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We derive a system of effective equations for wave propagation in a bubbly liquid. 
Starting from a microscopic description, we obtain the effective equations by using 
Foldy’s approximation in a nonlinear setting. We discuss in detail the range of 
validity of the effective equations as well as some of their properties. 

1. Introduction 
Wave propagation in a liquid containing gas bubbles is a complex phenomenon 

that has been studied theoretically both in the linear small-amplitude regime and in 
the weakly nonlinear regime, including effects of temperature, surface tension, 
viscosity, etc. (d’Agostino & Brennen 1983; Batchelor 1969; Drew & Cheng 1982; 
Drumheller & Bedford 1979; Hsieh 1982; Van Wijngaarden 1968,1972; Wallis 1969; 
and additional references therein). A good deal of the theory of waves in a bubbly 
liquid can be deduced from a set of nonlinear differential equations that were 
proposed by Van Wijngaarden (1968, 1972). 

These equations were written down on the basis of physical reasoning. It is not 
clear how they arise from the equations that describe the microscopic motion of the 
liquid and the gas bubbles. The purpose of this paper is to show that the equations 
of Van Wijngaarden can be obtained from the microscopic equations in a specific 
asymptotic limit that we describe in detail. From this analysis one gets a clear idea 
of the range of validity of Van Wijngaarden’s equations. 

Let us review briefly Van Wijngaarden’s equations. The macroscopic state of the 
gas-bubbleliquid mixture is described by its density p(t, x), pressure p( t ,  x), velocity 
u(t, x), gas volume fraction B(t, x) and bubble radius R(t, x) for some time t > 0 and 
x in three-dimensional space RS. The bubble radius field R( t ,x )  is a continuum 
variable and specifies some average bubble radius for bubbles in the neighbourhood 
of a point x. The equations of Van Wijngaarden (1972) are 

pt+V*(pu)  = 0, (1.1) 

p(u,+u.Vu)+Vp = 0, (1 *2) 

P = PA1 -11, (1.3) 

M. = constant, 
1-B 

t Present address: Department of Mathematics, Duke University, Durham, North Carolina, 
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Initial conditions are given, for example, for p ,  u, p, R and R,. The volume fraction 
/3 and the gas pressure p g  are determined by (1.4) and (1.5) once the constants on 
the right are prescribed. The liquid density pc is related to p by an equation of state 
for the liquid, or is simply taken as constant if the compressibility of the liquid is 
negligible. 

We find in $524 that (l . lF(1.6) (in the somewhat simpified form ((5.1)-(5.4) given 
below) can be derived by an adaptation of Foldy’s method (Foldy 1945; Carstensen 
6 Foldy 1947). The essential point in this method is to argue that the pressure and 
velocity fields felt by each bubble are the macroscopic ones; each bubble does not 
feel the local fields of the other bubbles. Obviously this requires small gas-bubble 
volume fraction. Let n be the number of bubbles per unit volume, R, a typical bubble 
radius and h a typical wavelength of a disturbance in the mixture, with h 9 R,. Then 
we will show that (1.1 )-( 1.6) are valid if nh2Ro is of order one. Note that the volume 
fraction $rR,3n = $(R,/A)2 (nA2Ro) is then small. 

It is useful to note why (1.1)-( 1.6) are reasonably good for sound propagation in 
a bubbly liquid (Van Wijngaarden 1972). Equations (1 .1)  and (1.2) are the usual 
conservation laws for mass and momentum of the mixture. Equation (1.3) defines 
the macroscopic density as the liquid density pc times the liquid volume fraction. The 
term pg,!3 could be added to account for the mass density of the gas, but the ratio 
pg/pc is negligibly small for typical values of pg and pc. Equation (1  -4) is a consequence 
of the assumption that the mass of the gas per unit mass of the liquid is the constant 
pg/3/pc( 1 -p) .  This is valid when the gas and the liquid move with the same velocity. 
The isothermal equation of state in the gas (1.5) can be used to eliminate pg in the 
mass ratio, and this gives (1.4). Equation (1.6) is Rayleigh’s equation (Plesset & 
Prosperetti 1977 ; Keller & Miksis 1980 ; Prosperetti 1983) for radial bubble oscillations 
of a single bubble, with p being the pressure far away from the bubble. Note that 
in the macroscopic description the bubble radius is a field variable R(t ,x) ,  but (1.6) 
involves only time derivatives. In  $4 we explain how (1.6) arises from a Foldy 
approximation in the continuum limit. The presence of (1.6) in the system (1.1 )-( 1.6) 
indicates that typical interbubble distances must be large compared with typical 
bubble radii, i.e. small gas-bubble volume fraction. 

