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We derive effective equations for wave propagation in a bubbly liquid in a linearized 
low-frequency regime by a multiple-scale method. The effective equations are valid 
for finite volume fraction. For periodic bubble configurations, effective equations 
uniformly valid for small volume fraction are obtained. We compare the results to 
the ones obtained in a previous paper (Caflisch et al. 1985) for a nonlinear theory at 
small volume fraction. 

1. Introduction 
In  this paper we derive effective (or macroscopic) equations for sound propagation 

in a bubbly liquid at finite, but not small, volume fraction in the linearized (amplitude 
much smaller than the bubble size), low-frequency regime. As the volume fraction 
becomes small we will find that we reproduce the effective wave speed predicted by 
Crespo (1969). Therefore our result accounts for the relative drift and deformations 
of the bubbles. 

In a previous paper (Cafisch et al. 1985, hereinafter referred to as I) we showed 
how a system of nonlinear equations proposed by Van Wijngaarden (1968,1972) for 
the analysis of sound propagation in a bubbly liquid can be derived from a 
microscopic formulation. There we used Foldy’s method (Foldy 1945; Carstensen & 
Foldy 1947) in a nonlinear context. A consequence of that analysis is that the effective 
equations of Van Wijngaarden were shown to be valid for mixtures with very small 
gas bubble volume fraction. 

We shall rederive directly effective equations in the linearized regime and then 
compare them with the linearized results of I to emphasize several differences. In 
particular, in I the dominant mode of bubble oscillation is radial and there is no net 
drift of the bubbles to leading order. On the other hand, at larger volume fraction 
the dominant mode of oscillation is non-radial and there is a drift between the bubbles 
and the liquid. In  addition, the gas now appears to be incompressible to leading order. 
Because we are considering only low frequencies and since the liquid is nearly 
incompressible we see that at finite volume fractions the incompressibility of the gas 
is a consequence of conservation of local liquid volume. 

Although the microscopic problem is incompressible at leading order, at second 
order compressibility effects enter. Furthermore the leading-order macroscopic equa- 
tions are affected by the compressibility. This phenomenon of coupling of scales is 
important and occurs in most multiple-scale methods. Additional discussion of this 
compressibility effect is found in the remarks following (3.16). 

Present address: Department of Mathematics, Duke University, Durham, N.C. 27706. 
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In  $2 we formulate the problem at the microscopic level. We rely here on I to avoid 

repetition of details but our discussion is self-contained. The macroscopic equations 
are derived in $3 by a multiple-scale method for general random configurations of 
gas bubbles. Finite-volume-fraction effects are discussed in that section. 

In  $4 we show how, in the special case of a periodic configuration of gas bubbles, 
we can obtain effective equations valid both for small and finite volume fraction in 
a uniform way. We can then compare directly the results of $3 and those of our 
previous paper. 

2. The linearized microscopic problem 
The description of the problem and the relevant scaling is given in detail in $§2 

and 3 of I. We will repeat and generalize here several of the details and summarize 
the necessary facts. Then we will give the equations in dimensionless form. 

We are interested in wave-propagation phenomena in a gas-liquid mixture. 
Consider a collection of N gas bubbles centred at x,, x,, ..., xN and surrounded by 
a liquid. Let h be the wavelength of a disturbance propagating in the bubbly liquid, 
V the volume of the region dd containing the bubbles and R, a typical bubble radius. 
There are two basic dimensionless parameters : the dimensionless interbubble centre 
distance 

and the dimensionless bubble radius 

A '  

The gas volume fraction B is given by 

Let p ,  be a typical pressure, say the equilibrium pressure, in the bubbly liquid. 
The resonant bubble frequency (cf. (5.9) in I) for spherical oscillations of a typical 
bubble is 

where y is the ratio of specific heats of the gas and pc the density of the liquid, assumed 
constant. We will consider only frequencies w such that w < 0,. In  addition we define 
two other dimensionless parameters (cf. (3.8) and (3.9) in I) 

CB = ( C G / E ) , .  (2.6) 

Here c, is the liquid sound speed (assumed constant) and E ,  defined by (3.22), is the 
effective sound speed of the bubbly liquid. 

