ ,  vr(2¢~Zo + eWo, Wo)), 

~i~ = e75 z + ( # , , e f l ~  + # ~ ) ,  

a3 = - (#~, vF(2e4) f i l  + ~¢vl, wo + wl) + vF(24)~Zo + eWo, wl))-  (7.21) 

By (7.16)-(7.19), (3.49), and (3.51), ladx)l < ce -~/2~l~l. By (7.4) and (7.6), I~i2(x)l __< 
(ecZo+eco+Q)A(x) .  By (7.16)-(7.19), (7.4), (7.6), and (7.20), l~3(x)l <c(~co + 
eCoC: + ec 2 + ecZ2)A(x). These estimates imply (7.7) since ~7 = ~ + ~2 + a3 and 
~1 < ½%. Denote  

~1 = - ~(¢~ - s)~xWo - Mwo - 8 M 3 w  o + g, Zo( I  - P )  

+ (1 - P)vF(zoO ~ + ~wo, Zo~ ~ + ~Wo) , 

t~ 2 ---- - -  ~ M 3 w  1 + 8 2 z 1 ( I  - -  P)/z~, 

~3 = (I - P) {2evF(zo~ ~ + ~Wo, f i¢~  + vvl) + e2vF(flqS~ + wl ,  fldP~ 
+ ~ )  }. (7.22) 

By (7.16)-(7.19) and (3.50), [151(x ) I1~,, ~ ce-(~/2)*°l~I. By (7.4)-(7.6), 

II b'2(x)ll~,, < (~Co + ~2c0, 

]I ~2(x)II~ ~ (eCo + ~%z)A(x). (7.23) 
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By (7.t6)-(7.19), (7.4)-(7.6), and (7.20), 

li~(x) I1,,~- {~(Co + cO + e~(Co + c~)~}, 

ll/~2(X) lit-- }, ~ (e(Co -]- C1) -~- e2(eo -}- C l ) 2 } A ( x )  • (7.24) 

Combining these yields (7.9). 

Proof of  Lemma 7.3. In notation like that in the previous proof, a i -  fix = 
~ - b~ = 0. This eliminates the term contributing the "1" on the right side of (7.7)- 
(7.9). The remaining terms are estimated as above to find (7.13)-(7.14). 

Proof  of  Theorem 7.1. We are now ready to solve Eq. (3.54), (3.55), and (3.59) by 
iteration. Let z ° = w ° = 0, define a" and b" by (3.56) and (3.57) with z~ and w, 
replaced by z] and w], and let z] + i and w~ + 1 solve (3.54), (3.55), and (3.59) with a and 
b replaced by a" and b". Then z ° and w ° satisfy (7.4)-(7.6) (for suitable e o, c i, e2). The 
estimate (7.7)-(7.9) for a ° and b ° combine with Theorems 6.1 and 6.6 to find 
estimates on z~ and w~. By iterating the procedure we obtain uniform estimates on z] 
and w]. Choose C o, C i, and C 2 such that 

c(1 + eC o + C 2 + e(C o 

c(1 + e(Co + Ci) + ~2(Co 

C(1 -[" ~3(C 0 -J- C2) + ~2(C 0 

+ C2) 2) < Co, 

-~- e l )  2) ~ C1, 

-+- C2) 2) ~ C 2. 

Then z] and w'~ satisfy (7.1)-(7.3) with C = m a x ( C  o, C i, Ca). Lemma 7.3 shows 
that A(x) -  l tz"i+ l - z"l t, llw"l+ l(x) - w"l(x) ll~,r and A(x)-111w]+ l(x) - w"l(x) ltr 
are decreasing algebraically fast. Therefore z] and w~ converge to z 1 and w~ with 
bounds (7.1)-(7.3). By a standard argument, they are seen to be solutions of (3.54), 
(3.55), and (3.59). 

