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Exact periodic solutions are found for the relative motion of three spheres sedimenting in a
Stokes fluid. Nearby solutions are found to be nearly periodic for a long time. Existence of the
exact periodic solutions is proved using the point-particle approximation and symmetry
properties of Stokes equations. Numerical simulations for finite-sized particles are performed

using a method of multipole expansions.

I. INTRODUCTION

Sedimentation of solid spheres in a viscous liquid is de-
scribed by Stokes equations if the Reynolds number based on
sphere radius is sufficiently small. Since inertial forces are
neglected in the approximation, two spheres of equal mass
and size will fall without changing their relative position and
at a speed larger than that of a single particle. For three such
spheres, the simplest scenario for their motion'~ is that a
pair of particles starting far above the third will catch up
with it. After the three interact, a pair of particles (not neces-
sarily the same two) will eventually pull away and fall faster
than the third.

The point of this paper is to describe a new class of solu-
tions for which the relative motion of the three spheres is
periodic in time. For such periodic solutions, the three parti-
cles will always remain close, and their motion cannot be
described as a collision between a pair of particles and a third
particle.

These periodic solutions can be described as follows:
The three particles start off in a horizontal plane with two of
them closer together than to the third. The two initially fall
faster than the third, but are spread apart because of the fluid
flow caused by the third particle. Eventually they are pushed
far enough apart that the third particle falls faster than the
pair and catches up with them. Now the reverse happens.
The pair is moving more slowly than the third particle, but
the flow above the third particle pulls them closer together.
Eventually they start falling faster than the third particle and
catch up with it. If enough symmetry is imposed initially, the
relative positions in the final configuration are found to be
exactly the same as those in the initial configuration, so that
the motion is periodic.

These solutions will be shown to occupy a four-dimen-
sional subset of the six-dimensional phase space for the rela-
tive positions of three particles. Moreover, nearby solutions
are found to be nearly periodic for a surprisingly long time,
so that the periodic solutions are robust (if not actually sta-
ble). Although these periodic solutions are rather special,
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they can be expected to be useful for understanding the mo-
tion of larger numbers of particles and as numerical test
problems.

Recently Durlofsky, Brady, and Bossis* constructed a
periodic solution for a configuration of four particles. An
analytic treatment of flow past three particles on the vertices
of a horizontal equilateral triangle was presented by Kim.?

The construction of the periodic solutions employs sym-
metry properties of Stokes equations detailed in Sec. IV, and
periodic solutions for three point particles, which were first
found by Hocking® and are described in Secs. II and III
Robustness of the periodic solutions is demonstrated at the
end of Sec. III. Numerical computations for three sediment-
ing spheres are presented in Sec. V showing periodicity for
symmetric configurations and near periodicity for asymmet-
ric configurations. Some implications of these results are
outlined in the concluding Sec. V1.

il. THE POINT-PARTICLE APPROXIMATION

The motion of spheres in a Stokes fluid may be approxi-
mated by that of point particles. Each point particle applies a
point force mge, to the fluid, in which m is the particle mass,
gis the gravitational constant, and e, is the unit vector point-
ing downward. The fluid velocity at y resulting from such a
single point particle at y — x is given by the Stokeslet
«UM(x) in which k = mg/8mu and

U(x) = [e,/|x| + (e;xx)/|x[*]. (N
According to Faxen’s first law,*’ the velocity v of a point
particle, sitting in a flow u and feeling a force F, is given by
v = u + Vg, in which vy, is the Stokes velocity corresponding
to the force F. In order that vs, = (6mua) ~'F be finite, the
point particle must be considered to have an effective radius
a.

For three point particles, each particle feels an ambient
flow u from the sum of the Stokeslets generated by the other
two particles. Thus if the particle positions are x', x®, x,
their velocities are, respectively,
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X = vg, + xUXY — x?) 4+ kU — x¥),
X(Z) =vVg + KU(X(Z) — x(l)) + KU(X(Z) _ x(3))’ (2)
)"(3) =vg + KU(X(S) _ x(l)) + KU(X(S) _ x(2)).

Note that U(x) = U( — x). Equations (2) are simplified by
translating to the frame centered at x'") and rescaling time.
Let

Yy=X

(2) (1)

—x, 3)

z=x*—x"", =k,
in which ¢ ' is the original time variable. Equations for y and z

are
y=U(y —z) — U(2),
z=U(y —z) — U(y).
This six-dimensional system of ordinary differential equa-
tions (ODE’s) forms the basis for this section as well as
Secs. IIT and IV.

