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DYNAMIC THEORY OF SUSPENSIONS WITH BROWNIAN EFFECTS*

R. CAFLISCHt AND G. C. PAPANICOLAOU}

Dedicated to J. B. Keller on his sixtieth birthday

Abstract. We consider a suspension of particles in a fluid settling under the influence of gravity and
dispersing by Brownian motion. A mathematical description is provided by the Stokes equations and a
Fokker-Planck equatjon for the one-particle phase space density. This is a nonlinear system that depends
on a number of parametric functions of the spatial concentration of the particles. These functions are
known only empirically or for dilute suspensions. We analyze the system, its stability, its asymptotic behavior
under different scalings and its validity from more microscopic description. We summarize our conclusions
at the end.

1. Introduction. The theory for the steady flow of a viscous fluid containing a
suspension of solid particles is well developed. The recent work of Batchelor [2] and
Hinch [16] presents an analysis which is correct asymptotically for small concentration
of randomly distributed particles. They obtained expressions for the effective fluid
stress and the gravity induced sedimentation speed, with their dependence on the
particle concentration. A review of their work and additional references are found in
Batchelor [3].

A number of studies of dynamic phenomena in suspensions have been made but
the theory is far from complete. For the very simple problem of sedimentation through
a stationary fluid, Crowley [10], [11], [12] has shown experimentally and analytically
that a periodic array of spheres is unstable. Also, Siano [25] has demonstrated
experimentally that a spatially uniform distribution of sedimenting particles is unstable
for some range of parameters. Cohen and Hagan [9] have discussed Siano’s results
using a free energy function. Other studies of stability in similar systems are found
in [13], [15], [17]. A general reference for the static and dynamic theories of sus-
pensions is Happel and Brenner [14].

In this paper we present a dynamic theory for a suspension of particles subject
to gravity and Brownian motion. We demonstrate the possibility of linear instability
for a random, homogeneous distribution of particles and find a description of the
resulting nonlinear equilibrium. This instability depends crucially on how the strength
of the Brownian diffusion varies with the particle concentration. Although we are
unable to find this diffusion coefficient exactly, we analyze some related problems that
involve interaction effects for particles under Brownian motion. From this analysis
one can get some idea about the properties of the diffusion coefficient that are relevant
in the rest of the paper.

The configuration of particles is described by a distribution function f(x, &, ¢) for
the particle position x and velocity ¢ at time . It satisfies a Fokker—Planck equation
in which the coefficients depend on the local volume fraction ¢ = ¢ (x, ¢) of particles.
The equation includes the effects of gravity, drag by the fluid, and diffusion in velocity
space. After it and the effective fluid equation are formulated in § 2, the equations
are nondimensionalized in § 3, and various scalings are discussed.
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In § 4 we linearize the equation about a spatially uniform state and derive the
corresponding dispersion relation. This dispersion relation is analyzed in § 5 to show
the possibility of instability for some finite interval of wavenumber k.

Since the linearized equations may contain instability, a nonlinear theory is
needed. The nonlinear Kramers-Smoluchovski limit [20] of weak spatial dependence
(or strong velocity diffusion) is performed in § 6, using an analogue of the Chapman—
Enskog expansion [8]. In that limit we derive a nonlinear equation for the local volume
fraction ¢ (x, t). This continuum theory for the suspension is the nonlinear analogue
of the preceding linear analysis. Steady solutions of this equation are nonlinear
equilibrium states. In one space dimension such solutions are discussed in § 7 and in
more detail, along with some results on their stability, in [21].

In § 8 we consider the form of the N-particle linear Kramers—-Smoluchovski limit
which is an N-particle interacting diffusion process. In § 9 we discuss the existence
and dependence on concentration of the self-diffusion coefficient for interacting
Brownian motions. At the end of this section we argue heuristically that the velocity
diffusion coefficient used in §§ 2 to 7 behaves more like the self-diffusion coefficient
than the bulk diffusion coefficient for a system of interacting Brownian motions. The
former decreases with concentration while the latter increases in general [4].

2. Formulation of the equations. We shall adopt a mathematical description of
the suspension based on the Stokes equation for the fluid and a Fokker—Planck
equation for the one-particle phase space distribution function. This description is
compatible with the two-fluid modelling of the suspension [13], [15] but contains
more information allowing for the conclusions we wish to draw. In Appendix A we
show that the usual two-fluid description, including Brownian effects, is inadequate
for our purposes here.

Let v,(f, x) and vf(t, x) be the average yelocities of the particle and fluid phase
that have densities p, and py respectively. Let ¢ (¢, x) be the volume fraction density
of the particles. The two-fluid continuum equations for the suspension have the
following form [13], [15]:

21)  ¢:+V:(¢v,)=0,

22)  (1-¢)+V-((1-¢)v)=0,

2.3) Pt (Ve + (v - VIV, —g) =~ Vp — ¢S (v, —1y),

(2.4)  pr(1—@)(vs+ (v VIvs—g)=—(1-)Vp+ ¢S (v, —vf) + (1 = @) Avy.

In (2.1)-(2.4) g denotes the acceleration of gravity vector pointing downward, p
denotes the pressure, u the viscosity of the fluid, and S the coefficient of interaction
for the force exerted by one fluid on the other. At low concentration, ¢,

_(1-¢) 9p
2.5) $= 1-6.55¢ 2 a*

where a is the radius of the particles. This is obtained as follows. Equations (2.1)-(2.4)
have the equilibrium solution

1-
26) o=ty =5 2oy o),

2.7 p=(¢p1+(1-)p2)g - x,

where v, and vy are constant now. The solution (2.6)—(2.7) corresponds to uniform
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settling in the presence of gravity. When the average velocity
(2.8) u=aev, +(1-)vy

equals zero, we may identify v, with the settling velocity and for low concentration
@, Batchelor [2] has calculated the dependence of the settling velocity on ¢ to obtain

(2.9) Up = (1_6-55¢)UST’

where vgt is the Stokes settling velocity of a free particle,

3 —
(2.10) vST=g4Tra (pp pf)/3.
6mua

Thus, from ¢v, +(1-¢)v;=0, (2.6), (2.9) and (2.10), we can solve for S in (2.6) to
obtain the expression (2.5).

