Equilibrium for radiation in a homogeneous plasma
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Entropy increase and comparison principles are found for the Fokker-Planck equation for the
radiation field in a homogeneous plasma with constant electron temperature. When emission—~
absorption is neglected, this is used to find equilibrium distributions that have the form of a
Planck distribution plus a & function at zero photon energy. For distributions below the Planck
and with emission—absorption included, a rate of entropy increase is obtained. Numerical results

confirm these conclusions.

I. INTRODUCTION

In a fully ionized plasma, the radiation field interacts
with the electron and ion fields primarily through Compton
scattering with electrons, Bremsstrahlung emission, and in-
verse Bremsstrahlung absorption. The objective of this pa-
per is to study the approach to equilibrium of the radiation
with the matter via these processes. For simplicity, it will be
assumed that the plasma is spatially homogeneous, isotrop-
ic, and in a thermodynamic equilibrium characterized by a
temperature 6, which is artificially held constant in time.
While these assumptions are highly idealized, the results ob-
tained should give insight into equilibration under more gen-
eral conditions.

In the weakly relativistic limit, the energy exchange
caused by a single Compton scatter is small, and so the effect

of Compton scattering is well described by a nonlinear .

Fokker-Planck diffusion operator. This diffusion operator
was first derived by Kompaneets,' and its approximation to
the full scattering operator was studied by Cooper.? The evo-
lution and equilibration of the radiation distribution is then
described by the Fokker—Planck equation. In this paper, two
tools are developed for analysis of the equilibration process:
an entropy principle and a comparison principle.

We shall consider equilibration of the radiation distribu-
tion caused by Compton scattering alone and also that
caused by the combined effects of scattering, emission, and
absorption. For scattering alone, the entropy principle will
be used in Sec. III to show that for some initial data the
equilibration must result in Bose condensation. For scatter-
ing combined with emission and absorption, precise bounds
on the equilibration rate will be found in Sec. IV under some
assumptions on the initial state.

il. FOKKER-PLANCK EQUATION

The radiation distribution f(x,?) is defined so that the
total photon number density is

N@) = wa(x,t)xz dx, (n
0

in which x = Av/6 is the photon energy normalized by the
plasma temperature 6. The multiplier x? is a geometric fac-
tor for spherical symmetry. The nondimensionalized
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Fokker—Planck equation'~> for f'is
() oo & 1r27)
Ox ox

ot
+o(x)(fo—S)» (2)
for 0 < x < o with boundary conditions

a(x) (—%+f+f2)=0 atx=0andx= . (3)

The nondimensionalized scattering cross section a(x) and
emission—absorption cross section o(x) are both non-nega-
tive. The Planck distribution is f(x) = (¢* — 1)} itis an
equilibrium solution of Egs. (2) and (3) for any choice of a
and o. The flux of photons in energy space caused by Comp-
ton scattering is F( f,x) = a(x)(df/dx +f +f*), and so
the boundary conditions [Eq. (3)] state that there is no
flux of photons at zero or infinite energies. In the absence of
emission and absorption (i.e., o = 0), the boundary condi-
tion [Eq. (3)] implies that an equilibrium state f satisfies
F( fx) =0, the solutions of which are the Bose~Einstein
distributions f, defined by

fix) = (-1~} 4)

with 42 >0. The chemical potential 4z must be non-negative so
that f, is positive and nonsingular.

The variation of the entropy S of the photon-plasma
system is

5S = 6Sph0t + 6sphs .

Assuming the plasma is quasistatic and using conservation
of energy, we find that

88,10 = (1/0)8E py = — (1/0)8E iy
Thus we define the entropy functional S( f) by

SU) = Spnor — (1/O)E o

=J. s(f(x),x)x? dx, (5)
(1]

where the entropy density s( f,x) is given by

s(fx) = (14 f)log(1 +f) — flog f— xf. (6)
The first two terms in s give the usual Bose-Einstein entropy
for Sppo:» While the xf term gives (1/6) E,;,,, and models the
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entropy exchange between the photons and the plasma.
The entropy density s satisfies

-aﬁ=log(1+—1—)—x,

af f
32 —1
5}%= —(f+fH7I<o

Note that ds/df = 0 at x if f(x) = f,(x), and that s is con-
cave in f, so that s(f5(x)x)>s( f,x) for any f and x, and
therefore s( f,) »>s( f) for any non-negative function. The
entropy S is nondecreasing since

=k GG e
- [ecocr = (Larrry)

+o(x)[log(1+ 1/f) —x1( f, —f)xZ]dx

>0 N
for any o(x) »>0and a(x) >0, since [log (1 + 1/f) — x] and
(fo —f) have the same sign.