As observed by Hocking,? the system (3) has a simple
conserved quantity given by

(3)

A= —le(yXz) = — (1,23 — }32,), (4)
which can be interpreted as the area of the horizontal projec-
tion of the triangle (0,y,z). A simple calculation shows that

A=0. (5)
The equilibrium solutions of (3) are horizontal equilateral
triangles, i.e.,

y= (OaY2,y3),

Iyl =l|z| = |y —z|.

Linearization of (3) around the equilibrium solution (6)
results in a linear system for which the eigenvalues are 0, 0,
+ i3yl =2+ ifilyl ~2. Thus there are two linearly degen-
erate modes and four periodic modes of period T = 27,3 |y
in the scaled time, or 7' = 27,/3x'|y| in the original time.

z = (0,2,,23),

(6)

lll. PERIODIC MOTION FOR POINT PARTICLES

Periodic solutions for the point-particle equations (3)
will be found by restricting to symmetric solutions. Assume
that

Y= (uYa)s), z2= (V1Y — Vi), N

i.e., that (0,y,z) forms an isosceles triangle with a horizontal
base [any horizontal rotation of (7) would also work]. This
symmetry is preserved by Eq. (3). Assume, without loss of
generality, that p,> 0, y; > 0; since 4 = y, y, is constant in
time, y, and y; will remain positive. Under these assump-
tions, the system (3) reduces to

=AY — R+ + Ay H T
— N+ + A% (8)

Vo= =y +y; + A% H TR
This second-order, autonomous ODE has an equilibrium
pointat y, =0, y, = (34 2)"/%, corresponding to a horizon-
tal equilateral triangle and around which the linearized flow
is periodic. Experimental observations of this equilibrium
are well known.® Because the system is symmetric about
¥, = 0, the full nonlinear flow for (8) is also periodic near
this point. These periodic solutions are separated by a sepa-
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ratrix from the remainder of solutions which approach
J1= £ o as t— + . The latter, which we call escaping
solutions, correspond to a pair of particles catching up toand
passing a third particle. The full phase plane for (8) is drawn
in Fig. 1.

Numerical computations of a periodic solution for the
full system (3) under the symmetry assumption (7) are
sketched in Fig. 2. Note that of the six-dimensional phase
space for Egs. (3), the periodic solutions form a four-dimen-
sional bounded subset;, corresponding to the choice of
Y1 Va2Y; and a horizontal rotation. Even under strong pertur-
bations of the symmetric solutions, nearby solutions are
nearly, but not exactly, periodic. Figures 3 and 4 show the
evaluation of a typical asymmetric solution over the time
ranges 0<7<30 and 1800<¢<1830. The solution is nearly,
but not exactly, periodic; it is remarkable that even after
more than 100 “periods” the solution is still nearly periodic.
This shows the periodic solutions to be very robust.

IV. PERIODIC MOTION FOR SPHERES

Using the periodic solutions for three point particles and
the symmetry of Stokes equations, we shall deduce the exis-
tence of exact, periodic solutions for three spheres sediment-
ing in a Stokes fluid.

Stokes equations, for the motion of three spheres with a
radius a and centers xY, x?, x*® are the following: For
Ix —xP|>a (i=1,2,3),

uVu—V, =0, 9)
Veu =0, (10)
with boundary conditions

(11)
in which v =% is the particle velocity and ‘" is the
angular velocity. Both v'” and 7'” are x-independent vectors
which are to be determined as part of the problem. In addi-
tion, there are equations of balance of force and torque on
each sphere. For i = 1,2,3,

f (on)ds = —F,
Jx —x9)|

u=x? — (x —x?)x+? on [x — x| =aq,

(12)

f (o*n)Xnds=0, (13)
jx —x?]

w»

FIG. 1. Phase plane portrait for the time variation of the two horizontal
components y,,p, for a symmetric configuration of three point particles.
This result is computed from Eq. (8) with4 = 1.
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FIG. 2. Periodic solution for three point particles. Initial data:
y(0) = (0,1,1), z(0) = (0,1, —1). Notation: 4 =length of midline
= |y + 2|/2, B =1length of base = |y — z|, C = cosine of angle between
midline and vertical = (y, + z,)/]y + z|, D = cosine of angle between base
and vertical = (y, —z,)/ |y — z|, E= cosine of angle between base and
midline. For an isosceles triangle with a horizontal base, as in this case,
D=E=0.

in which F = ige, is a given force and o is the stress tensor,
o; = —p8; + pu(u;; + u;;). Equations (9)-(13) could be
rewritten as a system of six ODE’s for the relative positions
y =x? —x and z=x® — x!¥, analogous to (3). Note
that the solution of (9)—(13) is unique once the initial data
xP(t=0) (i=1,2,3) is given.