With the determination (2.5) for S, equations (2.1)-(2.4) are the usual two-fluid
equations for the suspension. If we add a term of the form ¢ V¢ on the right side
of (2.3) the new system includes Brownian effects and is analyzed further in Appendix
A. As we indicated above we shall not use (2.1)-(2.4) but we shall replace (2.1) and
(2.3) by a Fokker-Planck equation. Our system of equations will contain (2.2), (2.4)
and the Fokker-Planck equation

2.11)  fi+&-Vf+V, [(gy( —:”—;) —M‘161ma0(§—u))f] =DV,

Here f=f(t, x, £) is the phase space volume fraction density of particles, i.e. the
average volume of particles at x (per unit volume) going with velocity ¢ (per unit
volume in velocity space). The average volume fraction ¢, or concentration of particles,
is the £-integral of f

(2.12) ¢ = I fdg,
while the average particle velocity v, is the &-integral of &f
(2.13)

pu, = ¢ de.
In (2.11) we introduced some additional notation as follows. The mass of a particle is
(2.14) M= g"rraspp,

while w is the fluid viscosity and g the acceleration of gravity vector as before. The
velocity diffusivity
kT 6mua
D=— ,
M M
which is the Einstein formula with k = Boltzmann’s constant and T = the temperature

of the suspension, assumed constant. The functions y(¢), 8(¢) and § (¢ ) are dimension-
less and

(2.16) y(¢)=1-4¢,

modifies the gravitational acceleration to account for the additional buoyancy of
the fluid due to the suspended particles. The function 6(¢) gives the modification
of the Stokes drag on a particle due to the presence of the other particles. Notice

(2.15)
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that the drag term M ~'67rua6 (£ —u) in (2.11) is computed with respect to the velocity
of the particle ¢ relative to the volume average velocity of the suspension u given by
(2.8). From (2.11) the settling velocity of a particle at equilibrium is obtained by the
balance of drag and gravitational force and equals vsry/6 whete vsr is given by (2.10).
As in (2.9) we may equate this to (1—6.55¢)vsr according to Batchelor’s formula
[4], where ¢ is small. This gives

_1-¢
1-6.55¢
It should be remarked that there are also empirical and experimental investigations

that lead to a determination of the settling velocity as function of concentration (which
in turn determines 6(¢)). In general

2.17) 0(¢)=

(2.18) g= (1-é16")(1-60),

for small ¢ where ¢; and ¢, are constants. For very small particles [2], [3], [6], [16]
¢1=0, ¢, =6.55 as in Batchelor’s theoretical calculation. For larger particles [1], [22]
¢1=.75and é,=2.15.

The function 8 (¢ ) defined in (2.11) is difficult to determine even at low concentra-
tions and there seem to be no experimental data that help in estimating it in a
reasonably direct way. By analogy with a simpler problem, we shall argue in §§ 8 and
9 that & (¢ ) decreases rapidly with increasing ¢. This means that the velocity diffusivity,
equal to one when ¢ =0, decreases rapidly with increasing concentration.

We collect now the equations we shall use to model the suspension.

(2.19) 1-¢)+V: (vy(1-¢))=0, continuity equation for fluid,

220)  pr(1—¢) s+ (vy - VIvp—g)=—(1-¢)Vp + @S (v, —vy) + (1 = B)uAv,,
momentum equation for fluid,

Q221)  fi+& V4V, [(gy( —f:-) —M‘lswao(g—u))f] =D&V,

Fokker-Planck equation for particles.

In these equations ¢ and v, are related to f by (2.12) and (2.13), S is given by (2.5),
M and D are given by (2.14) and (2.15), v(¢) and 6(¢) are given by (2.16) and (2.17)
while 8(¢) is discussed following (2.18) and in subsequent sections. Note also that u
in (2.21) is the volume average velocity (2.8). System (2.19)-(2.21) is a complicated
nonlinear system to be supplemented with initial and boundary conditions.

In modelling the suspension by (2.19)-(2.21) a number of physical mechanisms
have been left out because they have negligible effects in the range of parameters
which we have in mind. These include effects of particle rotation and inertia causing
transverse particle motion, temperature variations, and boundary conditions. Addi-
tional complications could be caused by considering nonspherical particles with some
size and shape distribution and by allowing for particle aggregation. Our focus is on
only two mechanisms: gravitational settling and Brownian dispersion.

We shall now show that the Fokker-Planck equation (2.21) is compatible with
the particle continuity and momentum equations (2.1) and (2.3) of the two-fluid model
(2.1)-(2.4).

Integrating (2.21) with respect to ¢ and using (2.12) and (2.13) yields immediately
the continuity equation (2.1). Multiplying (2.21) by ¢, integrating with respect to ¢
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and using (2.12) and (2.13) yields

(2.22) (@0,); +V - j et de — gy (""p_"f )qS +6""“0(v,, —u)é =0.
We may write
(2.23) V. j etfde =V - (o) +V(¢P)

where P plays the role of pressure and is given by

o= (€-v,rae

We have assumed that P is isotropic (i.e. a scalar) since for the present discussion we
may restrict ourselves to isotropic f. Using now the continuity equation (2.1) and
(2.23) in (2.22) we obtain

(2.24)  ppd (v +(vp - VIUp) +p,V(OP)—g (1= )b (pp —pr) = —S& (v, — vy).

To obtain the right-hand side in (2.24) we used (2.14), (2.17), (2.8) and the definition
of § (2.5). We can write (2.24) in the form (2.3) if we identify the pressure p with an
appropriate expression involving P (which can be thought of as a function of ¢ as in
the classical kinetic theory of gases) and the gravity term.

