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SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE
EVOLUTION OF VORTEX SHEETS*

RUSSEL E. CAFLISCHf AND OSCAR F. ORELLANA$

Abstract. The evolution of a planar vortex sheet is described by the Birkhott-Rott equation. Duchon
and Robert [C.R. Acad. Sci. Paris, 302 (1986), pp. 183-186], [Comm. Partial Ditterential Equations, 13
(1988), pp. 1265-1295] have constructed exact solutions of this equation that are analytic for all < 0 but
have a possible singularity in the curvature of the sheet at 0. This shows that smooth initial data for a
vortex sheet can lead to singularity formation at a finite time, in agreement with the results of numerical
computation [J. Fluid Mech., 167 (1986), pp. 65-93], [J. Fluid Mech., 114 (1982), pp. 283-298] and of
asymptotic expansion [Proc. Roy. Soc. London Ser. A, 365 (1979), pp. 105-119], [Theoretical and Applied
Mechanics, in Proc. XVI Internat. Congr. Theoret. Appl. Mech., F. I. Niordson and N. Olhott, eds.,
North-Holland, Amsterdam, 1984, pp. 629-633]. We present an independent construction of these solutions
and use these results to infer that the vortex sheet problem is ill-posed in Sobolev class Hn with n > 3/2.
Earlier results show well-posedness in an analytic function class [Comm. Pure Appl. Math., 39 (1986), pp.
807-838], [Comm. Math. Phys., 80 (1981), pp. 485-516]. Our method is to construct an explicit singular
function that is a solution of the linearized equation, with a correction term added on to make the sum an
exact solution of the nonlinear equation. The correction term is analyzed using the Cauchy-Kowalewski
method.
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1. Introduction. A planar vortex sheet is a curve in a two-dimensional, inviscid,
incompressible flow along which the fluid velocity is discontinuous. Vortex sheets, and
the Kelvin-Helmholtz instability that they undergo, play an important role in many
flows, such as mixing layers, two-fluid interfaces and flow past airfoils. Asymptotic
analysis by Moore [11], [12] and numerical computation by Krasny [8] and Meiron,
Baker, and Orszag [10] have shown that a vortex sheet may develop a singularity, i.e.,
infinite curvature at a point, in a finite time. The appearance of this singularity is
important because it is immediately followed by rollup of the sheet [9]. A more
mathematical reason for interest in such singularity formation is that it may serve as
a simple analogue of singularity formation for the three-dimensional Euler equations.

Duchon and Robert [6, 16] perform a general construction ofvortex sheet solutions
that are analytic for all > 0, by choosing initial data to lie on the stable manifold for
the Birkhoft-Rott equation ((1.1) below). The initial data can have singularities in the
(1+ v)th derivative for any v>0 (for a precise statement see [6], [16]; fractional
derivatives can be understood in the H6lder sense as in (1.6)). Our aim is to present
an independent construction ofthese singular solutions and to discuss their significance.
We also obtain slightly more precise pointwise information on the singularity, by using
a pointwise norm rather than the Fourier norm in [6], [16].

The singular solutions found here or in [6], [16] can be used to construct exact
solutions for vortex sheets that develop singularities at finite time starting from smooth
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initial data, as described in the concluding 7. This shows that for the two-dimensional
Euler equations, singular initial data (a vortex sheet) can become more singular in
finite time. Furthermore, the existence of such singular solutions shows the vortex
sheet problem to be ill posed in Sobolev space H" for n > 3/2. A somewhat different
proof of ill-posedness for vortex sheets was given by Ebin [15].

The vortex sheet is parametrized by a real variable y defined so that it is Lagrangian
(the value of y is constant on a given fluid particle) and so that the density of circulation
with respect to the y variable on the sheet is 1. The position of the vortex sheet is
defined by a complex variable z(y, t) that satisfies the Birkhoff-Rott equation [1]:

(1.1) +/- ( )’, t)PV|
Ot 2ri J-oo z(% t)-z(y’, t)’

in which the integral is a Cauchy principal value. An arbitrary constant in the definition
of the Cauchy integral is irrelevant since the right-hand side involves a difference.
Moreover, we will assume for simplicity that z is odd in )’, i.e.,

(1.2) z(-% t)=-z(% t)

so that z(0, t)= 0. The function z y is a steady solution of (1.1) and corresponds to
a fiat vortex sheet with a uniform density of circulation.