The plan of this paper is as follows. In $2 we introduce the microscopic equations 
of motion, including a description of the bubble geometry, and a number of 
assumptions about the physical conditions. The appropriate scaling of the microscopic 
equation is introduced in $3, and under this scaling the non-dimensionalized 
macroscopic equations (4.1)-(4.4) are derived in $4. In dimensional form the 
equations are (5.1)-(5.4). The effective sound speed, the resonant frequency and an 
energy function for (4.1)-(4.4) are derived and analysed in $5. In $6 the addition of 
surface tension, viscosity and heat conduction is outlined. 

2. The microscopic problem 
We consider wave propagation through a liquid with gas bubbles dispersed in it, 

for example water with air bubbles. Let p,  u, p denote the fluid density, velocity and 
pressure. Whenever necessary the subscript G or g will be added to denote the 
property of liquid or gas respectively. 

We make a number of assumptions about the physical characteristics of the fluid 
motion. First, since we are interested in wave propagation rather than in bulk motion, 
we assume that the bubble centres do not move. Secondly, we assume that the bubbles 
are spherical with a uniform internal pressure distribution. The first assumption is 
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consistent with the scaling in $3. The drift velocity of the bubble centre is of the order 
of the velocity far away from the bubble (as in (3.7)) and of higher order than the 
velocity of the bubble surface (as in (3.12)). The pressure will be uniform because the 
inertia of the gas is negligible. The sphericity assumption is self-consistent with the 
approximate solution found in $4, since in that solution the wavelength is much larger 
than the bubble radius and the bubble feels only a uniform pressure fluctuation. The 
sphericity could also be justified on the basis of surface tension. 

However, as a third simplifying assumption we do not explicitly include surface 
tension, viscosity or heat conduction. This assumption is removed in $6. The fourth 
assumption is that the liquid is nearly incompressible with constant density and sound 
speed and that the flow is irrotational. Scaling assumptions will be introduced at the 
end of this section and in $3. 

Suppose there are N bubbles with centres x,, . . ., x N  and radii R,(t), . . . , RN(t)  in the 
region Q. The corresponding equations of motion in the liquid region 

{x:lx-x,l > Rj for all j} 
are 

1 
- (p t+u*Vp)+V.u  = 0, 
Pc C? 

P,(Ut + U * V U )  + vp = 0, (2.2) 

with p, and c, taken to be constant and with V x u = 0. The boundary conditions on 
the bubble surfaces { I x - xj  I = Rj} are continuity of pressure and normal velocity, 
i.e. 

a 
Rj = u.A, 

P = P, (2.4) 

at I x - x, I = Rj for j = 1, . . . , N, in which R is the normal to the bubble surface. The 
equation af state for the gas in the j t h  bubble is 

xy, j = l ,  ..., N ,  
p g  = ($nRJ 

in which MI is the mass of the j t h  bubble (which is constant in time) and the 
parenthetical term in (2.5) is the gas density. Equations (2.1)-(2.5) should be 
complemented by initial conditions for p, u and R,, as well as specification of the 
constantsp,, c,, xj, M,, K ,  y. 

We are interested in the limit of an infinite number of bubbles; so we make one 
further assumption that the bubble configuration tends to a continuum. This is 
formulated as follows. 

For each N let the bubble-centre configuration be {xy, . . . , xz} and define 

@'(A) number of points xy in a set A 
(2.6) -- - 

N N 

Then there is a function O(x), the continuum bubble-centre density, which is positive 
in Q and zero outside, such that as N tends to infinity 

I P 
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for all subsets A in space. Another equivalent but more useful way of stating (2.7) 
is that as N tends to infinity 

for each continuous function 4. 