We will write down the equations only in dimensionless form. Therefore let A,  f, 
p,, R,, p,, E 8 8  be the reference length, frequency, density, bubble radius, pressure and 
velocity. Here we set Af = 6. Also let the surface of each bubble be given by 
I X-xi I = 6R,(t). We have suppressed the dependence of the surface, R,, on the local 
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angular coordinates. Note that for a spherically symmetric bubble the radius R, 
depends only on t .  The non-dimensionalized equations of mation in the liquid region 
{x:lx-x,l >GR,forallj}are 

c- (2.7 1 

ut+62u'vu+gvp = 0.  (2.8) 

-(pt+Sa,*Vp)+V*u s = 0 ,  

Inside each gas bubble we have the equations 
4 

-qp ,+Sau*Vp)+SaV*u = 0,  
YP 

- ( u , + P u ' v U ) + g v p  P = 0.  (2.10) 
P1 

Here p and u are the scaled pressure and velocity fields in the gas or in the liquid 
and p is the density in the gas. 

On the surface of each bubble I x -x, I = 8R,(t) we have the interface conditions 

u n = continuous, p continuous, (2.11) 

(2.12) 

where n is the unit normal to the bubble surface and V is the angular gradient. In  
(2.11) we have for simplicity ignored surface-tension effects. In  the gas we have used 
the dimensionless isentropic equation of state 

(2.13) 

Here pg is the density of the gas at po. We assume that the bubbles at the equilibrium 
pressure p ,  are spherical with the =me radius R, and contain the same mass of gas 
M,. Initial conditions for p ,  u and R, are also given. 

In  (2.7)-(2.13) we have made no assumption concerning the shape of the bubbles, 
leaving it to be determined. In  I it was assumed that the bubbles were all spherical 
and that there was no drift relative to the fluid. This is the correct assumption 
concerning the leading-order behaviour of the bubbles under the limit considered in - 

I, i.e. 8 
(9 

e j . 0 ,  S- tO,  x = - h e d .  (2.14) 

Suppose we consider the limiting c&8e (2.14) of I. Since the ratio pg/pc is typically 
small, of order for air and water, $his suggests that the pressure distribution 
inside each bubble tends to become spatially uniform. A formal expansion in powers 
of pg/pc for the problem (2.7)-(2.13) gives a set of simplified equations. They are (2.7) 
and (2.8) in the fluid with the boundary condition (2.12) on the spherical bubbles. 
In  the gas phase (2.9) and (2.10) are solved by prescribing uniform pressure p and 
density p in the bubble with p given by (2.13), and by using the boundary condition 
(2.1 l), i.e. the continuity of p .  

As will be seen more explicitly in this paper, this simplification of (2.7)-(2.13) for 
small pJpc is valid only when the volume fraction defmed by (2.3) is small, as in 
the limit (2.14) in which /? = O(P). In  this case of small gas volume fraction, pressure 
gradients inside the bubbles are negligible. 
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When the gas volume fraction is not small we shall show that pressure gradients 

inside the bubbles cannot be ignored even though pB/pC is small. Therefore we must 
analyse the full system (2.7)-(2.13). We shall do this in the linear regime only, i.e. 
around the equilibrium state p = 1,  u = 0 in dimensionless variables when the 
amplitude of oscillation is much smaller than 8. The linearized dimensionless 
equations of motion are 

- p , + V * u  s = 0, (2.15) c 
u t + p p  = 0 (2.16) 

in the liquid region {x: I x-x, I > S} (note that we have linearized about the 
equilibrium radius S), and 

rut + CVp = 0 

7 = J .  

in the gas. Here 7 is defined by 
P 
PC 

(2.17) 

(2.18) 

(2.19) 

At the gas-bubble surfaces I x-x, I = 6, j = 1 ,  . . . , N, we have the interface conditions 

(2.20) 

A p , , + V . ( B V p )  = 0, (2.21) 

p and u n continuous. 

Eliminating u, (2.15)-(2.18) can be written as a single equation 

both in the liquid and in the gas, where 

= { 1 in liquid, 

7-l  ingas. 

(2.22) 

(2.23) 

The interface conditions are now 

p and n B V p  continuous (2.24) 

across the bubble surfaces I x-xj I = 8. 
Before carrying out the analysis for the finite volume fraction, we point out the 

connection of (2.21)-(2.24) with our previous paper I. Equation (2.21) can be analysed 
in the continuum limit (2.14) where the gas bubble centres satisfy the condition (cf. 
(3.15) in I) 

(number of x, in any set A)+ e(x) dx. (2.25) 

The function O(z) is the scaled (by the volume V) continuum bubble-centre density. 
As in I, we can apply Foldy's method to this problem in the limit (2.14) to derive 
en effective linear equation. When we also expand in T + O  we obtain the effective 
equation 

(c-2 a, -A) (a: + 3yg p+ 4xeXptt = 0, (2.26) 

v 1  
AS N L _ _  
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which is precisely the linearized version of the effective equations found in I. 
Equation (2.26) is used frequently to analyse many propagation phenomena in bubbly 
liquids. 