Linearization of (1.1) about the steady solution z )’ yields the following equation
for z )" + s:

(1.3) 0,()’, t)= 1/2H[sT] 1/2(s+7 s_7)

in which H is the Hilbert transform defined by H[s] s+-s_, s+ is the upper analytic
part of s, i.e., the part with positive Fourier wavenumbers, and s_ is the lower analytic
part. The linearized equation (1.3) is unstable with modes eik’+k’/2. In this paper we
are investigating the nonlinear behavior of this Kelvin-Helmholtz instability. Since the
linearized modes have arbitrarily large temporal growth rates, we find that singularities
may develop in finite time for the solutions of the nonlinear equation.

An explicit example of our singular solutions is

(1.4) z()’, t)= )’+ So+ r,

(1.5) So()’, t)= e(1 -i){(1 -e-t/2-i’r)a+"-(1-e-t/2+i’r) ’+’}

in which e is small. The dominant term So is an exact solution of the linearized equation
(1.3) and the correction term r is negligible relative to So as explained in Theorem 1.
Since So c)"

1+ for =0 and )’--- 0, then z,v= Sorv’-" c)"
-| (with a different constant

c). Therefore the vortex sheet has an infinite curvature at )’ 0, 0 for 0 < u < 1. For
the approximate singular solution Zo )’ + So, with So given by (1.5), the vortex strength
IZorl- (t =0) is plotted in Fig. 1. The cusp at )’=0 is due to the singularity. An
explanation of the terms in (1.5) is as follows. The e+/-it makes So periodic and odd.
The exponent -t gives a solution that decays in time. Such a decaying solution requires
the factors (1- i) and 1/2.

To define a more general class of functions So, let e be a small, real number and
let 1 > u > a > 0. For s analytic in IIm 3’1 < P define the H61der norm

(1.6) Isl, sup Is(v)l+ sup
IIm yl<p IIm yl,llm y’l<p
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FIG. 1. Approximate vorticity density tr=lzov-1=[1 +So[-1 with So defined by (1.5), e =0.1, 9=0.5.

The cusp at y 0 corresponds to the singularity.

We require So to satisfy the following:
(i) So solves the linearized equation (1.3);
(ii) So is analytic in the time-dependent strip IIm Yl < It]/2 for > 0;
(iii) So is small and decays to zero as - oo. At 0 So has (at most) a singularity

in its (1 + v)th derivative, i.e.,

(1.7)
(1.8) ISo  l. < ce(1 +(It1-2P) "-"-1) e

for t>0.
Note that the function So in (1.5) satisfies (i)-(iii). Our main result is the following

existence theorem.
THEOREM 1. Let e be a sufficiently small real number and let 1 > > a > O. Let So

satisfy (i)-(iii) above; i.e., So is an analytic solution of the linearized equation (1.3) that
decays to zero at ao and has a mild singularity at O. Then there is a function r( y, t)
such that

(1.9) z(% t)= y+ So+ r

is an analytic solution of the Birkhoff-Rott equation (1.1) for > 0 and ]Im ,1 < in
which K > 2 and 2 as e O. Moreover, r can be chosen so that the decaying mode
r+ + iF_ O at O and that

(1.10) lrlo+lr]o< ce 2 exp (- Itl/2),
(1.11) Irlo < Ce2(1 -t-Itl ,--a--1) exp -I tJ/2)
in which c is some constant that is independent of e and depends smoothly on a- and
(u-a)-I (i.e., c may be infinite at a 0 or a 9).



296 R. E. CAFLISCH AND O. F. ORELLANA

Since r/ + i?_ 0 at 0, in some sense half of the initial data of z is given by
3’+ So. The norm in (1.10), (1.11) is that of (1.6) with p =0. These estimates show that
r is as smooth as So, but much smaller. Stronger estimates for r on the strip [Im ,1 <
are given at the end of 6.