3. Scaling 
Let A denote the wavelength of a disturbance propagating in the bubbly liquid, 

let V be the volume of the region Q containing the bubbles and let R, be a typical 
bubble radius. The dimensionless inter-bubble-centre distance E ,  dimensionless 
bubble radius S and gas volume fraction b are defined by 

An additional parameter, which enters in $4, is 

The first scaling assumption is that E and S are very small and that x is of order 
one (relative to E and 6). Then (3.4) implies that 

s = 0 ( € 3 )  ; (3.5) 

this in turn implies that the volume fraction t? is very small, i.e. /3 = O(S2). 
The density will be scaled relative to the liquid density pc. The pressure will be 

scaled relative to some reference equilibrium pressure p,, such as the atmospheric 
pressure. The typical bubble mass M,, is related to p, and R, by 

We scale velocities relative to a reference speed E ,  which should be thought of as the 
effective sound speed of the bubbly liquid. Its value will be derived a posteriori 
in $5. Velocities are taken to  be small compared with E ,  so that convective effects are 
of higher order. All this leads to the following scaling in which the dimensionless 
variables are primed : 

p = p o p f ,  I( = E6W = R, fad, 8 = V - W .  J 
Here f is a reference frequency such that Af = E .  The function 8' is the ratio of the 
local number density of bubbles (N6)  to the global number density of bubbles ( N /  V ) ,  
and is one for a uniform mixture. 

The definitions (3.7) implicitly assert a second scaling assumption of this paper: 
the dimensionless variables in (3.7) are assumed to have order-one magnitude in the 
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continuum limit of small 6. However, the scaling is non-uniform, since u’ turns out 
to be of order 8-’ in the neighbourhood of the bubble surfaces (cf. (3.12)). This 
boundary-layer behaviour cannot be anticipated by the general scaling (3.7). 

Next define dimensionless parameters f and C by 

The parameters c and C may be quite large in practice. However, as a further scaling 
assumption we require f and C to be of order one relative to 8. 

Using (3.7) we obtain the following dimensionless form of the microscopic equations 
(2.1)-(2.6). In  the region {x’: Ix’-xiNI > RiN for allj} we have 

~c-yp;.+SaU‘-V‘p‘)+V‘*u‘ = 0, (3.10) 

u;*+~u’*vfu’+g7’p’ = 0. (3.11) 

On the j t h  bubble surface I x’ - xiN I = RiN there are boundary conditions 

(3.12) 
a 

at‘ 1 ’ 
u’-A = 8-1 - R’N 

p’ = FY(RiN), 

and the gas pressure and bubble configuration are described by 

(3.13) 

(3.14) 

(number of xiN in a set A’)+ (3.15) 
v 1  
A3 N 
-- 

These equations are complemented by initial conditions 

p’(0,x’) = @(x’), U ’ ( 0 , X ’ )  = ii(x’), 

RiN(0) = a(x;N), R ; N ( O )  = R , , ( X ; N ) ,  

M ; N  = B ( X j N ) ,  

(3.16) 

(3.17) 

(3.18) 

in which V x ii = 0 and and & are smooth functions defined in Sa. Equation (3.18) 
and V x u’ = 0 hold for all time. The initial data @, G are for the ambient fluid away 
from the bubbles. The actual spatial dependence of the initial data will be assumed 
to be consistent with the expansion described in $4. In particular initially u’ must 
satisfy (3.12) with radial velocity given by (3.17). Following (2.8), (3.15) may be 
written as 

(3.19) 

for any continuous q5. 
Before continuing, we make several remarks about the parameter 6. Using the 

expressions (5.9) and (5.11) for the effective sound speed E and resonant frequency 
wo, which will be derived in $5, we find that 

<=-(A) 4na w a 9 

p =  ( I--- 4n p)-’ = [ 1-2-  (y-l. 3Y w 

3y €3 na3 wa 

(3.20) 

(3.21) 
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Thus 5 is essentially the square of the ratio of the resonant frequency to the reference 
frequency, The relations in (3.21) show that upper limits on 5-l or w / o o  are implicit 
in our scaling assumptions. 