The above discussion clarifies the differences between the descriptions (2.1)-(2.4)
and (2.19)-(2.21) for the suspension. We shall use (2.19)-(2.21) because we want
more refined Brownian effects. As a final remark regarding (2.19)-(2.21) we note
that we always have

(2.25) V-ou=0,

where u = ¢v, + (1 —¢)v; appears in (2.21). This follows immediately from (2.1) and
(2.19) and of course (2.1) is always a consequence of (2.21).

3. Nondimensionalization and scalings. We shall first nondimensionalize the
equations (2.19)—(2.21), then discuss possible scalings. Three relevant parameters are
the Stokes settling time, the Stokes velocity (cf. (2.10)) of a settling particle, and the
root mean square of the velocity fluctuations:

(3.1) st =M/67104a,
(3.2) vst=g(1—pg/pp)rsT= |vsTlZ,
(3.3) (Drsn)'? = (kT/M)'?,

in which £ is the unit vector pointing downward.
Let 7 and X be typical time and length scales. We nondimensionalize (2.19)-(2.21)
by choosing new independent variables ¢', x', £’ defined by

(3.4) ¢=(Drs1)'?¢, t=1t', x=Xx'
We also define v’, u’, and p' by
vp = (Drsp)' 0}, vs=(Drsr)?v},

pX (Drsn)"? |
p=——""

(3.5)

u =(Drs)"*u,
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Four relevant dimensionless parameters are

= lvosi _ 2ra* Po
‘I'ST(D‘l'S"r)1 » 97'51“X2 pf’
3.6 2
(36 B=r(Drs)/*/X, F= (‘2—() E.
C=r1/7sr,

Substituting (3.4)—(3.6) into (2.19)—(2.21) and dropping prime yields the system"
(3.7) (1-¢).+BV - (1;(1-¢))=0,
(3.8) v =—Vp+¢(1-5.55¢)F (v, —vs) +E Avy,
(3.9) f+BE - Vf+V, - [(AyZ —CO(£ ~u)f]1= C8V.

In these equations A, B, C, E and F are constants depending on the physical
parameters, while y, 6, and § are functions of the particle volume fraction ¢ and 2
is a unit vector in the z direction.

We shall study the time and space variations and the stability of a suspension
which is nearly uniform. Part of our motivation is a very interesting set of experiments
by Siano [25] in which a spatially uniform suspension was found to be unstable for
some range of parameters. We shall describe the scaling corresponding to those
experiments as well as the scaling for linearization around a uniform state. The resulting
equations will be analyzed in §§ 4-7.

(i) Siano’s experiments. Typical parameter values in his experiments are

a=.5%x10"*cm, pr=1.00 gm cm”>,
(3.10) w=.01dynesseccm >, T =293degk,
pp=1.05gm cm 2, ¢ =.001.

With these values and the constants k =1.38x 107 "® ergs/°K and g =980 cm sec,
we obtain

TsT7=.6X 10—7 sec,
(3.11) vsr=.3%x10"%cmsec™?,

(Drst)**=.3 cmsec™ .

The observed patterns have space and time scales of cm’s and hours, therefore we
choose

(3.12) X=1cm, =10 sec.
The resulting dimensionless parameters are

A=-1.6x10", E=.9x10%
(3.13) B=.3x10°, F=3.6x10"
C=1.6x10",

! From here on we shall neglect the inertial term (vf * V)uy in (2.20). In addition, the gravitational term
is absorbed in the pressure term.
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Therefore we let”

(3.14) A=% =Ll c-¢ E-¢
£ € £ E
and (3.9) becomes
(3.15) ef +& V4V, - (ayf—se(g—u)>f=§6V§f.

(ii) Small perturbations of a uniform state. As will be shown in § 4, there is a
spatially homogeneous solution fo(¢) of (3.15). We look for a solution of the form

(3.16) f(t,x, €) = fol&) + &f1(1, x, £) + O(E?),

in which £ is small. The perturbation f; will satisfy the linearization of (3.16) about
f =fo. The resulting equation is valid for any values of the parameters A, B, C. We
do not make use of the ordering (3.14) in § 4.

Note. To simplify the presentation and the algebra, we shall often consider the
case a = 0 in which gravitational effects are excluded. This occurs if the particles are
neutrally buoyant.

The nonlinear analysis of §§ 6 and 7 for equation (3.15) which comes from the
scaling (3.14) could also be performed for other scalings, such as A =a/e 2 B=0(1),
C = c/&>. The analysis is more complicated than that of §§ 6 and 7, since the gravita-
tional terms come in at the lowest order.

4. Linearization about the homogeneous state. There is a solution of the Fokker—
Planck equation (3.9) with u = 0® which is spatially uniform with a Gaussian distribution
of particle velocities. This solution is

(4.1) fol&) = do(2mar)™>? exp {—(¢ —v0)*/20},
in which
4.2) vo=Z2Avy/C4, o=248/6.

The volume fraction ¢, is an arbitrary constant, v, is the sedimentation speed, and
the velocity variance o is evaluated at ¢,.
We look for a solution in the form (3.16) with

(4.3) ¢ =do+id+0O(E>).
The linearized equations for f; and ¢, are
4.4) fi=L*f1+h,
in which
d
4.5) L*fi==¢-—f1=Ve - [(AyZ - COAfi]+CaVef,

h ==V, [ZAy'$1—ECO'$1)fo]+ C 8'$1Vfo
=V, (hifo) +V - (€hafo),

(4.6)

2 The ordering (3.14) is obviously not in complete agreement with (3.13). It merely helps construct
approximations and is not used in a quantitative but in a qualitative manner. That is, we give no error
estimates for the approximation.