If the three particles lie originally in a horizontal plare
x,; = 0, then their subsequent motion resulting from gravity
is the mirror image about x, = 0 of the motion if the direc-
tion of gravity was reversed. Reversal of the direction of
gravity is the same as reversal of time (since inertia is ig-
nored). So an equivalent statement is that the motion for-
ward in time is the mirror image of the motion backward in
time. This can be stated by the following.

2‘51

0.5+

-0.5 T T T T T

o] 10 20 30
Time

FIG. 3. A nearly periodic solution for three point particles starting from

asymmetric initial data: y(0) = (0.0,0.5,1.0), z(0) = (0.0,1.5, — 1.0).
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FIG. 4. Same as in Fig. 3, but after more than 100 periods.

Symmetry property (time reversal): If x(?(t=0) = Ofor
i=1,2,3, then (x{"x{",x{?) (1) = ( — x{° X" x§") (— ).

The same symmetry is true for the relative positions
y=x2 - xVandz = x® — xV.,

Symmetry property (time reversal for relative positions):
If

»nit=0)=z(t=0)=0,
then

W) (@) = (=) (— 1)
and

(21s25:23) (1) = (= 21,22,2,) ( — 1).

A periodicity property can be inferred from this symme-
try property. Suppose that the three particles liein a horizon-
tal plane at t =0 and in a (possibly different) horizontal
plane at ¢t =T /2. Time reversal and reflection about the
horizonta} plane at ¢ = 0 leads to horizontal configurations
at times = T/2 and t = — T /2. At these two times the
configurations may lie in different horizontal planes (differ-
ent vertical coordinates) but their horizontal coordinates
are exactly the same, i.e.,

(T /2) =xP(T/2) =x*(T/2),

xXV(—=T72)=xP(=T/2)=xP(=T/2),

X(T/2) =x"(—T/2),

xX\N(T/2) =x"(—T/2),
but

(T /2) #x0( — T/2).

Thus the relative positions y and z are the same at these two
times, i.e.,

yw(T/2))=z(TR)y=y(—-T/2)=2,(—-T/2) =0,
YoAT/2) =p,( —T/2), yi(T/2) =p,(—T/2),
2,(T/72) =z,( — T/2), z,(T/2) =2z,( —T/2).

This is summarized by the following.
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Periodicity property: If x{"’ (0) = x{*(0) = x{>(0) and
x"(T/2) =x{P(T/2) =x>*(T/2), then the relative
motion of the three spheres is T periodic, i.e.,

xP(t+ 1D —xPV@+ D =x@) —xP(r), i=23.

(14)

From this periodicity property, we derive our main re-
sult for periodic solutions of the three-sphere problem.

Existence of periodic solutions: Letx’ (t = 0),i = 1,2,3,
lie on an isosceles triangle with horizontal base, i.e.,
x2(0) = x(0), |x"(0)| = |x®(0) —x"(0)|. Suppose
that motion of point particles with this same initial data is
periodic and that the radius a of the spheres is sufficiently
small compared with their separation min(|x? — x|,
|x® — x®|). Then the relative motion of the spheres is ex-
actly periodic, i.e., for some T,

xP+ D —xPe+ D =x0 -x®.  (S)

To demonstrate this result, first note that by the symme-
try of Stokes equations with respect to reflection in a vertical
plane (i.e., with a horizontal normal vector), the sphere
centers x” will always be on an isosceles triangle with hori-
zontal base. In particular, the relative motion of the three
spheres is completely determined by the relative position of
one of them x® — x!V. Since the spheres’ radii are small,
their relative motion is well approximated by that of point
particles, which is periodic. Although this does not yet imply
that the relative motion of the spheres is periodic, it does
imply that x,V(#) — x,"’(#) =0 at two times ¢ = ¢, ahd
t =t, + T /2. Since the spheres are on an isosceles triangle
with horizontal base, x,®(¢) — x,’(¢) = 0 for t=1¢, and
t=1t,+ T/2. Periodicity of the relative motion of the
spheres then follows from the periodicity property.

Note that for Stokes equations (9)-(13) with periodic
boundary conditions, the symmetry properties are still valid.
Invariance with respect to reflection in a vertical plane is
retained only if the vertical plane is parallel to a side of the
periodicity cell. Therefore the existence of periodic solutions
is still valid if the base of the isosceles triangle is parallel to a
side of the periodicity cell.

Note also that since the point-particle approximation is
valid, asymmetric solutions near the periodic orbits will be
nearly periodic for a long time. Therefore the periodic solu-
tions for three spheres are also robust as shown in Sec. V.