The assumption that 5 be of order one relative to S may be understood in two 
different ways. First it can be thought of as a relation 

Lk = O(S2) 
P d  

(3.22) 

between the geometric parameter S and the physical parameters pg and pd. To derive 
(3.22), note that pg? x R, so that 

Alternatively the order-one size of &' could be a statement about the size of the 
pressure variations in the liquid. If these variations are of size Ap, rather than p,, 
then we should change the pressure scaling in (3.7) t o p  = p,+ Apop'. The dimension- 
less parameter would then be replaced by g= (1/S2)Apo/pdcZ. If pc and E are 
fixed, this is the statement that 

Ap, = O(62). (3.23) 

On the other hand, after taking the limit S + O  with y fixed, as will be done in $4, 
we may consider 6 to be large. The effective equations (4.1)-(4.4) for average 
quantities p ,  ii, R imply that, for 5 large, pg(R)  x p, u is size 5, and j j ,  P obey the 
acoustic equations for the liquid alone. Thus the effective equations are uniformly 
valid in this limit of pure liquid. 

4. Derivation of effective equations 
The main result of this paper is a systematic derivation of effective equations 

((4.1)-(4.7) below) from the scaled equations (3.10)-(3.18), in the limit Sgoing to zero. 
In this section primes are dropped from (3.10)-(3.18). We shall show formally the 
following proposition. 

Suppose that the u, p and RY satisfy (3.10)-(3.18), Let S+O and N-tao,  with x, 
g and C held constant. Then u and p converge to ii and p, and RY converges to the 
continuum radius field R (in the sense that RY-R(xY)+O for allj).  Furthermore, 
the limits ii, p and R satisfy equations 

cC2Pt + V - i i -  ( $ t R ' t l ~ ) ~  = 0,  

i i t + p p  = 0, 

RRtt +:RZ; = C(F(R) -PIl 
with the equation of state 

and initial conditions 
P(0,  x) = W),  
a(o,x) = 17(x), 

R(O,x) = &), Rt(O, x) = &x), 

and with 8 and M = i@ defined by (3.15) and (3.18) (with primes dropped). 
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In  this section the limit will be formally derived by analysing (3.10)-(3.18). 
First we rewrite the equations using the velocity potential $ satisfying 

u = V$.  (4.8) 

cp+$t+p2(V&2 = 0, (4.9) 

Equations (3.10) and (3.11) become 

$tt - c2 A$ + 26' V$*V$t + P(V$  V $ )  : (VV$) = 0 (4.10) 

for I x - xy I > SRy for all j. The boundary conditions are 

a$ 1 a _ -  - - -R? ,  
an S a t  

$8 +P(v$)z = - c q w y )  
on Ix-xyI = SBy(t). The initial conditions are 

$(O,x) = &x), with V$ = G(x), 

(4.11) 

(4.12) 

(4.13) 

$,CO, x )  = -cZw -tS2(v4)z. (4.14) 

Let G(t, x )  be the Green function for the wave operator, i.e. 

Gt,-c2AG = S(t)S(x)  ( t  > 0, X E R ~ ) ,  (4.15) 

G ( t , x )  = 0 ( t  < 0). 

We use S( ) to denote the delta function only in (4.15). Let the j t h  gas bubble be 
denoted by 

H y ( t )  = {x€IW3 such that Ix-xyI < SRy} (4.16) 

and let the liquid region be denoted by 
N 

1-1 

Q N ( t )  = R3 - (J H y  ( t ) .  (4.17) 

Using Green's theorem, we may write (4.10)-(4.14) in integral equation form. For 
t > 0 and x€SZN(t), we have 

N t  
ds [Gt(t - 7 ,  x - Y )  R*V$(T, Y )  

-c2 5 J', d7 J a H h  

+ !AO) 

+ $ , ( ~ , y )  r?.VG(t-T, X - Y ) ]  

dY [G,(t,x-Y)$,(O,Y)+C2VG(t,x-Y).V$(O,y)l. 

(4.18) 

denotes the boundary of H y  on which the boundary conditions (4.1 1)-(4.12) Here 
hold. 