3 We shall analyze (3.9) with u =0 throughout this section except at the end where we comment on
the case u #0.
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! 0[ I
b= (-AY+Ay8 /9362 = Av( T4 G- T)ass
4.7) ,
hy=(CO'~C08'/8)b1= —Ce%m,
4.8) o= frae

In these equations we have denoted y = y(¢o), v' = v'(d0), etc.
For notational convenience we make the following rescaling (which depends on

do):

s =C6t, y = Ce(r_mx,
4.9 n=0""%, wo=0"""?0,,
?) g =0""%f, m=(c>"*/c6)h,
mi=(0"%*0)hy, my=(c) ‘hy.
Then (4.1) and (4.4)-(4.8) become
(4.10) go=do(2m) > exp {—2(n —wo)},
a ¥
. —g1= +m,
(4.11) 25 8! K*gi+m
)
(4.12) K*gi=-n 8V [(wo—m)g1]+ V781,
m =V, - (migo)+V, * (Nm2go),
4.13 g 4
@.13) my = Wo(g"'—“l)tﬁl,
g 0 vy
(4.14) ma=—"g1,
a
(4.15) ¢1=Igl dn.

In looking for solutions of the homogeneous equations (4.10)-(4.15), we shall
first consider m as an inhomogeneity. To find the Green’s function for K *, we consider
the stochastic process (y(¢), n(¢)) defined by

(4’16) y =n, Y(0)=y0,
4.17) n=wo—n+vV2&,  1(0)=no,

with @ the standard white noise. This process has infinitesimal generator K, the formal
adjoint of K*. Its solution is given by the following stochastic integrals:

(4.18) n(s)=m,(s)+v2 Ls e 7% duw (so),

(4.19) y(s)= my(s)+~/§J. (1—e 57 dw(so),
0
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with mean velocity and position
(4.20) m,(s)=wo+e *no,
(4.21) my(s)=yo+wos +(1—e *)no.

This process is jointly Gaussian with covariances
(4.22) S2a(s) =var (n) =2 j e 270 sy = (1—e 275,
0

211(S)=var(y)=2J (1_e~(s—s0))2ds0
0

ofe-Jefae o)),

212(5) = cov (y, 1) =2 j 67501 — e "6%0) dis,
0

(4.23)

(4.24)
=(1-e"")%

The resulting transition density G(s, y, yo, 1, m0), Which is the Green’s function for
K*, is

G(S, ¥Ys Yo, M, 770)
_ ~-3 A-3/2 _ 1 _ 2
(4.25) =Q2m) > A7 exp { TA (s)[Ezz(y my)
~ 280y —m,) - (n=my)+ Zualn —m, "1},
(4-26) A(S) = 211222"2%2-

The validity of this Green’s function can be verified directly without the use of the
stochastic equations (4.16), (4.17).
A useful marginal density function is

(4.27) Gum(s, ¥, Yo, mo) = j G dn = (2mZ11) " exp (—(y —m,)*/2211).

This is a function of y — yq since

(4.28) y—my=(y—yo)—wos —(1—e ")no.

Its Fourier transform in (y —yo) is

(4.29) G (s, k, mo) = exp {ik - no(1—e ™) +ik - wos —3Z11(s)k 3}
The solution g; of (4.11) is given by

s

@30 g ym=

X J'Rs J-R:’ G (s =50, ¥, Yo, M, na)m (So, Yo, Mo) dno dyo dso,

and its mass density is
é1(s,y) =I gidn
(4.31) s
= L L3 L3 G (s =50, ¥, Yo, Fo)m(So, Yo, 0) dno dyo dso.
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In order to Fourier transform this, we first calculate for any «,
I e"“ ™% (so0, k, o) dno
R3

(4.32) = pol—iak - 1+ (a’k*—iak - wo)hiz} exp (—3a k> +iak - wo)
= ¢1(d1ka® —idsk - woa) exp (—3a°k>+iak * wo),
in which

O'I 0’ ‘Yl
. ai=-Zgo,  di=(5-L)to
(4.33) 1 o_¢o =\5 7 o

Using (4.29) and (4.32) with & = (1 —e %)) we can transform (4.31) to obtain
@34) s, k)= [ Vs =30, )1(s0, k) dso,
0
W(s, k)= (d1k*(1—e %)’ —idk - wo(1—e™*))

cexp{—5(1—e k> +i(l1—e ")k - wo+ik - wos —331(s)k%.

After taking the Eaplace transform in s of (4.34) and dividing by qg 1(A, k), the
Laplace transform of ¢1(s, k), we obtain the following dispersion relation :

(4.35)

(4.36) 1=F(, k)sj e MW(s, k) ds.
0
This is an implicit equation for A as a function of k.

If we had started from the system (3.7)-(3.9) with u # 0, there would be a term
containing u in m;. Only k - rii; appears in (4.32), and the corresponding term
k-i=(V- u)A is zero because of (2.25). Therefore (4.32) and the resulting dispersion
relation (4.36) would be unchanged and the linearized analysis presented here is valid
in general.

5. The dispersion relation. We shall examine the dispersion relation (4.36) in
detail for k small. For simplicity we shall at first exclude gravitational effects, as would
occur for neutrally buoyant particles.

Neutrally buoyant particles. In the absence of gravitational effects, the sedimenta-
tion speed wy is zero. From (4.23) and (4.35) we then find

(5.1) W(s, k) =d1k*(1—e ") exp {—k*(~=1+s+e ")},

[s o]

W(s, k) =j e MW(s, k) ds

0
co
0

=d k> e"’[u +k2)”1+J e MRS e e TR - 1) ds]

(5.2) =d1k2ek2{(A +k2)‘1+J e—()‘+k2)s{(—2e"s+e"2s)—ke_s(1——e's)2+~'-}ds}
0
_ 2 k2 2_1_ A+k2+3
=dik”e {(“k) A+ D) Tk +2)
_ 2k° +}
A+E*+ DA +E2+2)(A +k>+3) ’
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in which the expansion is valid for small k. Solving W(A, k) =1 results in the dispersion
relation

(5.3) A=(di—-1)k*—d1Bdi—Dk*+O(K®).

According to (2.15), 8'>0. We shall discuss the function §(¢) in § 9 and argue
that 8’ <0. Therefore from (2.8) and (4.33) we have

(5.4) di=-Z o= ("—'—3—')¢0>o.

If dy <1, then A <0 and the problem is stable for small k. In fact further analysis
shows that in this case it is stable for all k. If d;>1, i.e.