It is interesting to note the following. 
(i) Although the pressure is uniform within a bubble, it varies through the fluid. 

On a microscopic scale pressure variations correspond to a monopole and give radial 
velocity fields in both phases. 

(ii) The limit (2.14), which is the same as S+O, N +  00 with x, g and C fixed, and 
the limit T+O are interchangeable. That is, the Foldy approximation and the 
small-gas-bubble-inertia approximation can be performed in any order. 

(iii) The Foldy approximation and the linearization (small-amplitude approxima- 
tion) can be carried out in any order. 

All these approximations commute because in the Foldy approximation each 
bubble feels only the macroscopic pressure field about it and not the local fields of 
the other bubbles. This of course will not be true at finite gas volume fractions. 

3. Analysis a t  larger volume fractions 

zero. In contrast with (2.14), we consider the limit 
We want to analyse (2.15)-(2.18), or equivalently (2.21), when /l is not going to 

S+O, E + O ,  with t? = $(fy fixed, (3.1) 

i.e. here we assume /l = 0(1) relative to E, whereas in (2.14) we assumed /l = 0 ( e 6 ) .  
We also want to consider low frequencies, that is, w-SwO. Because of the definition 
(2.4) and (2.5), this condition corresponds to requiring that 

3* = [S2 stays fixed as B and S tend to zero ; (3.2) 

where c* =po/pdcZ. Our intent is to apply the method of multiple scales (see e.g. 
Keller 1977,1980; Bensoussan, Lions & Papanicolaou 1978; Sanchez-Palencia 1980) 
to derive an effective set of equations for wave propagation in a bubbly liquid. 
Although here we will only give a formal derivation of the equations, a rigorous 
justification of our result can be obtained. This was done on a similar problem by 
Papanicolaou & Varadhan (1981). Several technical assumptions are needed to justify 
our formal methods, and, although we will not present the details, we will list some 
assumptions and hypotheses that are needed. 

The hypotheses about the bubble centres {xj} are needed because the effective 
equations will not depend only on the average density of {x,}, as in the case of the 
limit (2.14) where the bubble volume fraction goes to zero, but also on statistics of 
the interbubble distances. We shall assume now that the bubble centres {x,} form a 
random distribution of infinitely many points in space. The distribution is assumed 
to be stationary in the sense that the joint probability distribution of these points 
is translation invariant. We shall denote averaging or expectation by ( ) and assume 
that the average bubble-centre density equals B - ~ ,  which conforms with our previous 
scaling. If for example $ is a function that vanishes outside a bounded region then 

, 
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Note that we have made no msumptions about statistical independence of the bubble 
centres - just stationarity. To apply the method of multiple scales it is convenient 
to introduce a simplifying aasumption regarding the dependence of the point process 
{x,} on E. We shall assume that there is a point process b,} that is stationary, does 
not depend on E, has average intensity (average number of points per unit volume) 
equal to one and such that {x,} and {cy,} are statistically equivalent. 

We must assume that the distribution of bubble centres is such that overlapping 
of bubbles is not permitted. So we assume that the point process b,} satisfies the 
constraint ( y,-y, I > 25, with probability one for all i different from j, where 

5 = S/€ (3.3) 

is the ratio of the bubble radius to the mean interbubble distance. 

Bdy) as follows : 
In view of (2.22) and (2.23), we define two stationary random functions ACy) and 

and 

where y = X / E .  Then (2.21) can be written in the form 

A(:)Pt t -v . (B(:)vP) = 0, 

with the same interface conditions (2.24). We do not write explicitly the dependence 
on the bubble configuration {y,}, but of course p = p(t ,  x, {y,} ,  E )  in (3.6). Initial 
conditions for (3.6) are 

where @(x) and @(x) are deterministic smooth functions. 
The analysis of (3.6), (3.7) is carried out by a multiscaling procedure (Papanicolaou 

& Varadhan 1981, and references therein), in which the stationarity of the bubble 
centres {y,} plays an important role. 