In order to derive a comparison principle for Eq. (2),
some assumptions are needed on the behavior of the scatter-
ing cross section and on the solution. Suppose that the scat-
tering cross section a(x) satisfies the bounds

O<a(x)<ex® forO<x<l,

(8)
O<a(x) <cxe® forl<x< oo.

These bounds are valid for the Thomson scattering cross
section, a(x) = @x?, as well as for the more complicated
cross section that results from integration of the Kline-Ni-
shina kernel.2 For simplicity, we also suppose that the solu-
tion fof Egs. (2) and (3) satisfies

fx,) <es()x™! forO<x<1,

€))
f [fldx < cq(2).
1

These bounds are true of the Planck distribution. However,
we have not shown that the solution f(x,¢) satisfies Eq. (9)
for all ¢ if the initial data f(x,0) does so. In these inequalities,
€15 €35 €3, €4 are bounded and positive. The time dependence
of ¢, is essential to allow the solutions described in Sec. III.

Under these assumptions, we shall verify the Compari-
son Principle: If f(x,t) and g(x,t) are two solutions of Egs.
(2)—(3) both satisfying the bounds (9) and with f(x,0) >g(x,0)
Jor all x, then f(x,t) >g(x,t) for all x and t. In particular, if
S(x,0)30, then f(x,t) >0.

This principle is of intrinsic interest and will also be used
in the analysis of equilibration rates in Sec. IV,

The normalized difference 4 == x?( f— g) satisfies the
equation

% h = 56;25 ax*h
+ —ai-x"( —a, +a(l+f+g)h—oh,
(10)
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for 0 <x < o, with boundary conditions

ih+(—3+1+(f+g))h=0.
ax x

Consider f(x,?) and g(x,?) as known functions, without as-
suming anything about their relative sizes. Then Egs. (10)
and (11) are forward equations*® for a stochastic diffusion
process, with coefficients of diffusion d ? and drift k given by

d2 = Zx_ZG(X),
k=x"a, (x) —x">(1+f+ga(x),

and with the killing rate being o(x). The standard existence
theorem* for such a process need only be modified by esti-
matingf + gfrom above by a function that is not time depen-
dent and satisfies the bounds [Eq. (9) ). Asaresult, 4(x,?) is
the probability density for a diffusion process with initial
density #(x,0) (which is non-negative), and therefore
h(x,t) >0, which concludes the proof of the comparison
principle.

The bounds [ Eqgs. (8) and (9)] are used in the existence
theorem of Ref. 4 to show that the diffusion process never
hits the boundaries x =0 or x = . This is a technicai re-
striction that can be removed at the expense of more compli-
cated mathematical theory.

(11)

lil. COMPTON SCATTERING

For Compton scattering alone (ie, o=0), the
Fokker-Planck equation becomes the Kompaneets equation

O, f=x"20.[a(x), f+f+/D)].

That scattering neither creates nor destroys photons is mani-
fest in the fact that Eq. (12) conserves photon number
N(f) = §& fx*dx. For the Bose-Einstein distributions,
S, (x) = (e£T# —1)~" with £>0, the photon number N,
= N(f,) is a finite monotone decreasing function of 4,
N, <N, If an initial photon distribution f, has N( f,, ) <N,,
then when the entropy S( f) is maximized subject to the

(12)

_constraint that N( f) = N( f, ), it is found that the maxi-

mum is attained when f=f,, where u is determined by
N(f,) =N(/f,). The parameter u enters the analysis as a
Lagrange multiplier. Thus it is reasonable to conclude that
the resulting solution of Eq. (12) equilibrates to this £, .

If, on the other hand, an initial photon distribution f,
has N( £, ) > N,, then when the entropy S( /') is maximized
subject to the constraint that N(f) = N(f, ), it is found
that the maximum is never attained within the class of posi-
tive regular distribution functions (i.e., without point
masses ). We show below that S{ /') can take values arbitrar-
ily close to.S( f,) and that as S( f )—S( f,),f—/, away from
x = 0. Thus it is reasonable to conclude that the resulting
solution of Eq. (12) equilibrates to f, away from x = 0, and
piles the excess photons near x = 0. This is the so-called Bose
condensation.