(5.5) 1+Z¢o<0
a

then A >0 and the problem is unstable for some interval of small k. It is restabilized
for somewhat larger k by the negative k* term. In this case the maximally unstable
wavenumber is

- dl_'l )1/2
-9 k= (3d% -2d)

This expression, which comes from the small k expansion for A, is valid only if d,—1
is small.

Finally we translate this dispersion relation to a relation for » and [, the frequency
and wavenumber corresponding to the original variables x and ¢ before the transforma-
tion (4.9). The resulting dispersion relation is

2
(5.7) v=Z(dy~ 1)12——‘3’—3d1(§ di— 1)1“+0(16),
ch c’0 2

in which d; = —0o'¢¢/0.

6. The nonlinear theory. If the spatially homogeneous solution is linearly
unstable for some band of wavenumbers, then nonlinear effects will become important.
Using a moment method we shall develop a description for the nonlinear evolution
of the distribution. For simplicity we shall consider spatial variations only in the
vertical direction with vertical spatial component denoted by x and with corresponding
velocity component &;.

Because the spatial variations are one-dimensional, the incompressibility condi-
tion (2.25) V- u =0 becomes u = constant. Therefore we may take

6.1) u=0,
so the scaled Fokker—Planck equation (3.15) is
(6.2) efi +&Vf+V, - [(ayf —e 7 'c08)f]=¢ ¢ 8V,

in which V=49/9x.
Define moments

6.3) m®(x, 1) = j (6, x, 1) dE,
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with m© = b, m® = @v. Take moments of (6.2) to obtain

6.4) e +VmP =0,

6.5  em®+Vm®—(ayp—e 'com™)=0,

6.6)  em +Vm“ P ~k(@ym“ P —eTcom ™) = "'c Sk (k ~1)m" 2,

for k =2. Denote

(67 Bt -2 ;.2
and rearrange (6.4)-(6.6) as

(6.8) b+ -—Vm =0,

(6.9) m® =evp —eBVMP —e*pmP,

(6.10) m® =gk = 1)m*? +eom® P~ 68k Vm**D — 28k " 'm .,
These are solved asymptotically for £ small by expanding

(6.11) m©=m®P +emi +..

However to avoid expanding B, 0, and o, we shall not expand ¢. As a result ¢ and
m{ will be dependent on e. In the resulting equations for m{*, we find that

(6.12) m® =0 fori#0 (¢ is unexpanded),
(6.13) m® =0 ifk+iis odd.
The remaining equations for m{“ are
(6.14) & +VmP +e*m) =0,
(1) = v¢ va (2)
=a— s
(6.15) ¢

mm =pm{ ZBVm %Bm @

1
m?® =20m®P +omP — 3BVm8‘),

m§ =3amP.
It follows that
m{" =o¢ —BVoe,
$) =—B(@).+B(BY (o))
—BY{5°¢ - BV (op) 3B (o).
-8BV (3aip —2BaV(ad)—BV (s’ $))}.

(6.16)

Used in (6.14), this gives an evolution equation for the particle density ¢.
If O(e?) terms are ignored the equation for ¢ is

(6.17) ¢+ V(5 —BV(aep))=0.
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When linearized around the constant solution ¢y, this equation becomes

(6.18) G+ (1—dy)oVe = %(1 —d)V*s,
in which
! 01 ’
(6.19) di=-Z o, do= (——y—)tﬁo,
T 6 v

and o, 6, v, and 0 = ay/cf are evaluated at ¢o. If we omit gravity (& = 0), this diffusion
equation has the same dispersion relation as (5.3), to order k2.

Next we include O(e?) corrections, which are important if the diffusion coefficient
is negative. As a simplification we suppose that the variation in ¢ of the drag coefficient
6 and the gravitational coefficient y is smaller than that of the diffusion coefficient.
Thus we treat 8 and ¥ as constant. The following equation for ¢ is found by substituting
(6.16) into (6.14):

6.20) ¢ +05V —BV(0d)+e*{—BiVd, — B5°V’$ +3B°V(0d), + 385 V(o)
' ~-B*V(a V(o)) -8V (0’¢)} = 0.

The equation further simplifies if we look for a steady traveling wave solution satisfying
¢+ V¢ =0. The resulting equation for ¢ is

(6.21) Voo - 3232V3{§a¢ -%V(a%s) —o-V(crd))} -0,
In terms of A, B, C scaling (3.13) the parameters 8 and 7 take the-form
2
(6.22) B 5= ABY

b= ""co
while o = §/60 does not change and is of order one. We see therefore that for Siano’s
experiment

S5x107°
B=ix7°_, 5=3(2), whilee?=33x107"

A linearized analysis of (6.20) about a constant state (with & = 0) has a dispersion
relation which agrees with (5.3). In fact this is true without the approximation
B = constant, used in (6.20), for simplicity.

7. Nonlinear equilibrium. Steady nonlinear solutions are described by equation
(6.21) for the particle volume fraction ¢. We also omit gravitational effects by setting
0 =0. Replace €8 by £ and integrate (6.21) twice to obtain the equation

(7.1) op +&°hy(d)V¢ +e2hy(d)Vd > =a +bx,
in which a and b are constants and
hi(@)=30"+200'$,
7.2) 1(¢) =30"+200 ;ﬁ
hy(p)=S00'+20" ¢ +200"}.

If a and b are of moderate size while ¢ is small, then to leading order ¢ = a + bx
can be treated as constant when solving (7.1). The resulting (quasi) autonomous



898 R. CAFLISCH AND G. C. PAPANICOLAOU

equation is

(7.3) o +&°hi(@)V'h +&hy(4)Ve =c.
It has a (quasi) stationary point ¢ = ¢o with

(7.4) o(ho)dpo=0.

For the linearized flow around ¢ = ¢o, ¢ is a saddle point if
(7.5) h1(do)(o(ho) +0'(do)bo) <O
and a center point if

(7.6) hi(¢o) (o (ho) +0'(do)po) >0.