We may write (4.18) as 
N 

9, = N($)+ z F y ( $ ) + w o .  
1-1 

(4.19) 

Here L is the linear operator corresponding to the last term in (4.18). It maps the 
field $ at time t = 0, which is $o, to the one at time t with $ evolving according to 
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the wave equation $,,-C2 A$ = 0 without boundary conditions. N is the nonlinear 
operator corresponding to the first integral on the right of (4.18) and FY is the 
nonlinear operator associated with the sum over j on the right of (4.18). The operators 
FY are nonlinear because the radii RY(t) of the spheres H Y ( t )  depend on the solution 
via (4.11) and (4.12). 

In Foldy’s method, expressed somewhat differently here, (4.19) is solved approx- 
imately as follows. For 6 small and N large with x = NV-’h36 = 0 ( 1 ) ,  we shall show 
that the field 9 will tend to a limit $, the continuum limit. It is then sufficient to 
calculate FY($) for each sphere separately and to evaluate the limit of the sum over 
Nin  (4.19). This is what is meant by saying that each bubble feels only the average 
pressure and velocity fields around it and not the local fields of the other bubbles. 

We proceed to implement this. First i t  is clear that the nonlinear term N(4)  will 
make no contribution in the limit because it is formally of order cY2. Now consider 
a single bubble which may be centred at the origin and let z = x/S, so that the sphere 
has radius R(t) on the z-scale. To leading order in S the potential $ outside the bubble 
satisfies 

A& = 0 ( l z l  > R), (4.20) 

along with the boundary conditions 

(4.21) 

and ~ ( V z $ ) 8 + $ t  = -@‘(R) on IzI  = R. (4.22) 

Far away from the bubble, for ( z I  large, we expect that $ behaves like 3, the 
continuum potentiad field. Clearly the solution is 

(4.23) 

which satisfies (4.20), (4.21) and the large-)z( condition. Condition (4.22) leads to 
Rayleigh’s equation (4.3). 

With the 9 determined locally about a bubble in the above way, we look a t  a 
typical integrand in FY, 

ZY(x,t,7) = dS[G,(t-~,x-y) ~ a J S ( T ’ Y ) + J S r ( ~ , y ) A . V G ( t - 7 , x - ~ ) ~ ,  (4.24) I an 

where the integral is over the surface of the j th  bubble, and x is away from the other 
bubbles. Note that FY = 1: d7. We may replace aJS/an in (4.24) by 6-’ aRY/at in 
view of (4.1 1). We may also evaluate Q at y = xi”, making an error of order 6. Since 
$, by (4.22) is of order one, we see that 

(4.25) 
a 

Z~”’(X, t , 7 )  = 4 7 ~ 4 R j ” ’ ( ~ ) ) ~ G ~ ( t - ~ ,  X - X ~ )  t RY(7) 

plus terms of order S2. 

sense that 
Let R(t,  x) satisfy (4.3). Then R y ( t )  is close to the continuum field R(t, xY) in the 

r N  

(4.26) 
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The precise nature of this convergence will not be checked in detail. Using (4.26) in 
(4.25) allows us to replace Ry(7) by R(7, xy). If we insert this expression for Iy(x ,  t ,  7 )  

in the sum in (4.18) and ignore terms that are of order a2, we obtain 

$,( t ,x)  = -(4nNS)cZ lim d ~ G ~ ( t - ~ , x - x y ) R ~ ( ~ , x y ) R ~ ( ~ , x y )  
N t m  I-1 

(4.27) 

Using (3.4) and (3.19) on the right-hand side of (4.27), we arrive at the following 
integral equation for the continuum field $: 

The integral equation (4.28) is equivalent to 

(4.29) 

(4.30) 

which is equivalent to  (4.1), (4.2), (4.5) and (4.6), with V$ = u and R solving (4.3), 
(4.4) and (4.7). This finishes the demonstration of the main proposition. 

5. Properties of the effective equations 
The system of effective equations (4.1 )-(4.4) has in dimensional variables the form 

2 1 pt + V-u-  (ax 4 R3n), = 0,  
Pc cc 

M Y  
P g = + s )  

1 

Pd 
RRtt+$RZ; = - (p g - P ) .  