There are three main ideas in this construction: The first is to extend the Birkhott-
Rott equation to complex 3’. Linearization (or equivalently the form of the Kelvin-
Helmholtz instability) shows the Birkhott-Rott equation to be approximately hyper-
bolic in the imaginary 3’ direction, so that singularities will move in that direction.
This was first pointed out by Moore 11 ]. Of course, only real values of 3’ are physically
meaningful; i.e., singularities are physically observable only when they lie on the real

3’ line.
The second idea is to put the singularity in the initial data. By proper choice of

initial data, the singularities can be expected to travel approximately on the lines Im
3" +t/2. Although our method cannot track these singularities exactly, we are able
to show that the resulting solution is analytic in the wedge [Im 3’1 < Kt/2, > 0, as
shown in Fig. 2. Note that for all > 0 this wedge contains the line Im 3’ 0. Therefore
the vortex sheet is analytic for all > 0.

FIG. 2. Domain of analyticity (in 2,) for z( 3’, t) (equivalently for r(’y, t)): {llm "yl < ct, t>0}.

The third idea is to construct the solution within the class of analytic functions.
In this function class the Birkhoff-Rott equation has been shown to be well posed;
while in almost any larger class it is expected to be ill posed. For the Sobolev spaces,
ill-posedness is shown in 7. Use of analytic functions provides the stabilization
necessary to construct exact solutions in the presence of physical instability. Aside
from this practical justification, our belief that the imposition of analyticity is consistent
with the zero viscosity limit justifies the use of analytic functions, at least for some
flow regimes.
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FIG. 3. Domain ofanalyticityfor the iterates r, (or equivalently p,, q,). The width ofthe domain decreases
as n increases. The line segments emanating from the plane {Im /= 0} are the characteristics used to extend
the iterates to complex 2,, as in (2.12), (2.13), or (3.3).

The correction term r of Theorem 1 is constructed using the Cauchy-Kowalewski
method, somewhat modified from that in 13] involving an iteration. At each iteration
in our construction, the approximate solution is analytic in a wedge IIm Yl < ct, with
an angle c that is slightly reduced at each step, as indicated in Fig. 3. The final solution
is valid in a limiting wedge, which is shown to be nonempty.

Other analytic results for vortex sheets include a proof of short-time existence by
Sulem, Sulem, Bardos, and Frisch and a proof of existence almost up to the expected
time of singularity formation by Caflisch and Orellana [2]. The singularities described
in the present paper are not accompanied by concentrations of energy. Thus they are
much weaker than those discussed by DiPerna and Majda [3]-[5], which possibly
appear on a vortex sheet at a later time. On the other hand, there are no known
examples for which such energy concentrations develop from less singular initial data.

The outline of this paper follows. Section 2 contains a reformulation of (1.1) and
shows the sense in which the problem is hyperbolic. In particular, an equation for the
error term r is derived. In 3 we describe an iteration method for solving the equation
for r. Each iteration involves solving an elliptic problem in and Re y, then extending
the solution to complex 3’ by solving a hyperbolic problem. The elliptic problem is
solved using a Green’s function; we solve the hyperbolic problem by integrating along
characteristics. Estimates on the first iterate are obtained in 4, the induction method
is described in 5 and estimates for the successive iterates are derived using a
Cauchy-Kowalewski method in 6. At the end of that section, we summarize the proof
of Theorem 1, and we derive two consequences of Theorem 1 in the concluding section.

2. Formulation. We write z as a perturbation of the fiat sheet by z y+ s and
assume that s is 27r-periodic, i.e.,

(.1) s(+, t)= s(, t).
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The Birkhoff-Rott equation (1.1) is equivalent to the following equation for s, which
is now written in a way that is analytic for complex y,

0 1 f d"(2.2) --s*(T,t)=B[s]=-PV
Ot 2ri J-o -sr+s(y)-s(y+ st)

in which s* is the analytic extension of g, i.e., s*(3,) s(/). The operator B is expanded
as B[s] Bl[s]+ Br[s] in which

1 fo s(3,) s(3, + ’) 1
(2.3) Bl[s]( y) PV j_ a=- H[sv]

27ri

is the linear part of B and Br is the nonlinear remainder. The linearized equation (1.3)
is analytically extended as st* Bl[s].

Since So is an exact solution of this linearized equation, the Birkhoff-Rott equation
(1.1) for z 3/+ So+ r can be rewritten as follows:

(2.4) r* B,[ r] + Br[so -t- r].
Define the decaying component p and growing component q for r as follows:

(2.5) p r+ + i(r_)*, q r+- i(r_)*.

Then (2.4) can be rewritten as

(2.6) p, =-p + a,

-i
(2.7) qt =-- qr + b,

in which

(2.8) a (B_)* + iB+, b (B_)*- iB+
and B+ and B_ are the upper and lower analytic components of Br[so+ r]. Note that
a and b, and thus also p and q, have only components with positive wave numbers.