Since (7.3) is even in V@, the phase plane is symmetric about V¢ = 0. It follows
that the nonlinear solution of (7.3) near ¢ = ¢ is hyperbolic if (7.5) holds and periodic
if (7.6) holds. The dynamic instability criterion of § 5 is o +o’'¢ <0. For values of ¢,
with o +0'¢o small, hi(¢o) <0. So ¢y is a saddle point if it is linearly, dynamically
stable and a center point if it is linearly, dynamically unstable.

Suppose that o¢ has a single dip in it, as in Fig. 7.1. As x changes the (quasi)
stationary point @y, satisfying

(7.7) U(¢o)¢o =Cc=ax +b,
o(p) ¢
C
EXX
Fi1G.7.1. o¢.

changes slowly with x. In some range of values of ¢, there are three solutions ¢1, ¢2,
and @5 of (7.7) satisfying

o(p1)+0'(¢1)p1>0,
(7.8) o(p2) +'(P2)$2<0,
a(¢s)+o'(d3)p3>0.

Therefore ¢; and ¢; are saddle points; ¢» is a center point. The two saddle points
&1 and ¢ are connected as in Fig. 7.2b for some special value of ¢ =¢, satisfying
b3 B @ h ( )
10)= o -ae) exp 2 [ [2E a1} do =0,
61 hi(¢1)
There is only one such value of ¢ since dI/dé <O0. If I # 0, the saddle points are not
connected and the phase plane has the form drawn in Fig. 7.2a or c.

a¢ a4 a¢
\\/\ = =
a b c

F1G. 7.2. Possible phase planes.
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The variation of ¢ with x goes approximately as follows. For ax +b <¢, ¢ (x) = ¢1,
the smallest value of ¢ solving (1)1 =ax +b. At ax +b =¢, the solution ¢ makes
a rapid transition from ¢1(¢) to ¢3(¢) approximately following the flow line connecting
these two saddles. For ax +b > ¢, ¢ (x) = ¢3, the largest value of ¢ solving o (¢3)ds =
ax +b. Therefore ¢ varies slowly in x, except near ax +b =C where it varies at a
rate 1/¢. The resulting profile of ¢ is pictured in Fig. 7.3.

X

¢

F1G. 7.3. Spatial variation of ¢.

8. The N-particle Kramers-Smoluchovski approximation. In this and the next
section we shall consider some problems of a more general character regarding
interacting particle systems. We shall not derive the nonlinear Fokker-Planck equation
(2.11) from first principles. However, we shall discuss the derivation of a nonlinear
diffusion equation from an infinite particle system. Before doing this we shall describe
the (lmear) Kramers-—Smoluchovski limit [20].

Let xP,x®, .-« x™ and £P, ¢®, .. - | £™ denote the positions and velocities
of N-parncles in R® having equal mass M, interacting with each other via the fluid in
which they are immersed and being acted upon by Brownian forces. Let u(x), p(x)
denote the fluid velocity and pressure respectively. The equations of motion are

8.1) i—(]—)— s

(8.2) Mdfm CFO® L W gD £<N>)+(,M
dt o dt’

(8.3) wAu—-Vp=0, V-u=0, u->0 asx->o0,

(8.4) u=£9 onlx—x?=a,

8.5) FO=f | rndS), m=-pout et

Lk=1,2,3, j=1,2,---,N.

Here n denotes the unit outward normal to the surface of the spherical particles. Note
that the inertial terms have been dropped in (8.3) because we assume that the fluid
adjusts rapidly to changes in the configuration of the particles. Because of this

assumption we may regard u as a function of x ™, - - - | x® £® ... £®
(8.6) =u(esx®, e N ED, g,
In fact u is a linear functlon of the f‘“ and, in view of (8.5), F*” in (8.2) is indeed a
function of x¥, - - -+, x™ and a linear function of ¢®, - - -, ¢™. We may write
() _ S 4ty
(8'7) FJ:ZAlg )a j=1a2"”’M

=1

where for each j and /, A" is a 3 x 3 matrix (AlL), the resistance matrix. These matrices
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. 1 .
are functions of x'V, - - -, x™, are symmetric [14]

(8.8) Al=Al;

and they are positive definite. In (8.2) the w’(s), j=1,+++, N are independent
Brownian motion processes and o = a(x®, x®, ..., xW )) is the noise level defined to
conform with equilibrium thermodynamics. The Fokker-Planck equation for the
N-particle density f(N)(t, x® o x® gD .f(N)) takes the form
N) N N) N ) 2 o p(N)
(8.9) f —+ Y fm f_(,) +2 a(,) [_E—f(m_ 4 2af—(j)]=
j=1 ax j=10& M 2M* 3¢

The Smoluchovski-Kramers limit amounts to a small mean free time limit for
this N-particle process. The ‘“collision’ term, the third term on the left in (8.9), is
assumed to be large compared to the other two terms. We can then carry out a
fluid-limit calculation based on the equilibrium solution

-<I>(€ &)/a2
(8.10) g = ¢0—“"“—
where
(8.11) D e =MD AP, x Mg,
(8.12) z =j e J Y

and ¢ is a positive function of x and ¢. The function f, satisfies the equilibrium equation
N 3 F(i) 0_2 afO
Y=o |~ for gz 5| =0
j=10¢€ M oM~ 2¢
By an asymptotic analysis that is very similar to the one used in § 6 one arrives
at a diffusion equation for the function ¢o(t, x*, - - -, x™’) which has the form

N
813) Ty [ D I B g0,
The determination of D" and E’ is complicated and we shall omit it (a similar
computation for a simpler case is given in [23]). We remark only that the diffusion
tensor D" is proportional to the reciprocal of the tensor A" squared. So its dependence
onxV, x?, - x™ is quite involved.

The 1nteracting Brownian motion model of the next section is an infinite (N = 00)
particle version of (8.13), much simplified to allow focusing on collective effects.

9. Effective diffusivity of a Brownian particle in a swarm of other particles. The
nonlinear Fokker-Planck equation (2.11), which is the starting point for our analysis,
can itself be derived as an asymptotic limit of N interacting stochastic processes as
N -0 in a manner analogous to propagation of chaos results [18] but for spatially
inhomogeneous systems. Our calculations regarding this are at present incomplete
and we cannot argue directly that the velocity diffusion coefficient D §(¢) is a decreas-
ing function of the spatial concentration ¢». We approach this issue via another problem
which we now describe.