(5.3) 

(5.4) 

Here we assume that pc, c,, M, K and n = NO (the number of bubble centres per unit 
volume) are constants. Initial values are given for p ,  u, R and R,. 

In  this section we shall compare (5.1)-(5.4) with Van Wijngaarden’s equations, 
compute the effective sound speed and resonant frequency, and derive an energy 
function for (5.1)-(5.4). The expression for sound speed and resonant frequency are 
well known; the energy function is new. 

Van Wijngaarden’s equations (l . lF(1.6) reduce to (5.1)-(5.4) if (i) the volume 
fraction is assumed to be small, (ii) the velocity fluctuations are assumed to be small 
and (iii) the liquid is assumed to be nearly incompressible, which is the familiar 
approximation used in acoustics. The last condition is implemented by replacing 
dp,/dt by c;~ dpldt and then treating pc and the liquid sound speed c, as constants. 
In addition we replace the isothermal equation of state (1.5) by the more general 
equation (5.3) and identify the volume fraction as B = $nR3n. 
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To obtain the effective sound speed and resonant frequency, we linearize (5.1)-(5.4) 

1 

Pc cc 
to obtain 7 p t + V * u - 4 n R i n R ,  = 0, (5.6) 

Here 

1 
R t t + w t R = - -  

Ro Pr p .  

wo = ($)i (5.9) 

is the natural frequency of radial bubble oscillations. The dispersion relation for 
(5.6)-(5.8) is 

(5.10) 

with Po = ipRtn. In  (5.10) C is the effective phase velocity of infinitesimal 
disturbances. 

I n  our derivation of the effective equations (5.1)-(5.4) there is no condition that 
the disturbance frequency w be less than the resonance frequency wo. However, the 
derivation is valid only if the solution of (5.1)-(5.4) is bounded. Note that if 
dissipative effects were included, as in 56, the solution would be bounded through 
resonance. 

When w is small compared with w,, i.e. the low-frequency case, (5.10) simplifies to 

(5.11) 

which is the well-known formula for the effective sound speed C (Van Wijngaarden 
1972). 

With the values p ,  = los dyn/cm2 (atmospheric pressure), pe = 1 g/cm3 for water, 
R, = lo-' cm and y = 1, the resonant bubble frequency wo = 1.7 x lo4 rad/s 
(2750 Hz). If w is less than lo00 Hz, say, and Po is of order then cc2 is negligible 
(cc = 1400 m/s) in (5.11) and C is about 100 m/s. This is even smaller than the sound 
speed in the gas (cg - 330 m/s). Only for very small bubble volume fraction, say of 
order 0.01 % (Po = or smaller, does E of (5.11) differ from that of the simpler 
formula 

c 3 -  -- YPO (5.12) 
P o  Pc ' 

at low frequencies. 
This striking behaviour of the effective sound speed of the mixture as a function 

of bubble volume fraction has been confirmed experimentally by Silberman (1957), 
and makes bubbly liquids an interesting medium. For example, layers of bubbly 
liquids can be used to reflect or isolate sound fields (Domenico 1982). This behaviour 
is also interesting mathematically, because the bubbly liquid is a two-component 
composite medium with singular behaviour at small volume fraction: a very small 
volume of bubbles changes the effective properties of the mixture drastically. 
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The energy density for the system (5.1)-(5.4) is given by 

1 1  n 
E = +pL~B+-7pB+2xnpd R3R;+-p,($zR8). 

2 PLCC Y-1 
(5.13) 

With this definition, we have the energy-conservation equation 

(5.14) 
a 
at 
- E+V.@U) = 0. 