The system (2.6), (2.7) is elliptic in y, for real y, but it is hyperbolic in y, for
imaginary 3’ (or more precisely, in the imaginary y direction).

We solve (2.6), (2.7) in two parts. For 3’ real, >= 0, we solve the elliptic equation
using a Green’s function. For Im 3’ 0, _-> 0, we solve the hyperbolic equation (2.4)
by integration along characteristics using the values of r on Im 3’ 0 as "initial values."
These characteristics are indicated in Fig. 3.

We require p and q to be 2r-periodic, to vanish at t=, and to have only
components with positive wave numbers and p 0 at 0; i.e.,

(p, q)(y, t): (p, q)(y+27r, t),

(2.9) (p, q)-->0 as t->oo, p(t=0)=0,

(/ )(k, t)= e-’(p, q)(y, t) dy=O for k<_-O.

Under these conditions and for a and b having only components with positive wave
numbers, the solution of (2.6), (2.7) is uniquely given by

(2.10) p(y, t)= g(y’, t-t’)a(y-y’, t’) dy’ dt’,

(2.11) q(y, t)= g(y’, t-t’)b(y-y’, t’) d’ dr’
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for 3’ real and by

(2.12)

(2.13)

p(y+ itz t) =p(y, t+2/z)-2 a(y+ i/z’, +2(/z -/x’)) d/x’,

q(y+Ox, t)= q(y, t-2x)+2 b(y+il’, -2(x -x’)) dx’

for 3’ + i complex in which

(2.14) g(y, t)= { (-t/2+ iy),
-(-t/2+iy),

1 e
(2.15) (z)-2,n. l_eZ.

t>0,
t<0,

If a and b are analytic in y, then p and q defined by (2.10)-(2.13) are also analytic.
According to (2.5), r =1/2(p+ q)+ i1/2(p*-q*). Let A[so+ r] denote the correspond-

ing combination of the right-hand sides of (2.10)-(2.13). The Birkhoff-Rott equation
(1.1) or (2.4) for z 3,+ So+ r can be rewritten as follows:

(2.16) r= A[so+ r].

Equations (2.10)-(2.13) for p, q or the equivalent equation (2.16) for r are the main
results of this section.

3. Iteration method. In the previous section, the Birkhoff-Rott equation, for z
3/+ So+ r was reduced to (2.16) for r. We now solve this equation by iteration. Define
ro 0 and for n >-0 let rn+l solve

(3.1) r,+,(y, t)= A[so+

In terms of p,, q,, defined as in (2.5), equation (3.1) is written as in (2.10)-(2.13):

P.+I(Y, t)= g(y’, t’)a.( y- y’) dy’ dt’,
dO,/O

(3.2)
q,,+(y, t)= g(’, t-t’)b(-’) d’ dr’,

p+(+i,)=p+(%+2)-2 a(+i’,t+2( )d’
(.

q+(+i,t)=q+(,t-2)+2 b(+i’,t-2(-’))d’

for and real, in which a, b are defined as in (2.8) with r replaced by r. To show
convergence of r we obtain estimates on the difference

R= r-r_.

Let Q q- q_, P =p-p_. We use the following differentiated equations for
R, or equivalently for P,

OPn+l(Y, t)= gO(a.- a._) dy’ dt’,

(3.4)

O,Q+(, t) gO(b -b_) dT’ dr’,
dt d 0
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(3.5)

+(3" + ip, t) OP,,+(% t+)-

OQ,,+(y+Ox, t)=O.Q.+(% -2.)+2 O(b-b_)

for k l, 2.
For the H61der norm [s[, defined in (1.6), the Cauchy estimate for the derivative

of an analytic function is

(3.6) Is+(’, t)l<=(p’-p)-’[s( ", t)l, ifp’>p.

The nonlinear part Br of the Birkhoff-Rott integral operator is estimated as

IBr[s]l, < ColS.,,I i0

(3.7)
IBr[S]l colslolsl,

for any s, g in which Co c( 1 -Isl)-’ and c c( 1 -[s[)- + c( 1 -I1)-. For these
estimates we assume that

From these general estimates it follows that a,, b, satisfy

2

(3.8)
laolo + Ibolo ClSo,lo,
lao,[o + Ibovlo clso,lolso,,lo,

(3.9)

(3.10)

if [r,,r[v < ISor[, < 1/2, [rmy[o < [Soyy[ < 1/2 for m n, n- 1.
For use in estimating the iterates r,, we state a general lemma. Its proof is a

straightforward extension of the proof of H/51der bounds on the Hilbert transform
(Katznelson [7]).