p = @(x), pt  = Q(x) at t = 0, (3.7) 

We shall show that the effective equation associated with (3.6) has the form 

with initial conditions (3.7). From (3.4) the average of A is readily calculated: 

Recall that in the limit (3.1) @P stays fixed, as does 6 = 6/s and hence the volume 
fraction /3 = ~ c @ / E ) ~ .  The symmetric tensor qu is defined by (3.16) below. Unlike (A) 
the values of qu depend on the bubble configuration and cannot be calculated exactly, 
even in the periodic case. For small /? one can obtain an approximation for pi,. This 
and several other aspects of (3.8) are discussed after its derivation. 

Now we proceed with the derivation of (3.8). For simplicity of presentation we shall 
give the details here with a periodic distribution of points b5} (of period one), but 
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we shall state all results in general. Now ( ) will denote spatial averaging over a single 
period (or cell). We look for the solution p of (3.6) in the form 

p( t ,  x, {Y,h 4 = N ,  X)+%( t ,  x, y ,  {y,H+%(t, x, y ,  {y,})+ * * .  , (3.10) 

where dependence on b,} (the periodic array of bubble centres) will be omitted in 
the sequel. This Ansatz is motivated by the form of the coefficients in (3.6), which 
are periodic functions of y. We use the fact that 

v p  = [V,+~-'VyI P(t, x, Y )  ly = ,/E' 

insert (3.9) in (3.6) and collect coefficients of powers of 6. There are no terms of order 
c2 since ji has been assumed to be independent of y.  The terms of order e-l give 

Vy'(BCyPyP,)+Vy* (BWVXF) = 0, (3.11 a) 

which is an equation for p, as a function of y with t and x as parameters. Let ek be 
the unit vector in the kth direction, k = 1, 2, 3. Define X k  = x k w ;  {y,})  &8 solutions 
of 

(3.11b) 

The solution xk gives the pressure variations in the microscopic scale in response to 
a unit macroscopic pressure gradient in the ek direction. Then (3.11a) is satisfied if 
we let 

(3.12) 

The solution of (3.1lb) is a complicated problem, and in general only qualitative 
properties of X k  are known. In the periodic case (3.1 1 b) is elementary and can be solved 
numerically by standard methods. The analysis of (3.1 1 b) is a canonical problem that 
arises very frequently in the study of inhomogeneous media: Here we shall assume 
a suitable solution has been constructed and continue with the terms of next order, 
order EO, when (3.10) is inserted in (3.6). We obtain 

v y  ' (BW v y  P,) +Vy' (BW VXPJ +v,- (BW VyPJ 

+V,*(B(y)V,&-A(y)jjttt = 0. (3.13) 

Averaging with respect to y over a period cell (or averaging over b,} in general) we 
obtain the following solvability condition for (3.13) : 

(3.14) 

(3.15) 

then (3.14) coincides with (3.8). From the governing equation (3.11b) for X k  one can 
easily deduce that 

(3.16) 

from which the symmetry and positive-definiteness of qkl  follow. 
This completes the derivation of (3.8). 
We now make several remarks on the solution found above. 
(1) It is interesting to compare the pressure field p for the finite-volume-fraction 
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problem with that for the small-volume-fraction problem, which was described at the 
end of $2. For this finite-volume-fraction problem the leading-order pressure term 
ji is locally uniform in both the liquid and the gas. However, macroscopic variations 
(on the scale x) of 2, cause microscopic variations (on the scale y )  of p ,  as shown in 
(3.12). 

(2) Note also that the fluid velocity is found from ut = - B V p ,  which to leading 
order is ut = -B(V ,p+Vyp l ) .  According to (3.11a), V;u, = 0, so that u is locally 
incompressible (if it is incompressible at t = 0). This shows that for a finite volume 
fraction of gas the bubble expansions and contractions are limited by the low com- 
pressibility of the liquid. Accordingly, the monopole pressure field, which was 
dominant for small volume fraction, is suppressed at finite volume fraction. Therefore 
the pressure variations in the gas for finite volume fraction are on a much smaller scale 
than those for small volume fraction. 

(3) These results show that the limit (3.1) is not interchangeable with the low- 
gas-bubble-inertia limit 7 -+ 0, in contrast with the interchangeability of the limits 
(2.14) and ~ + 0 .  If we take 7 to zero after the limit (3.1), the pressure gradient within 
a bubble is not zero. 

