
Lecture 8

Tightness of the maximum

We now move to the proof of tightness of the maximum of the DGFF stated in
Theorem 7.3. The original proof due to Bramson and Zeitouni was based on a
comparison with the so called modified Branching Random Walk. We substitute
this part by the use of a concentric decomposition of the DGFF. This brings us
much closer to what we have done for the Branching Random Walk in the previous
lecture. Moreover, the concentric decomposition will be indispensable for control
of the local structure of extreme-order local maxima.

8.1. Upper tail of DGFF maximum

Recall the notation mN from (7.8) and emn from (7.22). As is easy to check, for b := 4
and N := 2n we have

p

g log 2 emn = mN + O(1) (8.1)

and so (7.15) gives us EMN  mN + O(1). This does not tells us much by itself
(indeed, the best we can extract from this is that P(MN > 2mN) is at most a half.)
Notwithstanding, with the help of an additional argument we are able to boost this
to the tightness of the upper tail of MN above mN :

Lemma 8.1 [Upper tail tightness] We have

sup
N�1

E
�

(MN � mN)+
�

< •. (8.2)

Proof. We will prove this by a variant of the Dekking-Host argument combined
with the domination of the DGFF by BRW via Sudakov-Fernique. A novel idea
is to use these techniques jointly for the maximum of independent copies of the
DGFF hVN and the BRW fTb . Abbreviate

eMn :=
p

g log 2 max
x2Ln

fTb

x (8.3)

and, considering a copy f̃Tb of fTb , let eM0
n be the corresponding quantity for f̃Tb .

We assume that all three fields are realized as independent on the same probability
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space. Apart from the already proved bound (7.16), we also readily check that

E
�

[hVN
x �p

g log 2 fTb

y ]2
�  c + (g log 2)E

�

[f̃Tb

x � fTb

y ]2
�

(8.4)

holds for all x, y 2 Ln. Following the argument in the proof of Lemma 7.5, we then
get (for k related to c above as there)

E
�

max{MN , eMn}
�  E

�

max{ eMn+k, eM0
n+k}

�

(8.5)

The “Dekking-Host argument” from the proof of Lemma 7.1 then bounds the right-
hand side by E eMn+k+1. For the quantity on the left-hand side we use

(a � b)+ = max{a, b}� b (8.6)

to get
E
�

(MN � eMn)+
�  E eMn+k+1 � E eMn. (8.7)

By Theorem 7.7 the difference on the right-hand side is bounded uniformly in n.
Using Jensen’s inequality to pass expectation over eMn inside the positive-part func-
tion, the claim follows from Theorem 7.7, (8.1) and (a � c)+ � a+ � c+.

Once we know that (MN � mN)+ does not get too large with positive probability,
we can now prove an analogue of Lemma 7.14 for the DGFF as well:

Lemma 8.2 There is ea > 0 such that

sup
N�1

P
�

MN � mN + t
�  e�ãt, t � 0. (8.8)

Proof. Fix any integer K divisible by 3 and consider the DGFF in VKN . By choos-
ing r > 0 sufficiently large, Lemma 8.1 ensures

P
�

MKN  mKN + r
� � 1

2
. (8.9)

Let eK := K/3 and identify eK2 translates of V3N inside VKN such that any pair of
adjacent translates is separated by a line of sites. Denote these translates V(i)

3N ,
with i = 1, . . . , eK2, and abusing our earlier notation slightly, write V�

KN :=
S

eK2

i=1 V(i)
3N .

Moreover, let V(i)
N be a translate of VN centered at the same point as V(i)

3N . Using the
Gibbs-Markov decomposition, we then have

MKN
law� max

i=1,...,K2
max
x2V(i)

N

⇣

hV(i)
3N

x + j
VKN ,V�

KN
x

⌘

(8.10)

Consider the event

AK :=
⇢

#
n

i 2 {1, . . . , eK2} : min
x2V(i)

N

j
VKN ,V�

KN
x � �(log K)3/4

o

� eK2/2
�

. (8.11)
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Since Var(j
VKN ,V�

KN
x )  c log K, a combination of Borell-TIS inequality with Fer-

nique’s majorization shows that

eK := max
i=1,...,K

P
⇣

min
x2V(i)