V. NUMERICAL COMPUTATIONS FOR SPHERES

Numerical computations for three sedimenting spheres
were performed using a method developed by one of the
authors (Sangani).’ In this method, the velocity field is ex-
panded in terms of various derivatives of a fundamental sin-
gular solution of the Stokes equation with the singularities
situated at the center of each of the particles. The resulting
field is then expanded in Legendre polynomials around each
particle, and the strengths of singularities are determined
from the no-slip boundary condition on the particles by eval-
uating the coefficients of Legendre polynomials of order less
than or equal to N,. The translational and rotational veloc-
ities of the particles thus computed are checked for conver-
gence by repeating the calculations at higher N,,.
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TABLE 1. Initial vertical velocity for the sphere at origin at =0 for
a=0.7 (nearly touching) as a function of N, = maximal order for Le-
gendre polynomials. Horizontal velocity=0. Initial configuration was
(0,0,0), (0,1,1), (0,1, — 1) (symmetric).

N, u,

4

—0.244

—0.2256
—0.2352
—0.2110
—0.2285
—0.2110

[- SRV N VRN S R

First the results for symmetric configurations are pre-
sented. Initially let the particle centers be located at the
points (0,0,0), (0,1,1), (0,1, — 1) as in the symmetric point-
particle calculation in Sec. ITI. The maximum particle radius
a for such a configuration is a,,,,, = v2/2 =0.707....

Convergence of the numerical method as N, - o is
demonstrated in Tables I and II. Table I presents the (rela-
tive) vertical velocity u, of the spheres at t = O fora = 0.7 as
a function of N,. The value of u, is seen to vary by only 10%
as N, is increased from 2 to 6, even for these nearly touching
spheres with a = 0.7. Table II presents the period T for the
relative motion of the three sphere for a = 0.6, as a function
of N, and the time step At, showing good convergence.

These numerical computations for this symmetric con-
figuration show the discretized motion to be very nearly pe-
riodic, verifying the periodicity of the actual continuous mo-
tion. The resulting period as a function of the particle radius
is presented in Table III. The period is seen to increase as the
radius increases. Also the point-particle approximation of
Sec. I1I, which gave the half-period to be 6.5, appears to give
an excellent estimation of the half-period for the finite size
particles up to @ =0.3. The x, and x, coordinates of the
particle (initially at the origin) after a time 7'/2 are also
givenin Table II1. As a approaches zero, the x, coordinate of
the particle after the half-period approaches infinity, and it is
interesting to note that even when a = 0.6, the particles trav-
el roughly 100 times their diameter in the direction of gravity
before they complete one period. Stokes approximation will
remain valid for such a long time only if the Reynolds num-
ber is extremely small.

For the asymmetric initial configuration (0,0,0),
(0,0.5,1.0), (0,1.5, — 1.0), numerical computations for
a = 0.25 and a = 0.4 give nearly periodic trajectories for a
long time, just as for the point particles. The time depen-
dence of the trajectory for @ = 0.4 is displayed in Fig. 5.

TABLE I1. Half-period as a function of N, and time step A¢. Same initial
configuration as Table L.

Ar=0.1 Ar=0.2
N, (T/2) (T/2)
2 8
3 10 cen
4 9.5 9.5
5 9.4
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TABLE I11. Half-period and the coordinates x{"’ of the particle initially at
the origin after the half-period (x{" = Ofor all times), as a function of parti-
cle radius a. Symmetric initial data as in Table I. Time step was Az =0.1.

a T/2 x("(T/2) xV(T/2) N,
0.1 6.5 95.3 —1.335 2
0.3 6.65 38.5 —1.33 3
0.5 7.9 322 ~129 3
0.6 9.5 34.5 —1.31 4
065 136 476 ~1.56 4

VI. CONCLUSION

The periodic solutions constructed here are surprisingly
robust. This suggests that they may be more generally useful
for understanding the motion of three or more particles and
also as a numerical test problem.

A possible application of these solutions is to a method
for determination of the physically correct two-particle dis-
tribution function for sedimenting particles, which would be
useful for many purposes such as analysis of hydrodynamic
dispersion during sedimentation. A possible method for de-
termination of the two-particle distribution function is a
cluster expansion at low densities. The two-particle contri-
bution to this expansion is degenerate since any two particles
move without changing their relative position. Inclusion of
the three-particle effect would involve these periodic and
nearly periodic solutions. However, it is not clear that the
three particle interactions are more important than the cu-
mulative many-particle interactions.

After the conserved quantity 4 and rotational symmetry
have been accounted for, the point-particle equations (3) are
a four-dimensional dynamical system. As such, it would be
of some interest to find almost periodic and chaotic solu-
tions.
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FIG. 5. A nearly periodic solution for three spheres with a = 0.4 starting
from asymmetric initial data y(0) = (0,0.5,1.0), z(0) = (0,1.5, — 1.0) as
in Fig. 3, and with numerical parameters N, = 3, At = 0.05.
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