LEMMA 3.1. Suppose that a de Jo b de 0 and let p and q satisfy

(3.11)
P(T, t)= g(T’, t-t’)a(T-T’, t’) dT’ dt’,

JOdO

q(y, t)= g( y’, t-t’)b( y-y’, t’) dy’ dr’

and suppose that

(3.12) lalo/ [blo -< c=(1 / --) e-’.

Let r be related to p and q as in (2.5). Then r satisfies

(3.13) [rv[o _<- ce2e -t/2 [rv,]o < ce2(1 + -"-) e-,/2

The same estimates are true for p and q.
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4. First approximation. The first approximation r R1 satisfies r A[so], i.e.,

f tf2-(4.1) Pl(T, t)= gao dy’ dt’, q,(y, t)= gbo dy’ dt’,
.IO dO ,It ,1o

(4.2)
q( / + l, ) q( "/, 21 + 2 bo dl

in which the arguments inside the integrals are as in (3.2)-(3.3). From (3.8), (1.7), and
(1.8) it follows that ao, bo satisfy

< ce2(1 + (t--2p) ’--1) e-(t-2o)laol, +[bol,-
for > 2p. In particular,

laolo+ Ibolo=< ce2(1 + "-a-l) e-t.

Application of Lemma 3.1 implies

(4.3) [rllO<-_ ce

Next estimate rl for ,+ i/x complex from (4.2) as

Ir,(’, )1o .<2 sup_
ce-(-2)/ c2p(1 +(t-2p)--) e-(-2)

C,--12 e-(-2p)/2

for Kp < with K 2(1 + 8) with 8 > 0. Similarly,

<2 sup Irlw(’, t+2/X)lo+2Ir(’. t)l,-

<= ce:Z(1 + (t-2p) "-’-’) e-<,-p)/

(4.5) + (Sp)-’ (I ao+l<,+a>o-.’ + bol<l+a>,,-,:,) d,’

<=ce:(1 + (t-2p) "--’) e-(t-2p)/2+2e26-(1 - (t-- Klp) "--1) e-<t-,,,p)/

<= c6-e:z(1 +(t_p) "-’-) e-(t-,,,p)/2

for KlP < t.

5. Induction hypothesis. Successive approximations rn and their convergence are
analyzed using an analogue of the Cauchy-Kowalewski method [13] for the integral
equations (3.2), (3.3). In each iteration the wedge of existence IIm ’1 < rit is slightly
decreased, so that the general estimate (3.6) can be employed. The object of the
modified Cauchy-Kowalewski method is to show that there is a limiting, nonempty
wedge in which the solution r is analytic. The key point of the method is overcoming
the large factor (p_p,)-i in the Cauchy estimate (3.6). As a result of this factor the
singularity in the solution r may be one order higher than the singularity in So on the
lines IIm 3’1 Kt. However, the additional singularity has amplitude proportional to
t, so that at 0, r is no more singular than So.
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The induction argument follows that of Nishida 13 with some change in notation
and indexing. Define

(5.1) ,,+1 :,, (1 eu (n + 2)-)-
for n => 1, in which/x > 0 is to be chosen later. Then

(5,2) /On " / /1U (1 e"(m +2)-)-1,

which is finite and note that /(/+1 > /(n > > RI > 2. Define the norm

(5.3) A,,(R)= sup e -2 e(’-K’’)/2t-l(t--Kmp)
t> KrnP

x {IR(t)l. + (1 / (t- KR)--’)-llRr
Since ,.+ > ,, then A,+I(R) A (R) for any R. The size of the mth correction
R, =rm- r,_ is measured by

(5.4) A,, A,,(R,,).

As mentioned above, the factor ,,p)/t indicates possible additional singularity
on the line IIm Yl =/9 ,lt, but note that it does not affect the size of R,, on the
physical line Im 3’ =p O.

The induction hypothesis is

The constant d as well as K1 will be chosen later. In the previous section, we showed
that A1 =< c(1-2)-1 so that the hypothesis for n 1 is satisfied if d-> c(-2)-1.

