Random Walks with Gaussian Steps

In this lecture we discuss random walks in which the steps are continuous
normal (i.e. Gaussian) random variables, rather than discrete random vari-
ables. While this loses the simplicity of the random walk on a lattice, as
discussed in the previous lecture, it gains in uniformity; the distribution of
values at each time step is always Gaussian. This will be a useful property
in modeling stock prices, which will be the subject of Lecture 5.

Outline of Lecture 4

(4.1) Additive property of Gaussian random variable
(4.2) Random walks with Gaussian increments

(4.3) Comparison of random walks with discrete and with Gaussian steps.

4.1 Additive property of Gaussian Random Variable

The following property of Gaussian random variables makes them easy to
use
Theorem 4.1
If x and y are independent Gaussian random variables with mean m, and

m, and variance o2 and 05, respectively, then z = x + y is also Gaussian
with mean and variance

m, = Mg+ My

03 = ai +0§.

Proof First we derive this from a direct calculation, then we show the reasons
why it is true.
The formulas for m, and o, are easy

m, = FE(z)=E(@+vy)=E()+E(y)=mz+m,y,
o = E

z

= B(((z—ma) + (y —my))*)
E((z —my)* + (z = ma)(y —my) + (y — my)°)
= 0'24—0‘;.



The middle time vanished because of independence, i.e. since x and y are
independent

E((z —mo)(y —my)) = E(z—mg)E(y —my).
=0

The more difficult step is to show the Gaussian distribution for z. For
simplicity set m, = m, = 0 and o, = 0, = 1. Calculate

Pla<z<b) = Pla<z+y<b)

-/ /a<z+y<bpw($)py(y)dxdy

0  rb—zx
= / / (2m) te 2V 2 dady.

Change variable from (z,y) to (z =z +y,w =z —y) ie. z = (z+w)/2, y =
(2 —w)/2. The determinant det(d(z,y)/d(z, zy) = . Fora <z +y < b, we
get a < z < band —oco < w < oo so that

b roo 1

Pla<z<b) = / /_Oopw((z + w)/2)py (2 — w)/2) 5dydz

= /b /oo (27r)*lef(z+"’)2/8e*(szwsdydz

b poo 1 1
= / / (2m)~! exp{—g((z2 + 22w + w?) + (22 — 22w + wz))édydz}
1 b oo 1,2 _ 1,2

= 5(2#)_1/ / e” 1% e 1" dwdz.

1

1
(1m) %
variable with 02 = 2. This gives

Now 25 e~ 1% dy = 1, since the integrand is the density of and normal

L b
Pla<z<b) = (27r)*§/ e 1dz

which shows that z has a Gaussian density with o2 = 2.
Now an intuitive explanation of this calculation. As Gaussians, x and
y can both be written as the limits of sums of IID random variable. For



simplicity, we again set m, = m, =0, o, = 0, = 1. Then

1 N
n=1

N—o0

1 N
— lim {3 b,
Y : { ngl }

N—o0

so that
N

1

N—oo ne1
This shows that z is also a limit of sums of IID variables so that z must be
Gaussian.
Finally note that a sum of any number of Gaussian is again Gaussian.

To see this just add together two at a time, z = (((x1 + z2) + z3) + z4) for
example.

Random walks with Gaussian Steps

Consider the following random walk

x():(]

in which d; are IID Gaussian with mean 0 and variance 1. From the prior
discussion we know each x, is Gaussian with mean 0 and variance o2 = n,
i.e. T, = /nv in which v is N(1,0). As a function of n, the probability
densities broaden as n increases without changing their shape.

Since 0, = \/n is a measure of the deviation of z from its mean 0, then
the size of z, is O(y/n). What’s striking about this is that we’ve added
together n terms d;, each of which is O(1), but the result is not of size O(n)
but rather O(y/n). This is due to cancelations of the d;, since they come

3



with both positive and negative values. This cancelation is at the heart of
the Central Limit Theorem.