Let ®(x) be a smooth positive function of compact support that is even, ®(x) =
®(—x), x € R’. We consider an infinite system of Brownian motions that interact with
each other with pair potential ®(x). This means that if (x'", x'®, - - -) are the coordi-
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nates of these particles and if V; is the gradient with respect to the coordinates of the
jth particle then

9.1) =Y Vi+Y T (V;®x—x)V,
j=1 j=1 k#j

is the infinitesimal generator of the process or, what amounts to the same thing, the
formal joint probability density of these particles satisfies
oP

9.2) 5=$*P, P=P@tx",x?, .,

which is the Fokker—Planck equation. We shall not give a full mathematical treatment
here so we do not go into the detailed construction of this infinite particle process
[6]. Let P, denote the Poisson distribution of R® with intensity u. Thus, the distribution
of the particles in a set A <R’ is Poisson with parameter u times the volume of A.
One can verify that formally the distributions

9.3) G, =exp (l T d(x; —xi))P“,
2%

are invariant for the evolution (9.2). That is, if P at t =0 in (9.2) is given by G,, then
P =G, for all time. Again this statement must be made precise since for example the
expression (9.3) is not well defined as it stands [6].

With this infinite particle process we can associate effective one-particle diffusion
coeflicients in two different ways.

(i) The self-diffusion or tagged particle diffusion coefficient.

(if) The bulk or mean field diffusion coefficient.
The first one is obtained if we focus attention-on one particle x(¢) = x () say, and
show that

9.4) (x(0)=x(0)’~d (), 110,

where d(u) is a constant depending on the concentration w of the other particles at
t =0, distributed according to (9.3). The constant d(uw ) is the self-diffusion coefficient.
It is not difficult to see that d(u ) is necessarily a decreasing function of u for repulsive
potentials ®: the more particles there are about x (¢) = x‘"(¢) the smaller its effective
diffusivity will be since the other particles will tend to obstruct its Brownian motion.

The bulk diffusion coefficient is obtained in a different way. We consider the
evolution (9.2) with initial density close to the equilibrium distribution (9.3) but
different from it. Then the motion of the system of particles can be represented by
a mean field ¢ (¢, x) = the average density of particles at x at time ¢. The mean field
satisfies a nonlinear diffusion equation

9.5) ¢:=V-(d(¢)Ve),

and d(w) is called the bulk diffusivity. We can think of (9.5) as representing the
Fokker-Planck equation of an ‘“‘effective” particte x(¢) which undergoes Brownian
motion with diffusivity a function of the local concentration.

It is well known that the self-diffusivity and the bulk diffusivity are in general
different. In fact, the bulk diffusivity is an increasing function of the concentration
here, at low concentrations [4]. Physically this means that at low concentrations the
effective particle x(¢) feels a drift that pushes it into regions of lower concentration
faster when the local concentration is higher.
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The Fokker-Planck equation (2.11) is the analogue of (9.5) when the underlying
system of interacting particles is not interacting Brownian motions but instead interact-
ing Ornstein—Uhlenbeck processes (i.e. diffusion in velocity space rather than in
physical space). The diffusion coefficient D §(¢) is the bulk diffusion coefficient in
velocity space. Now however it depends on the spatial concentration and this behavior
is more like the one of the self-diffusion coefficient, i.e. D §(¢p) decreases with
concentration. The “effective”” Ornstein-Uhlenbeck particle (% (¢), £(¢)) whose density
satisfies (2.11) diffuses in velocity space more sluggishly when there are lots of
particles around.

This qualitative discussion is of course no demonstration that D §(¢) decreases
with ¢ when ¢ is small. What we have shown to date is that the self-diffusion coefficient
d(u) for the system described by (9.1) exists and is a decreasing function of w [6].
The existence of d(¢) in (9.5) from an infinite particle model, or D 8(¢) in (2.11),
has not been shown while properties of @(¢) for ¢ small follow from Batchelor’s
calculations [4].

We conclude by noting that one may apply the propagation of chaos limit (obtain
a mean field equation) at the level of interacting Ornstein—-Uhlenbeck processes and
then proceed with a nonlinear Kramers—Smoluchovski limit (as we did in § 6). Alterna-
tively one can apply a Kramers-Smoluchovski limit at the N-particle level (§ 8) and
then a mean field limit afterward resulting in (9.5).

10. Conclusions. Through the linear theory of §§ 4 and 5 or the nonlinear theory
of §§6 and 7, we have demonstrated a mechanism for linear instability of a
homogeneous suspension and nonlinear restabilization. To understand the underlying
physics, we examine the effects of velocity diffusion.

A particle undergoes velocity diffusion due to many collisions in each of which
it changes its velocity slightly. It thus moves chaotically through velocity space, but
smoothly through physical space. In the nonlinear Kramers-Smoluchovski limit
(described in § 6), the strength of the velocity diffusion is very large (or alternatively
the time and space scales are very long). Then the physical path also looks chaotic,
and the particle undergoes diffusion in physical space.

Now suppose, as in this problem, that the variance o = §/6 of the velocity diffusion
is a decreasing function of the density ¢. At points where ¢ is large, the velocity
diffusion is weak; where it is small, the diffusion is strong. It follows that particles
leave regions where ¢ is small and get stuck in regions where ¢ is large. This is
possible because in velocity diffusion particles are not moving down their spatial
gradient as they would in spatial diffusion. Therefore if ¢ starts as a constant plus a
sinusoidal term (as in Fig. 1), on the average particles will move from the troughs of
¢ toits peaks. This amplification of the sinusoidal component is the instability described
in the preceding sections. Mathematically it is represented by the negative diffusion
coefficients in the continuum equations, e.g. in (5.7) and (6.20).