Now suppose that (5.5) is true for n => 1. If ,/p < t, then for n _>-j=> 1,

IR;v(t)lo < A; 1
;

e e-(’-,’)/2

(5.6)
< A 1 e e-(-/,

(5.7)

< 1- e l +(t-O) e

Since ro 0, r 2= R, r 2= R, and using the induction hypothesis at n,
this yields

I%(t)lo e A;(1 ;/Kj+I) -1 e-<’-’-0)/2
j=l

(5.8)
d e2 e-(t-.)/

de(1 +(t- ,p)"-"-’) e-<’-.)/(5.9) I(t)[o

for any j n and u,+p < t. The bounds (5.8), (5.9) will be used in 6 for estimation
of R,+.
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6. Successive approximations. To verify the induction hypothesis (5.5) for n+ 1,
the correction terms Rn+l that solve (3.4), (3.5) must be estimated. Using (1.7), (1.8)
for So, (5.8), (5.9) for rn, m-l, and (5.4) for Rn, Rn in (3.10), the forcing term in
(3.4), (3.5) is bounded for Kn+lp < by

(6.1) [(an an-1),[p q-l( bn bn-1)v[p

ce3(1 + ed)A( ](1 +(t-np)--1) e-(t-"p).
.p/

In paicular for p 0,

(6.2) I(a-a_l)lo+l(b-b_l)loce3(l+ed)A(l+t--’ e-.
First, estimate R,+I for y real, i.e., p 0. Application of Lemma 3.1 to (3.4) using

(6.2) implies that

(6.3) IR,+lvlO ce3(1 + ed)A, e-t/,
(6.4) [R.+vv[o Ce3(1 + ed)A,(1 + -a-1) e-t/2.

Second, estimate R+ly for complex y+ i, i.e., for p0, solving (3.5). For +p<t
bound

e+l()lo 2 sup

(6.5) +l(b,-b,_l)(t-2)lo_) d
2ce3(1 + ed)A. e-(’-’)/+

in which I denotes the integral. The inequalities u+ > . > 2 and +p < imply
+(p-) < (t-2). Then we may use (6.1) to bound I by

Ice3(l+ed)A" (t2)-,(O-)(1 + (t 2 "(O ))--)

e-(t2--(-)) d

(6.6) c(l+d)n(t+O) e-0/4(’- (- ffnO+(n--2))-- d
ce3(1 + ed)(n-2)-n(+O)(-nO)--

Since +> , this combines with (6.5) to show that

(6.7) IR.+lv(t)lo < Ce3(1 + ed)(u, 2)-A, eKn+lP
-(t-n+P)/2

for ,+p < t.
Third, estimate R,+lr for complex y+ i, i.e., for p 0, solving (3.5). This is the

crucial estimate of the Cauchy-Kowalewski method. For ,+p < estimate

2 sup IR,+ (t+2)loI.+,(t)l,
Il=o

(6.8) + {l(a-a_l)..(t+2)o_. +(b-b_,)..(t-2)lo_.} d
N Ce3(1 + ed)n(1
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in which I: is the integral. Define Pl by

(6.9) Pl 1/2(K l+l(t 2/) + (p -/z)),

which satisfies

(6.10) -1
p--/p< Kn+l(t--2/x),

(6.11)
t--2/. r+pl r+l(Pl-(p-t.))=(t-r+lp+(+--2)l)/2

>-(t-Kn+lp)/2.

Estimate I: using the Cauchy estimate (3.6), the bound (6.1), and the relations (6.10),
(6.11) to obtain

/2--<2 (O- (O- tz))- (a,-a,-)v(t+2t)lo+l(b.-b.-)v(t-2l)[o

t+2/x v-a-l)<-ce3(l+ed)A, (pl (p -/x))-1 (1 + (t-2/x r,pl)
(t 2/z r.Pl)

(6.12)

<=ce3(l+ed)An(t+p) e-(t-K.+,p/2 (t--Cn+lp+(n+l--2)ld,)-2

/ Kn+lp + n+l 2)i v-a-3

_-< ce3(1 + ed)A(t + p) e-(t--+o/E(r+l 2) -1

(t--r,n+lp)-l(1 +(t--n+lp)--).