(4) The restriction (3.2) to low frequencies is important in this problem. A t  higher 
frequencies the expansion of the pressure (3.10) will not be valid. 

( 5 )  By continuing our analysis i t  is possible to determine the leading-order linear 
correction to the bubble surface. In  particular, this correction contains a mode that 
accounts for a drift of the bubble relative to the liquid. In  the low-volume-fraction 
limit ( E  4 /3 < 1) the drift velocity is equal to three times the background flow 
velocity (see e.g. Van Wijngaarden 1972). 

(6) We note that, even though the fluid and gas are to leading order incompressible 
on the microscopic, y scale, e.g. (3.11 a, b), the mixture is compressible to leading order 
on the macroscopic scale. This can be seen in the effective equations. 

(7) In formulating the microscopic equations (2.15)-(2.18), the small-volume- 
fraction equation (2.26) and the larger-volume-fraction equation (3.8) we have 
introduced a large number of dimensionless parameters, some of which are dependent 
on others. We now list the independent parameters for each problem. For the 
original microscopic system (2.15)-(3.18) the independent parameters are 6, E ,  5, y 
and 7.  Note that the scaled sound speed C is given by 

In the limit (2.14) resulting in (2.26), the volume fraction p is negligibly small, and 
as a result the density ratio 7 does not affect the system, so that two parameters drop 
out; the independent parameters are x, 5 and y (with x related to B, 6 by (2.14) and 
c2 = ( l - + n ~ C - ~ ) - ~  to order p). Similarly, in the small-frequency limit (3.1), (3.2) 
several of the parameters combine, and the independent parameters for (3.8) are /3, 
T ,  and (A) (defined by (3.9)). 

Let us next discuss the effective equation (3.8). We shall assume that qr, is isotropic, 
i.e. pi, = 6, q,  since the bubble-centre distribution will be stationary and isotropic. 
Reverting to dimensional variables, we see that (3.8) is the wave equation 

C-2 eefptt  - -A- P = 0, (3.17) 

with the effective sound speed given by 
-1 Gff = q[y$-+z] 1-P PPe (3.18) 
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Gas volume fraction (% ) 

FIGURE 1. Effective velocity versus gaa volume fraction at frequencies in the range 20-80 Hz and 
at a pressure of 1.12 bar. The broken curve ie (3.18) with g = 1, i.e. the well-known result from 
(2.28). The continuous curve is (3.21). The points are from Micaelli (1982), chapter IX). 

Here q is a function of the volume fraction /3 and the density ratio 7.  When the volume, 
fraction B is small (but still much larger than E ) ,  we may use the Maxwell 
Clausius-Mossotti approximation for q (Landauer 1978) : 1 

When 7 is small this gives 
1 +2/9 
1-8 

q=- 

and hence for small 8, we have 

(3.19) 

(3.20) 

(3.21) 

Formula (3.18) for the effective sound speed C,, is very similar to the effective 
sound speed dderived in I in the limit (2.14). According to (5.11) of I (with the correct 
OV) term), E is given by 

3 = [ 7 + 7 J  1-B BPC -I ’ (3.22) 

and so C,,, and E are the same except for the factor q(B). This is remarkable, because 
the analyses and the modes of oscillation in the limits (3.1) and (2.14) are very 
different. 

At small volume fraction (but finite with respect to E ) ,  for example /3 = 0.1 ( lo%), 
the square of the effective sound speed (3.21) is bigger than that given by (3.22) by 
about 13 yo in this case. Comparison with the experimental results of Micaelli (1982) 
in figure 1 shows that (3.21) provides a better fit than (3.22) at larger 8. In  Micaelli’s 
experiments the typical bubble diameter is 4 mm and the frequencies vary around 
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50 Hz, so viscous effects are not important. It should also be pointed out that the 
factor q, as given by the dipole approximation (3.19) or (3.20), is essentially the same 
as the one obtained by Crespo (1969). In (3.18) or (3.21) the factor q is a consequence 
of bubble interactions at higher volume fractions. It includes the effects of the relative 
compressibility of the gas-liquid mixture, and accounts for the motion of the bubble 
centres. This effect is also included in van Wijngaarden (1976a,b). 