For suitable conditions at infinity, this equation implies the conservation of energy : 

I E(t, x) dx = 0. 
dt 

(5.15) 

The various terms in the energy density (5.3) have the following physical 
interpretation. The first two terms +pd u2+f(pd cj)- l  p a  are the energy density for a 
linearized, isentropic, compressible flow without bubbles. The last term in (5.13), 
n(y- 1)-'pgtnR3, is the energy of the gas bubbles with equation of state (5.3). This 
is seen by noting that 

d n  d 
dty-1 13 dt p,($R3) = - p  - (n$zR3), -- (5.16) 

which has the form dE = -p ,  d V ,  with V = n3xR3 being the total gas-bubble volume. 
The term n 2xpd R3R; is the number of bubbles per unit volume times the kinetic 

energy in an incompressible flow outside a radially oscillating sphere of radius R(t).  
The flow outside the sphere has the form 

(5.17) 

so the kinetic energy of the fluid induced by the radial oscillations of the bubble is 
r r m  

= 2xpC RSR;. (5.18) 

Equations (5.1)-(5.4) can be put in variational form by introducing the potential 

(5.19) 
1 

PC 

q3 defined by 

u = vq3, 6, = - - p .  

The Lagrangian density is given by 

(5.20) 

It is also interesting to note that (5.1)-(5.4) is a, Hamiltonian system. 
Since the energy E is strictly positive and SEdx is conserved, finite-energy 

solutions of (5.1)-(5.4) are stable. In  the case of plane waves, when all quantities in 
(5.1)-(5.4) depend on one space coordinate z1 and the velocity is u = (ul,O,O), one 
can show much more. If, at t = 0, p ,  u1 and R are smooth (with continuous first 
derivatives) and R is positive for all zl, then there is a smooth bounded solution of 
(5.1)-(5.4) with R > 0 for all t .  This shows that there is no bubble cavitation or 
shock-wave formation. 
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The proof of this result is rather technical, and is given elsewhere (Caflisch 1984). 
It relies on a representation of (5.1)-(5.4) as a nonlinear system in characteristic form. 
If 

f = ( / I ~ C ; ) - ' P + C ; ~ U ~ ,  g = ( P ~ C ~ ) - ' P - C ; ' U ~ ,  D = RRt (5.21) 

then (5.1)-(5.4) become 
a a 

a a 
at ax1 

f+c,K f = n4nRD, 

- g - c l - g  = n4nRD, 

(5.22) 

Besides its usefulness for mathematical analysis, the form (5.22) is particularly 
amenable to numerical solution. 

6. Effects of surface tension, viscosity and heat conduction 
In $5 we neglected these effects in order to focus attention on the basic aspects 

of the continuum limit in the Foldy approximation of $4. The result of $4 can be 
extended easily to handle effects of surface tension, viscosity and heat conduction. 
These extensions are summarized in this section. The effect of radiation damping due 
to the compressibility of the liquid, which is a higher-order dissipative mechanism 
in the present scaling, has not been included. 

The inclusion of surface-tension, viscosity and heat-conduction effects in the Foldy 
approximation of $5 is easy, because the local fields around each bubble do not 
interact directly. Moreover, these effects are most important in a small neighbourhood 
of each bubble only. Therefore including these effects merely changes the Rayleigh- 
Plesset equation (1  -6) or (4.3) in the same way as Plesset & Prosperetti (1977). 

Let d denote the coefficient of surface tension and let W be the dimensionless Weber 
number 

W = - .  Po Ro 
d 

The Weber number W for air bubbles in water a t  atmospheric pressure is of order 
one only for bubbles of micron size and smaller. Let vl denote the kinematic viscosity 
of the liquid, and Re the Reynolds number based on the bubble radius, i.e. 

in which 6% is the reference velocity. 
The inclusion of surface tension and viscosity in the Foldy approximation leads 

again to (4.1)-(4.4) (or (5.1)-(5.4)), but with two additional terms in (4.4), so that 
it becomes 
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In dimensional variables (6.3) is 

Heat-conduction effects can be included by using the results of Miksis & Ting 
(1984). Their results hold when the ratio of thermal-diffusion length to the radius is 
small, i.e. 

Here D, is the reference thermal diffusivity of the gas. The principal effect is confined 
in a thin thermal layer inside the bubble. 

With crT as the small expansion parameter, Miksis & Ting constructed an 
approximate solution and arrived at an integral relationship for the bubble radius 
and the pressure in the gas phase. The equation in dimensionless form is 

where s = 16~~s: [R(t)I4pg(t) dt- and rjg(s) = pg( t ) .  Coupling (6.6) with the Rayleigh- 
Plesset equation (6.3) gives us a closed system that relates R(t) and p,(t) for a single 
bubble in an unbounded liquid region with a far-field pressure p(t) .  