Combine this with (6.8) to find

(6.13)
IR+lvvI<=ce3(I+d)A(K+-2)-I( )t--K.+lp

(1 + (t- K,,+lp) "-’-1) e-(’-.+,)/2

for .+1/9 < L
Inequalities (6.7) for R,+lv and (6.13) for R,+lvv and the definition (5.4) of A+I

imply that

(6.14)
/n+l ce(1 + ed)(Kn+l

<-_ ce(1 + ed)(K1- 2)-1An.

This inequality is also true for hj+ in terms of hj for any j =< n, so that

(6.15)
A.+, < {ce(1 + Ed)(K1-2)-I}nA

=< {ce(1 + ed)(rl 2)-’}"(:1- 2)-’.

With these estimates finished, we are ready to verify the induction hypothesis (5.5)
for n / 1 by choosing d and rl. Let

(6.16) K 2 + ae, d e-2

in which a and the parameters/x from (5.1) are still to be chosen.
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Estimate

n+l

F ;(1-,j+)-_-<(-2)- Y. (ce(l+ed)(rl-2)-l)7-1(1-r7/7+l)-
j=l j=l

(6.17) =a-le-- , (ca-lel-(l +el-2))J-(j+2)2
j=l

for any/z with 0-<_/z _-< 2/3 and a chosen (independently of/z) to be sufficiently large.
This verifies the induction hypothesis (5.5) for (n+ 1), for any n.

Completion of the induction proof shows that the inequalities (5.6), (5.7) on the
jth corrections Rj are valid for all j and that therefore the approximate solutions r,
have a limit r that solves (2.16). Finally the combination z(y, t) y+ So(% t)+ r(y, t)
solves the Birkhotf-Rott equation (1.1).

Moreover, the solution r lim,_.oo r, is analytic in rp with

r= lim :m Kll-I(1--e(m+2)2)-
=2+ _o(e).

The bounds (5.8), (5.9) show that for K < t, r satisfies

(6.18)
Ir(t)l, + Ir,(t)l,--< ce- e-’-)/

r(t)lo -< ce2-2(1 + (t- rp) -’-1) e-<’-/2.

By choosing t* , its largest permissible size, we find that r is analytic in the region
(2+ _O(e/3)) p< t. By choosing/, =0, we obtain the optimal bounds on the size of r,
although on a restricted domain. In particular for/9 0, i.e., on the physical line y
real, the bounds are

(6.19)
Ir( t)l / lrv( t)l<= ce2 e-’/-

Irvv(t)lo<= ce2(1 + v-a-l) e-,/2.

This completes the proof of Theorem 1.

7. Conclusions. We will use Theorem 1 to derive solutions of the Birkhoff-Rott
equation that develop singularities (i.e., infinite curvature) at finite time starting from
analytic initial data. Then we show that the initial value problem for this equation is
ill posed in Sobolev space H" (n > ), since the derivative of order 1 + v, for any v > 0,
can become infinite in an arbitrarily small time from arbitrarily small initial data
(fractional derivatives are understood in the H61der sense). On the other hand, the
vortex sheet problem is known to be well posed in an analytic function setting for at
least a short time [2], [14]. DiPerna and Majda [3]-[5] address the related question
of finding an appropriate function space that is preserved by the Euler flow and by
limits of Euler solutions, as well as by limits of regularized solutions (i.e., of the
Navier-Stokes equations or the numerical vortex method).

The Birkhoff-Rott equation has the following three symmetry properties: If z(y, t)
is a solution of (1.1) then so are Zb(y, t) Z*(y, --t), Z,(y, t) Z(y, t-- to), and z,(y, t)
n-lz(ny, nt).

When we use Zb, Corollary 1 follows from Theorem 1.
COROLLARY 1. Let e, v, a be as in Theorem 1 and let So satisfy properties (i)-(iii)

exceptfor < 0; i.e., So is an analytic solution of the linearized equation (1.3) which decays
to zero at =-oo (decaying backwards in time) and has a mild singularity att O. Then
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there is a function r(% t) such that z(% t)= y+ So+ r is an analytic solution of the
Birkhoff-Rott equation (1.1) for <0 and KlIm Yl <It[ in which > 2 and - 2 as e -0.
Moreover, r can be chosen so that the backward decaying mode r/- i_ 0 at t- 0 and
so that r satisfies (1.10), (1.11) for < O.