Numerical calculations presented in Figs. 1 and 2 illus-
trate the Bose condensation behavior. The initial datum is
S(x,0) = (> — 1)}, a Planckian at double the tempera-
ture with N(f) =8 N,. The Kompaneets equation [Eq.
(12)] is solved with the classical diffusion coefficient & = x*
and no emission—absorption (o = 0) by the finite difference
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FIG. 1. Radiation number density x*f versus photon energy x at uniform
time intervals. Curve A is the initial Planckian at temperature 2. Curves B,
C, D, at successive time intervals, show the shift of the photons towards zero
energy. Spikes near x = 0 for curves C and D are too narrow to be resolved
on this scale and exceed the range of the graph (see Fig. 2).

scheme developed by Larsen, Levermore, Pomraning, and
Sanderson.®

Analysis of Bose condensation is performed by finding
the state of maximum entropy. It is shown below that

if |f —folx*dx >0, thenS(f)<S(f),

x>0
if f=/fo+n6(x), thenS(f)==S(f). (14)

To verify Egs. (13) and ( 14), first note that any positive
distribution function £ with finite number NV [defined by Eq.

(1)] consists of a regular function plus a sum of & functions,
ie.,

(13)

fx) =Ffx)+ Y n x7%6(x —x,), (15)
i=0
in which fis a regular function and 7, >0 with =1, < «.
Next evaluate the entropy S{x,”?68(x —x;)) for a &
function by considering a sequence of functions g, (x) ap-
proaching x;~ 2 §(x — x;) as k approaches co. The limit is
taken to mean thatg, >0and (Ju(x)g, (x)x* dx—u(x,) for
any u, with the additional technical condition that
5 ix— x> <8k (1 + |log g |)x* dx—0 as k— o for any €> 0.
First it will be shown that the terms (1 + f)log(1
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FIG. 2. The spikes in x*f for curves C and D on a fine x scale near x =0.
The scale for x*f'in Fig. 2 is 10* times that in Fig. 1. The development of the
8 function in x?f is seen.
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+ /) — flog f in the entropy are insignificant for such func-
tions g, that approximate a § function. Since

[(1+g)log(1 +g)| <cg(1 + |logg)),
and

|(1+g)log(1 +g) —glogg|<cg'’?,
for some constant ¢ independent of g>0, then

f [(14+ge)log(l + gi) — gy log g, ]x* dx
o

<cf 8 (14| log g, |)x* dx
Ix—x|>e€
+cf gy x*dx
jx—x| <€

<c_[| 8 (1 + |log g, |)x* dx
x —x;| > €

172
+ ce'’? (f g xt dx) ,
|x—xj<e

using the Cauchy-Schwartz inequality in the last estimate.
Both terms on the right side of this estimate approach zero if
first k is taken to «, and then € to zero. Then it follows from
the definition [Egs. (5), (6)] for § that for k& large,
S(gy)=§& — X’ g, (x)dx and therefore

Snx6(x —x;)) = fm —xnd(x —x;)dx
(4]

= —Xx; n.

(16)

Now the entropy density s{ f(x),x) is just a function of
the values f(x) and x, and thus for fas in Eq. (15),

SUH=SFr+ 3 Snx8(x—x,)
i=0

=S(.f)* i n; x;. (17
i=0
Moreover, s( f,x) has its maximum at f= f,(x), so
s(flx) x) <s(fo(x),x) if Flx) #£fo(x). (18)

From Eqs. (17) and (18), it follows that S( f) <S( f), un-
less f =f,, and the only & function in fis §(0), i.e., x, =0.
This proves Eqs. (13) and (14).

Since the entropy S( f) increases as f evolves through
the Kompaneets equation [Eq. (12) ], the equilibrium state
is the distribution that maximizes .S subject to the constraint
that the photon number N( /) is fixed. According to Egs.
(13) and (14), §is maximized for f = f, + nx~28. Thus we
have shown that for solutions fof Eq. (12) with N( f) > N,,
the limit f(x,t) as t— oo is given by

S(x) = fo(x) + nx728(x), (19)

in which n = N( f') — N, and 8(x) is the Dirac delta func-
tion.

IV. SCATTERING, EMISSION, AND ABSORPTION

Relevant choices for the emission—absorption rate o(x)
are

ox)=ox"3(1—e~ "), (20)
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o(x) =0x""(1 —e™%), (21)
o(x) =ox e "2 Ky(x/2). (22)

The last expression (22) is that found through the Born ap-
proximation in which K, is the zero-order modified Bessel
function; the other two [Egs. (20), (21)] are simple ap-
proximations. Since there is no conserved quantity for the
Fokker-Planck equation [Eq. (2)], there is only one equi-
librium—the Planck distribution f,(x) = (¢* — 1) ~*. This
agrees with the principle of detailed balance, which says that
in equilibrium, both scattering and emission absorption
terms must vanish separately. Also from Eq. (7), the en-
tropy increase rate dS /dt vanishes only if [log(1l + 1/f)
— x]( f, —f) =0, which again requires that f = f;,. Nosin-
gularity & function is allowed at x = 0 because of the singu-
larity of c at x = 0.