To show the uniqueness of the solution we first write f as f = (z o + ezl)(b + 
e(w o + wl) as in Sect. 3. Then z 1 and w 1 solve (3.54), (3.55), (3.59). Assuming (2.26), 
we wish to show that A(x)- l t z i (x) l ,  Jlwl(x)ll~, r, and A(x)- l j lwt(x)Jl ,  are bounded 
independent of e. From (2.26) and Lemma (7.2) we find that Ilb(x)]i~,~-~ and 
A(x)-i f lb(x)l t ,_~ are bounded. Then Corollary 6.4 implies bounds on ltwl(x)l!~. ~ 
and A(x)-  i tlwl(x ) tit. Using Lemma 7.2 again we find bounds on A(x) -  l la(x)l, and 
again Theorem 6.6 implies bound on A(x)- l tz l (x)[ .  

Next we suppose that f and f are two such solutions with w 1 - ~ and zl - £~ 
bounded in the above norms by a constant c. By Lemma 7.3 we find that a - ~, 
b - ~ are bounded by ec. Then by Corollary 6.4 and Theorem 6.6 we find that 
z ~ -  ~ and w ~ -  ~ are bounded by ec. Continuing this we find that w~ = ~ ,  

zi = zl and thus f = f .  

Appendix A. The Collision Operator 

The nonlinear collision operator is 

2~ ~/2 
Q(f,g) -- ½ ~ ~ ~ {A~)g(~') + f(~')g(~'~) - f(¢l)g(~) 

Ra 0 0 

-- f (~)g(¢ ~) } B(O, V)dO d e d ~ ,  (A.1) 
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V=¢1 - ¢ ,  

¢' = ¢ + ~(~-V), 

q; = q l  - ~ ( ~ - V ) ,  

= (cos 0, sin 0 cos s, sin 0 sin ~), (A.2) 

and B(O, V) is (the collision cross section). 1~. For  an inverse power  force F(r) = x r -  3 
s - 5  

with 3 < s and  r the in termolecular  distance, B(O, V ) =  Vrfl(O) with ? -  
s - l "  

In  par t icular  for inelastic collisions between spheres, B(O, V) = Vcos 0sin 0. Define 

n/2 

v(¢)  = 2 ~  ~ .( B ( O , , I  - ¢)~o ( , t )d0d , t ,  
R3 0 

w(¢) = (2re)- t / : e -  ¢2/2. (A.3) 

We shall consider only hard  potentials  with an angular  cutoff in the sense of  
G r a d  [11], i.e. we assume tha t  

v 1"(1 + ~)~ < v(¢) < v2"(1 + ~)~, 

B(O, V) < cV  ~sin 0cos 0 [, (A.4) 

in which Vx, v 2 and c are positive constants  and 0 < ? < 1 and  that  B is cont inuous 
in V.. Power  law forces do not  satisfy these constraints;  some modif icat ion is 
required to eliminate grazing collisions with 0 small. 

The  linearized collision ope ra to r  is L f  = - 2to- 1/2Q(o9, O~l/2f). Using (A.2) and 
positivity and  symmet ry  propert ies  of  B, one can show tha t  L is self-adjoint and  
non-negative,  with N ( L ) = s p a n  {k , i  = 0 . . . .  ,4} [11]. I t  can be represented as 
L = v(¢) - K with 

K f(~) = ~ k(~,tl)f(tl)dtl, 
R 3 

k = - k 1 + k (A.5) 

x/2 
kl(~, t/) = 2zcco(¢)~/Eco(t/) ~/2 ~ B(O, V)dO, (A.6) 

0 

i 2 k2(~, t/) = 2(2=)- 3/2 v -  2 exp { - ~v 2 - y ( ,  } 

' I  exp { - ½[w + ~212} q(v, w)dw 

in which 
(A.7) 

v = ,t - ~ = a(a" V) ,  

w = V - ~ ( ~ : V ) ,  

i ,  = v (v .½(q  + 't)),  

~ :  = ~ (¢  + 'I) - ! ~ .  (A.8) 
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Note  that  w is perpendicular  to v and the integral in (A.7) is over the two- 
dimensional plane with v held constant.  Also we define 

q(v, w) = (2 Isin 0[- 1 [B(0, V) + B(~ - 0,Y)}) < cv(v 2 + w2) - (1 -r)/2 (A.9) 