This negative diffusion with a restabilizing fourth order term is the same as the
Cahn-Hilliard equation [7] proposed in an ad hoc manner by Siano [25] to explain
the instabilities in his experiments. It is also being studied in this context by Cohen
and Hagan [9]. Our contribution is to successfully derive this equation from more
basic physics. We also show that it has nonlinear equilibrium solutions which contain
rapid variations similar to those observed by Siano. However we are unable to explain
the entire ‘‘staircase” solution that he found.

We note finally that our instability and restabilization results embodied in the
Cahn-Hilliard equation (6.20) could not have been obtained by modeling the sus-
pension as an interacting system of Brownian motions. We saw in § 9 that the bulk
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¢ t=0

FIG. 1. Note. Curves have same period and same mean value but the amplitude oscillation is steeper for
t>0.

diffusivity in that case would be an increasing function of the concentration (as was
shown by Batchelor [4] for dilute suspension). It is therefore important to formulate
the problem in phase space as we do in § 2. A possible explanation for the decrease
of D 8(¢) in (2.9) is given in § 9 by analogy with known properties of the self-diffusion
coeflicient.

Appendix A. Two-fluid models of a suspension. A two-fluid modelisa commonly
used description of a suspension and is simpler than the Fokker-Planck model
described in § 2. We shall perform a linearized stability analysis of the steady solution
for such a model. In particular we shall show that when diffusive effects are much
stronger than gravitational effects, this model predicts stability for all wavenumbers.
Therefore such a simple model cannot describe the instabilities found in §§4 and 5
or the approximate nonlinear states found in §§ 6 and 7.

The two-fluid equations for a suspension [13], [15] are

(A1) §¢+v (0 $) =0,

A2 S1-$)+V- (w{1-4) =0,
0
(A.3) ¢pp(a_tvp +v, Vo, _g) =—¢pVp—o(1-9¢)S(v,—vf) — oV,

d
(1 —¢)pf(5;vf+vf -va—-g)

(A.4)

=—(1-¢)Vp+6(1-¢)S(v, —v) +u(1-¢)V’vy.
In the model the effect of diffusion of the particles is included though the term ¢o Ve
as in [15). For algebraic simplicity we have written the diffusion coefficient as ¢a,
although ¢o = O(1) for small ¢. Similarly we have replaced the usual coefficient of
Stokes drag by (1 —¢)S. The gravitational vector pointing downwards is denoted by g.

Dividing by ¢ and (1 —¢) changes the momentum equations to

9
(A.5) Pp(é;vp +0, * Vo, _g) ==-Vp—-(1-¢)S(v, —v)—0aVe,

9
(A.6) pf(gvﬁ—vf . va—g) =—Vp+¢S (v, —vp)+u A%y
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The system (A.1), (A.2), (A.5), (A.6) has a steady solution with ¢ constant and
(A7) p=—(dpp +(1—0)pf)g " x,
(A.8) Up_vf=s—1(pp — P

Denote this solution by ®, P, v, = V and set vy = 0 by Galilean transformation. Then
look for a perturbed solution

(A.9) ®+¢, P+p, V+u, vy

with ¢, p, v, and vy small and satisfying the linearized equations

(A.10) :7¢ +V Vg +dV -0, =0,
9
(A1) —=¢+(1-®)V v =0,
J
(A.12) pp(g;v,, +V -Vv,,) =—Vp-(1-D)S(v, —v;)— (1 - D)S'@V + SV — Vb,

d
(A13)  provp=—Vp +®S(v, ~v) +DS'SV +4SV + u Vo,

in which 8’ = dS(®)/dée.
Now look for a solution which varies sinusoidally only in the vertical direction,
with vertical coordinate denoted by x. Set

(A.14) (b, Vps U, P) = (B, By Bpy P) €™

From (A.10)-(A.13) we find that

(A.15) (w +ikV)$ +ik @5, =0,

(A.16) —wd +ik(1-D)5, =0,

(A.17) pi(w +ik V)5, = —ikp — (1= ®)S (5, — 5) — (1 - D)S'V J SV — iko,
(A.18) p200; = —ikp + DS (5, — 0;) + PS' VP + SV — uk vy

Eliminate p from (A._17) and (A.18), then use (A.15) and (A.16) to eliminate &, and
0y After division by ¢ this yields the dispersion relation

(A.19) Aw’+Bw+C =0,
with
A =p,(1-®)+p;D,
(A.20) B=S+u®k>+i2p,V(1-®)k,
C={c®-p1 VIHK*+ikV(§ —S'®)}(1—b).
The solutions
ws=(2A) Y-B £VB>—4AC}
have real parts

(A.21) Re w. = (24) Y~c = (a +1(a®+5>)H)V?,
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in which
c=ReB=S8+udk?
a=c*+aik’
a1=40(1-P)(p,psV>—A),
(A.22)

b =bik +bk>,
b1=4(1-D)VS(p,—A(1-DS'/S)),
by =4(1—D)D Vup,.

Since Re w_ =0, this mode is always stable.
The stability criterion Re w, =0 can be written as ¢ = (3a +3(a*>+5%"»)? or

(A.23) —4(S +udkd*a1k>= (b1 + bk k>

Since equality can hold for at most one value of k> # 0, we need only investigate this
inequality for k” large and small. The stability criterion for small k #0 is —4S°a;> b2
or

(A.24) Ac®>V{(1-®)(p, ~A(1-DS'/S)) +ppsP},

in which A=p,(1-®)+p;P as in (A.20). The stability criterion for large k is
—4;/,2<I)2a1>b§ or

(A.25) Acd> Vpi(1-®)+p,psd}.

From (A.24) and (A.25) we see that the instability is driven by gravity, which
forces V=S‘1(pp—pf)g¢0. If there is no diffusion (o =0), the steady solution is
unstable to all wavenumbers k. We note though that if u # 0, Re w. has a finite limit
as |k| - oo, for all o.

In the regime considered in this paper, diffusive effects are large compared to
gravitational effects. Recall also that o = O(1/®). Therefore (A.24) and (A.25) are
always satisfied and the steady solution is stable.
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