Explicit estimates of the rate at which f approaches f,
may be made in the special case that f<f; for all x, so that
s( £, x) >0. Since f,, is an equilibrium, the comparison prin-
ciple of Sec. I says that f<f, for all ¢ if it is true at t = 0.
Denote f= (1 — h)f,, in which 134>0, and also define

q(fix) = [log(1 + 1/f) —x1(fo = 1)

=hfylog[(1 —e~*h)/(1 —h)], (23)
which appears in the integrand in Eq. (7). Then
s(fo(x).x) =logle*/(e* — 1) ], (24)

s(fo(x),x) — s((1 — h)fo(x),x)
=fo((1 — h)log(1 — k) — (" — h)log(1 — e~ *h)).
(25)
For y> —1, (d/dy)log(1+y)>(d/dy)(1+1/y)
Xlog(1 +p)>0. It follows that for any y, and y, with
1> —1landy,> —1,
(1+ 1/y)log(14+y,) — (1 + 1/p,)log(1 +y,)

<L
log(1 +y,) —log(1+y,)

0<

(26)
Set y,= —hand y,= — he~ " in Eq. (26) and use Egs.
(23) and (25) to obtain
0<5WoX) —s((1 — h)fox)
g((1 — A)fo.x)
for any A<1. Since s( fo,x) >s{(1 — h)f,x), this shows that
s(forx) — s((1 — h)fox)<g((1 — A)fo,x). (27)

Denote AS = S( f,) —S((1 — h)f,). We estimate the
approach of AS to 0, assuming that o(x) is a decreasing
function of x [as in Egs. (20)-(22)]. For any choice of
X(t) (to be optimized later), use Egs. (7) and (27) to esti-
mate

‘%S« —f o ()g((1 — B)fy(x) b dx
(4]

X(1)

< —a(x(1)) 5 [s(fo(x),x)
—5((1 — h)fo(x),x)]1x* dx
£ — g (X)AS + o(X) J:w s( fox)x? dx

< —o(X)AS + 20(X)x%e % (28)

751 Phys. Fluids, Vol. 29, No. 3, March 1986

Using Eq. (20) for o(x) and choosing X = At?, Eq. (28)
becomes

%%S—< —FA T3t AS+FU T Te M,

AS(1)<AS(0)exp[ — ot /A% (1 = 3p)]
+ 264 “f r~7exp[ —Ar
(1]

-7 — /A3 = 3y) 1dr.
The choice of y = 1/4, A = 25~ /*leads to
0<AS(£)<[AS(0) + clexp[ — (1)*/%/4], (29)

in which ¢ = /% § r= 14 e~ "2 dr = 645°/4/27.

The final result [Eq. (29) ] shows the rate of decrease of
AS and therefore gives a measure of the speed at which f
converges to f;. Similar rates can be established for other
choices of o.

V. CONCLUSIONS

Entropy increase and comparison principles have been
derived for the Fokker-Planck equation, which describes
the radiation distribution in a homogeneous plasma. The
entropy function is used to find the equilibrium distributions
for scattering alone and for scattering with emission absorp-
tion. Besides the usual Planck and Bose-Einstein equilibri-
um, for scattering alone there are additional equilibria in the
form of a Planckian plus a é-function distribution at zero
energy. For systems obeying Bose-Einstein statistics, Bose
condensation has been predicted by thermodynamic argu-
ments.” Indeed, in the absence of emission and absorption,
the photon number is conserved and the photons may be
thought of as bosons with a nonzero chemical potential, and
so the occurrence of Bose condensation is natural. Our ana-
lytic derivation and numerical results confirm that the
Fokker-Planck equation describes the Bose condensation
(and its development in time) for the photon distribution.
The behavior is significant in physical situations®® for which
emission and absorption are weak at all but the lowest ener-
gies.

When emission—-absorption is included, the rate of ap-
proach of entropy S( f) to its equilibrium value has been
found, at least for distributions f that are below the equilibri-
um f;. This is one of the few examples in statistical physics
for which such a rate can be derived.

The results here will be used in two subsequent papers
that present a solution of the Fokker—Planck equation with
small emission absorption. The solution will be found ap-
proximately as a Bose-Einstein distribution £, with u slow-
ly decreasing to the equilibrium value 0.
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