7. Conclusions 
We have derived a system of effective equations for wave propagation in a bubbly 

liquid. If surface tension and dissipative effects are neglected the equations are 
(5.1)-(5.4) (or (4.1)-(4.4) in dimensionless form). They are nearly identical with the 
well-known system (1.1 )-( 1.6), but differ from (1.1 )-( 1.6) by the omission of convective 
terms and terms of size $. These omitted terms are negligible in the regime we have 
considered. 

If surface tension, viscosity and heat conduction are included, the equations are 
(5.1)-(5.3), (6.4) and (6.6). The heat-conduction term in these equations differs from 
that of previous studies (e.g. Prosperetti 1977). It comes from the analysis by Miksis 
& Ting (1984) of heat-conduction effects for the oscillation of a single bubble as 
described in $6. 

Our main contribution in this paper is to derive these equations systematically and 
thereby to find their range of validity. We have found this system to be an accurate 
approximation of the microscopic equations for waves in a bubbly liquid if 8 4 1, 
6 < 1, x = S/e3 = 0(1) and if 5 and C are independent of S and e, in which 
e = A-l(  V / N $  is the scaled interbubble distance, S = R,/A is the scaled bubble 
radius, N is total bubble number in volume 8, and and C are defined by (3.8) and 
(3.9). In addition we have assumed that the fluid velocity is small enough to neglect 
convection. 

In  addition we have derived in $4 a new conserved-energy function and the 
well-known sound speed and resonant frequency for the effective equations. 

Since S/s3 = x = 0(1), the volume fraction B = $ Z ( S / ~ ) ~  is very small. A t  larger 
volume fractions the Foldy method is not applicable since the local pressure fields 
around different bubbles interact directly. In  a subsequent paper (Caflisch et al. 1984) 
we shall present a linear analysis of wave propagation in liquids with finite bubble 
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volume fraction, as well as a theory which is valid uniformly in bubble volume 
fraction. We show that the bubble deformations are predominantly non-spherical and 
calculate the effective sound speed. 

This research is supported by the Office of Naval Research, under Grant 
NOW14-81 -K-0002. 

Appendix. Geometric assumptions and the Foldy approximation 
The analysis of $4 shows how the passage from (3.10)-(3.18) to (4.1)-(4.7) is effected 

via the Foldy approximation. Of course, it  is clear that there are many technical steps 
to be filled out. One point however is essential in the method and must be faced. How 
do we know that in this asymptotic limit (a+-0, e+O, 6 - ss) bubbles do not feel the 
local potential fields of other bubbles? From (4.23) we see that the local field of each 
bubble has the form of a monopole 

The field that thej th  bubble feels due to the local fields of the other bubbles is, to 
principal order, 

where we replace RY(t) by R(t, xy) as in (4.26). We would like to have some control 
on (A 2) uniformly on i = 1,2, . . . , N .  Suppose we assume that 

j=+t 

as N+oo for every function $(y) that is smooth. Note that we have used the scaling 
N6 - 1 and x - 1 here. Note also that (A 3) is not implied by (2.7) or (2.8); it is an 
additional assumption. Now with (A 3) one can show in similar but simpler problems 
(Hrushlov & Marchenko 1974; Papanicolaou & Varadhan 1980) that indeed the Foldy 
approximation is valid. We expect that the same is true for the present problem. 

Condition (A 3) (or the weaker one given by (1.8) in Papanicolaou & Varadhan 1980) 
is needed because, although the bubble centres may tend to a continuum configuration 
with a smooth density, some bubble centres may come too close to each other, and 
this would interfere with the Foldy approximation. With (A 3) we gain some control 
on how close bubbles can come to each other without interfering with the Foldy 
approximation. Of course there are simpler conditions one can impose, such as 

min Ixy -xI  I, > a N 3 ,  (A 4) 
* 5  

for some a > 0 independent of N .  This is valid, for example, in a periodic configuration 
of bubble centres. Configurations of independent identically distributed {xy} cannot 
satisfy (A 4), but they can satisfy (A 3) with probability arbitrarily close to one. 
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