4. Uniform analysis in the linear low-frequency regime at finite and small 
gas volume fraction 

In this section we shall derive from (3.6) an effective equation that contains both 
(3.17) and (2.26) as special cases and therefore interpolates between the Foldy 
approximation in the limit (2.14) and homogenization in the limit (3.1). The analysis 
is, however, restricted at present to periodic bubble configurations. 

It is sufficient to analyse (3.6) for time-harmonic fields p+ei8tp, so that we have 
the equation 

V*(BVp)+As2p = 0, (4.1) 

with B and A defined by (3.4) and (3.5) and with CV,} aperiodic configuration of period 
one (that is, CV,} are points of the three-dimensional unit lattice E3) .  In  both of the 
limits (2.14) and (3.1) the interbubble distance 6 tends to zero. However, in (2.14) 

= 8/e  also goes to zero like e2 with (, kept fixed, while in (3.1) g and Ca2 are fixed. 
To get an effective equation that contains both these limits we concentrate on the 

role of the parameter 6 and think of p as a function of x and y = X/E, periodic in y 
for each x. Then (4.1) takes on an expanded, multiscale form 

1 1 
~Vy*(BCy)VyP(x, r))+; Vy*(BCy)V,P(X, Y)) 

Let us assume that the periodic bubble configuration is centred at the origin. Then 
the variable y ranges over the unit period cell, which is the set of points in space with 
each coordinate in the interval [ -+,;I. 

Introduce a periodic function y(y )  defined by 

,u if y is in the period cell but ly I > 6, 
a i f lYl<5,  

PLY) = 

where p is a constant to be defined later and 

8262 a = -  
rQ2 - 

Let I ,@)  be the indicator function of the liquid region: 

(4.3) 

(4.4) 

1 i fy i s in thece l lbu t ly l>g ,  

0 i f ly l<E.  
MY) = (4.5) 
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Then we can rewrite (4.2) in the form 

1 1 1 
- €2 [V,, - (B v,, P )  +PPl +ivy (B v, PI +;vx ( B  v,, P )  

11 

To analyse (4.6), introduce the periodic eigenvalue problem 

#(y) and n BCy) V,, #w) continuous across I y I = 5. (4.9) 

From the definition (4.3) ofp we see that p is now an eigenvalue parameter. We choose 
in (4.7) the minimal eigenvalue p. In  that case the corresponding eigenfunction q5 is 
a positive periodic function (cell function). This positivity of # ensures that the cell 
problem (4.15) will be elliptic and hence solvable. 

The term p p  in the first bracket and p/ez in the last bracket will be treated as being 
of order one. Then p in (4.6) can be expanded in a power series 

p =p,+€p1+Eepa+ ... . 

V,,' (Bdy) VyPo) +PPO = 09 
For po  we get 

so from (4.7)-(4.9) we conclude that 

(4.10) 

(4.11) 

P O P ,  Y) = #cv)P(x). (4.12) 

For p ,  we get 

v,,*(BCy)V,P,)+pP,+V,,* (BCV)V,%)+V,.(Bdv)V,,PO) = 0. (4.13) 

Multiplying by #(y) and integrating over a period cell, we see that the inhomogeneous 
term in (4.13) satisfies the necessary solvability condition. Thus we can solve for p ,  
in (4.13). In  fact, let 

(4.14) 

with x k ( y )  periodic and satisfying 

vy LBW) #*w) vy X k W ) ]  + vy L B @ )  #'wCv)l ek = O* (4.15) 

Here ek, k = 1, 2, 3, are unit vectors in the coordinate directions of R3. With this 
definition of xk and p l ,  we have a solution of (4.13). As with (3.11), (4.15) cannot be 
solved exactly. It can, however, be analysed numerically (only in the periodic case, 
of course) and qualitatively. 

We continue with the equation for p,, which is 

v y  0 (B  v,, P,) +PP,  + v,, ( B  v, PJ + v, - ( B  V,,P,, +v,. ( B  v, Po)  + (C-4) C 2 E  1, Po = 0. 

(4.16) 

Multiplying (4.16) by #(y) and integrating over a period cell, we obtain the necessary 
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solvability condition for the inhomogeneous term. When (4.12) and (4.14) are used, 
this condition becomes an equation for p(x), the effective equation 

where, after some rearranging, 

(4.17) 

(4.18) 

Using both (4.15) and (4.17), we can rewrite (4.18) in the form 

from which symmetry and positive-definiteness follow. 
Let us now see how the effective equation (4.17) reduces to (2.26) and (3.17). 