4.3. Comparison of a Random Walk with Discrete Steps
to One with Gaussian Steps
Let x, be a random walk with Gaussian step d;; ¥, a random walk with

discrete steps c;. For n large, these are nearly the same. As shown in Lecture
3, the CLT implies that

Yn ~ /NWw as n — 0o

in which w is N(0,1). But also x, = y/nv in which v is N(0,1). Therefore
zn and y, have (almost) the same statistics when n is large.

In the sequel we prefer to use z,, because it is a Gaussian for all n; whereas
Yn only becomes Gaussian as n — oo.



Random Walk Models for Stock Prices
5.1. A Model for Stock Prices

Consider the price S, for a stock at time t,, = ndt. As discussed in Lecture 1,
the times ¢,, could be daily or they could be on some other relevant time scale.
As described before, we expect the value of the stock to grow exponentially,
so that log S, grows linearly in time. That’s not all, however; the evolution
of S,, also has a random component.

The resulting model for the evolution of stock price is

log Spy1 = log Sy + a + Bdp 1

in which o and (8 are constants and d,, is a random variable. As in Lecture
1, we can repeatedly use this equation to obtain

log S, = logSo+na+ﬂZdi

=1

which can be exponentiated to get
n
Sn = Spexp{na+ 3 Z d;}
i=1

= Soexp{yt, + 6 di}

i=1

in which a = vdt.
We consider two main possibilities

(i) d; = £1 with probability (%, %) Then
Sn = S()@fyt"_hgyn
in which y,, is a discrete random walk.

(ii) d; = v; which are IID N(0, 1) variables. Then

S, = Syetnthen (1)



in which z,, is a random walk with Gaussian increments. Now set

po= v+a*/2

B:J\/E

Also, from the previous lecture, we can write the gaussian random walk

Tn = /1wy, (2)

in which w, is N(0,1) so that

Bx, = oVdt-n
= ownVin.

Then
log S, = log So + (1 — 02/2) + /Enton.

and

S, = Soexp (1 — 02/2)t, + ov/twy).

In this formula for S,,, i is the average growth rate in time. In particular

E[Sy] = Soexp ((u— 0°/2)tn) Elexp (0/tnwn)]
= Soexp ((u— 0*/2)tn) exp ((67/2)tn)
= Spexp (uty) (3)

This looks just like the formula for growth of a portfolio due to compound
interest, except that the interest rate r is replaced by the average growth
rate pu.

The constant o, which is called the volatility, measures the amount of
risk in the dynamics of S,. In particular

var(log S,) = E((logS, — E(log S,))?)
= E(O'\/awny)

o*t, B (w?)
= 02tn.

This shows that the variance in log S,, grows linearly in time with coefficient

o



5.2. The Price of Risk

If o = 0, then the asset value grows without any risk. Although that’s not a
good model for a stock, it is correct for a U.S. Treasury bond or an insured
bank deposit. These are risk-free assets, with a risk-free rate of return pu = r.

The price evolution of any other asset can be compared to that of a risk-
free asset. For an asset with volatility o, the difference y—r is called the risk
premium and the ratio (u — r)/o is called the price of risk. It is the extra
average growth rate that is required to get investors to buy the risky asset
with volatility o, per unit of volatility, instead of investing at the risk-free
rate.

With some reflections, you might ask whether the price of risk (u —r)/c
is always positive. The answer is no. Certainly gambling games in casinos
or state lotteries have a negative expected return, i.e. u < 0, and a positive
amount of risk ¢ > 0. So they have a negative price of risk. This means that
a gambler pays for the possibility of winning a lot.

On the other hand, the stock market rewards investors, at least in theory,
so that p > r. This is the difference between gambling and investing.

Deficiencies in the Model

The main deficiencies in this model have to do with large changes in the
value of S,,. This model does not correctly account for crashes or even for
large changes (say of size 5%) in stock prices.