The bounds (4.10) for H replaced by K and (4.15) for/~ replaced by k were 
derived in [2] along with the bound  

II Kh [J 3/2 - ?  ~<~ C I[ f t1L ~" (A. 10) 

These can be used as in [11] to show the following: 

Lemma A.I.  I f  3' < 1, H = e~v(¢) -  a Ke - ~  is compact as an operator on L 2. 

Lemma A.2. Let heG~,~ with ( z ~ , h ) = 0 ,  i = 0 , . . . , 4 ,  then L f =  h has a solution 
with f eG,,~+y. 

Appendix B. The Summational Invariants 

The summational  invariants /o , - . .  ,Z4 defined in (2.9) form an o r thonormat  
basis for the null space of L. The sound speed c o is found as a roo t  of 

d e t ( ( z i , ( ¢ l - C o ) Z s ) ) = - c ~ ( C o - ~ ) ,  i.e. Co= x/5/-~=3'3. One could also use Co= 

- x / 5 / 3 ;  the roots  c o = 0  correspond to contact  discontinuities rather  than 
shocks. The function 49~ = Scq)~ is found through a null vector (~) of the matrix 

(ZI , (~I -Co)Zj ) ,  ( i , j = 0 , . . . , 4 )  which is % = 1 ,  ~1=c0 ,  ~ 2 = ~ 3 = 0 ,  (~4~---N/~ 
as in (3.11). 

4 3 

Next we soh, e (3.14), (3.17), and (3.18). Rewrite ~ fiiZi=fl'49'o + ~ fl~Zi. 
i=0 i=0 

Then (3.14) is 

j=O 

! ! 

= -  (X~, 4 9 o ) -  ( ( ~ -  Co)Z~, 491), i = 0  . . . .  ,3. 

(B.1) 
Since 491 is to be independent  of e, (3.18) implies that  ( (¢~-Co)491,491)=0.  
This is just a linear equat ion for /~' with coefficient 2((~1-c0)49o,  q5'1)= 

2~-1 (L491,491) ¢0. 
Also we calculate det (((¢~ - Co)Zi, Zs)) (i,j = - 1 . . . . .  4) with ~_ 1 = 492. F r o m  

(3.21) and (3.14) we have ( ( ~ l -  C o)Z~, 491 ) =  - ( X i ,  49o). This makes it possible 
to calculate the determinant  to  be 2 z 4 Co, ( -  co - 3c 2 + ~Co - ~) ~ 0. Since 

=Co(C o 1) 4=0, (B.1) has a unique solution det ((~i,(~1 - Co)Xj))(i,j = 0,...,3) 2 2 _ 
3 

fl~,...,fi~. Look  for 0~ and 0~ = ~ ?iZi + 0 will be choosen to satisfy ( (~l  - s)zi, 
i = O  

0 )  = 0 ..... 3. Then  (3.17) for i =  0,...,3 becomes 

t ( ¢ l - s ) x i ,  ~ 3'SZjt = - (Xi, 49~), i = 0 , . . . , 3 .  (B.2) 
j=0 

Since det (()~, (3 1 - s)z~ ) )  is bounded  uniformly in e near 0, the 3's's are determined 
uniquely and are uniformly bounded.  For  the last equat ion of(3.17) we can replace 
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~4 b y  q50` T h i s  a n d  (3.18) g ive  us  t w o  e q u a t i o n s  f o r / 3 '  a n d  O: 

( C~o, (at)  + ((¢1 - co)Oo, ~ )  + O(e) = 0, (B.3) 

2(qSo,~bl ) + ((~1 - Co)q51,qS~) +2( (¢1  -Co)~o,O) + O(e) =0.  (B.4) 
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