Consider first the limit (3.1) that results in (3.17). We rewrite the eigenvalue problem 
(4.7)-(4.9) more explicitly : 

(4.19) (Au+p)  $@) = 0 if y is in the period cell, I y I > 6,  

(4.20) 

$(y) and n B(y)  V, $@) continuous, (4.21) 

$2 dy = 1, $@) periodic. (4.22) 

For the limit (3.1) {a2 is fixed, so, since a = s2s2([ySZ)-l in (4.4), we can carry out an 
expansion in powers of s2 for $ and p. An elementary computation yields 

$cv) = 1 +O(f), (4.23) 

Similarly, from (4.19) and (4.15) we see that as $+ 1 

d +- qt,’ 
where qt, is given in (3.16). Therefore (4.17) becomes 

(4.24) 

(4.25) 

(4.26) 

which is identical with the time-harmonic version of (3.17). 

and 5+0 so we write the constant a of (4.4) in the form 
Secondly, let us see how (4.17) reduces to (2.26) in the limit (2.14). Now [ is fixed 

8 2 8  s2 a=--- 
Y@ - rSE2 ’ 

p d  (4.17)-(4.19) in the form 

(4.27) 

(A,+p)$@) = 0 i fy  is in the period cell, IyI > 6, (4.28) 

$@) = 0 if JyI < 6, (4.29) 
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#2(y)dy = 1, #@)periodic, (4.30) 

#(y) and n B(y)  V, #(y) continuous across I y I = 6. (4.31) 

The asymptotic analysis of the eigenvalue problem (4.27)-(4.31) is somewhat 
intricate if more than the first term is needed. The first term can be obtained easily, 
however, and, without spelling out the details, the results are 

(4.33) 

It is here that one sees clearly that rJ.0 and 540 are interchangeable. It is also easy 
to see using (4.32) that as 5 goes to zero 

dj + 4*. (4.34) 

Thus when (4.32)-(4.34) are used in (4.17) we obtain 

(4.35) 

which is the time-harmonic version of (2.26) (recall that x = 

5. Concluding remarks 
We summarize our results in this paper as follows. 
(i) In the continuum limit at finite gas volume fraction, limit (3.1), pressure 

gradients inside the bubbles have to be taken into account. This occurs because the 
mixture behaves nearly incompressibly to leading order. 

(ii) In the same limit (3.1), the effective equation for the pressure in the linearized 
low-frequency regime is the wave equation (3.17). The effective sound speed is given 
by (3.18). At small volume fraction /3 the effective sound speed is given by (3.21), 
which fits Micaelli’s (1982) data better than the well-known formula CZ = y p / p ,  /? (cf. 
(2.15) of I) ,  which came from (2.26) fo rb  = O(s2). See figure 1. 

(iii) For the idealized case of a periodic bubble configuration we have obtained the 
highly dispersive wave equation (4.17) as effective equation. This equation is 
dispersive because ,LA and q$ are complicated functions of a2, s being the transformed 
time variable in (4.1). Equation (4.17) contains both the well-known equation (2.26) 
and (3.17), which is not dispersive, as special cases. 

Even though a periodic configuration is very special, (4.17) is interesting because 
it interpolates between the regime ofb = O(aS), where the Foldy approximation holds, 
and the finite-volume-fraction regime. In  the Foldy approximation radial bubble 
oscillations constitute the dominant mode of bubble motion. In  the limit (3. l ) ,  but 
with volume fraction not too large (say less than 10 yo), the principal mode of bubble 
motion is a dipole oscillation, which yields the effective sound speed (3.21). 

One can use (4.17) to obtain corrections to (2.26), for example. This is done by 
carrying out the expansion (4.32), (4.33) to higher order using Hasimoto’s (1958) 
method. For a simple cubic lattice one obtains instead of (4.35) the equation 

p = o .  4x82 2 . 8 4 ( 4 ~ ) ~  (“8)”> 
Aji+ -- + (G 1-3yt;/a2 ( 1 - 3 ~ y / s ~ ) ~  
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Note that the correction is of order @, which is typical of interaction effects for 
periodic configurations. Equation (5.1) contains the correct O ( 8 )  terms due to 
interactions of bubbles in a periodic system. It does not include corrections top, which 
may also be O(e*), coming from the multiple-scale expansion. The extension of the 
result (5.1) to the nonlinear setting of our previous paper (I) for periodic configurations 
is given by Rubinstein (1984). 
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