By shifting the origin oftime in the solution z of Corollary 1, we obtain Corollary 2.
COROLLARY 2. There is initial data z(% 0), which is analytic in a neighborhood of

y real, such that the solution z(% t) of the Birkhoff-Rott equation (1.1) develops an

infinite (1 + u)th derivative at a finite time to.
Finally we use the rescaling of z to zn. Take z to be a solution for <0 that

develops an infinite (1+ u)th derivative at =0, as in Corollary 1. Let z(),, t)=
N-:z(N2% N2t-2N) so that srv=zrv-y N-2s(N2y, N:t-2N). Then at t=O the
kth Sobolev norm of SN is bounded as

(7.1) _-< N:k+l e-
-0 as N.

However, the time TN of singularity formation is TN 2N-1 - 0 as N - c. For v > 0,
denote sup l01+V Z[ =sup,v, real [Z’(T)-Z’(T’)[/IT-T’ This shows the following.

COROLLARY 3. For any positive numbers u, k, e, and 6 there is initial data z 3’ + So
with [Sin < e such that sup [01+z[ goes to infinity for to < 6. In particular the initial
value problem for the Birkhoff-Rott equation (1.1) is ill posed for any Sobolev space Hk

for k > 3/2.
In other words, smallness of the initial perturbation s is not sufficient to insure

existence with bounded (1 + u)th derivative on any time interval for (1.1).

REFERENCES

[1] G. BIRKHOFF, Helmholtz and Taylor instability in Hydrodynamic Instability, Proc. Sympos. in Appl.
Math. XII, American Mathematical Society, Providence, RI, 1962, pp. 55-76.

[2] R. CAFLISCH AND O. ORELLANA, Long time existence for a slightly perturbed vortex sheet, Comm.
Pure Appl. Math., 39 (1986), pp. 807-838.

[3] R. DIPERNA AND A. MAJDA, Oscillations and concentrations in weak solutions of the incompressible
fluid equations, Comm. Math. Phys., 108 (1987), pp. 667-689.

[4] , Concentrations and regularization for 2-D incompressible flow, Comm. Pure Appl. Math., 40

(1987), pp. 301-345.
[5] Reduced Hausdorff dimension and concentration cancellation for two-dimensional incompressible

flow, J. Amer. Math. Soc., (1988), pp. 59-86.
[6] J. DUCHON AND R. ROBERT, Solution globales avec nappe tourbillionaire pour les equations d’Euler

dans le plan, C.R. Acad. Sci. Paris, 302 (1986), pp. 183-186.
[7] Y. KATZNELSON, An Introduction to Harmonic Analysis, Dover Press, New York, 1968.
[8] R. KRASNY, Or/ singularity formation in a vortex sheet and the point vortex approximation, J. Fluid

Mech., 167 (1986), pp. 65-93.
[9], Desir/gularization ofperiodic vortex sheet roll-up, J. Comp. Phys., 65 (1986), pp. 292-313.

[10] D. I. MEIRON, G. R. BAKER, AND S. A. ORSZAG, Analytic structure of vortex sheet dynamics, Part 1,
Kelvin-Helmholtz instability, J. Fluid Mech., 114 (1982), pp. 283-298.

11] D. W. MOORE, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet,
Proc. Roy. Soc. London Ser. A, 365 (1979), pp. 105-119.

12] ,Numerical ar/d analytical aspects ofHelmholtz instability, in Theoretical and Applied Mechanics,
Proc. XVI Internat. Congr. Theoret. Appl. Mech., F. I. Niordson and N. Olhoff, eds., North-Holland,
Amsterdam, 1984, pp. 629-633.

[13] T. NISHIDA, A note on a theorem ofNiter J. Differential Geometry, 12 (1977), pp. 629-633.



SINGULAR SOLUTIONS FOR VORTEX SHEETS 307

[14] C. SULEM, P. L. SULEM, C. BARDOS, AND U. FRISCH, Finite time analyticity for the two and three
dimensional Kelvin-Helmholtz instability, Comm. Math. Phys., 80 (1981), pp. 485-516.

15 D. EB N, Ill-posedness ofthe Rayleigh- Taylor and Helmholtz problemsfor incompressiblefluids 13 (1988),
pp. 1265-1295.

16] J. DUCHON AND R. ROBERT, Global vortex solutions of Euler equations in the plane, Comm. Partial
Differential Equations, to appear.