N

j
VKN ,V�

KN
x � (log K)3/4

⌘

(8.12)

tends rapidly to zero with K ! •, uniformly in N. As P(Ac
K)  2eK, we thus get

P
�

MKN  mKN + r
�  2eK + P

⇣

max
x2V0

N

hV3N
x  mKN + r + (log K)3/4

⌘

eK2/2
, (8.13)

where V 0
N is the translate of VN centered at the same point as V3N . Now pick any

c > 2pg and note that, for K large enough and all N � 3,

mKN + r + (log K)3/4  mN + c log K (8.14)

Invoking also 1 � x  e�x, (8.13) yields

1
2
� 2eK  exp

⇢

�1
2
eK2P

⇣

max
x2V0

N

hV3N
x > mN + c log K

⌘

�

. (8.15)

Using the Gibbs-Markov property, we can replace hV3N by hV0
N at the cost of getting

another half in front of the probability. Hereby we get

P
�

MN > mN + c log K
�  c0K�2. (8.16)

The claim follows by replacing c log K by t. (This covers t . log N; the opposite
case is handled by a union bound.)

8.2. Concentric decomposition

Although the above conclusions seem to be quite sharp, they are not inconsistent
with MN being concentrated at values much smaller than mN . In order to rule this
out, we have to prove that EMN � mN + O(1) as well. In the context of BRW, this
was reduced (among other things) to calculating the asymptotic of the conditional
probability that a given point is a maximum given that the field there is already
large. In the context of the DGFF, this corresponds to

P
�

hDN  mN + t
�

� hDN
0 = mN + t

�

, (8.17)

where we assumed, and we will continue below, that 0 2 DN . For the BRW it was
useful that the conditional can be reduced to (what for the DGFF is) hDN = 0 at the
cost of subtracting a suitable term from all fields. Such a strategy is possible here
as well and yields:

Lemma 8.3 Suppose DN ⇢ Z2 is finite with 0 2 DN. Then for all t 2 R and s � 0,

P
�

hDN  mN + t + s
�

� hDN
0 = mN + t

�

= P
�

hDN  (mN + t)(1 � gDN ) + s
�

� hDN
0 = 0

�

(8.18)

where gDN : Z2 ! [0, 1] is harmonic on DN r {0} with gDN (0) = 1 and gDN = 0 on Dc
N.

In particular, the probability on the left is non-decreasing in both s and t.
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Proof. The Gibbs-Markov decomposition of hDN reads

hDN law
= hDNr{0} + jDN ,DNr{0}. (8.19)

Now jDN ,DNr{0} has the law of the harmonic extension of hDN on {0} to DN r {0}.
This means jDN ,DNr{0} = gDN hDN (0). Using this, the desired probability can be
written as

P
�

hDNr{0}  (mN + t)(1 � gDN ) + s
�

. (8.20)

The claim then follows from the next exercise.

Exercise 8.4 For any finite D ⇢ Z2 with 0 2 D,

(hD | hD
0 = 0) law

= hDr{0}. (8.21)

The conditioning the field to be zero is useful for the following reason:

Exercise 8.5 Prove that
hDNr{0} law�!

N!•
hZ2r{0} (8.22)

in the sense of finite dimensional distributions.

Let us now inspect the event hDN  mN(1 � gDN ) — with t and s dropped for sim-
plicity. The following representation using the Green function GDN will be useful

mN
�

1 � gDN (x)
�

= mN
GDN (0, 0)� GDN (0, x)

GDN (0, 0)
. (8.23)

Now mN = 2pg log N + o(log N) while (for 0 deep inside DN) GDN = g log N +
O(1). With the help of the relation of the Green function to the potential kernel a
and its large-scale asymptotic form we then get

mN
�

1 � gDN (x)
�

=
2pg
a(x) + o(1) = 2

p
g log |x|+ O(1). (8.24)

The restriction in the probability on the right of (8.18) is thus that the field in DN
pinned to zero at zero stays below the logarithmic cone x 7! 2pg log |x| + O(1).
Notice that this is just like the restriction that the BRW on all subtrees along the path
to the maximum stay below a linear curve; see e.g. (7.40).
In order to make the connection to the BRW derivations, we need to extract as much
independence from the DGFF as possible. Obviously, the Gibbs-Markov property
is the right tool to use here. We will work with a decomposition over a sequence of
domains defined, for k � 0, by

Dk :=

(

{x 2 Z2 : |x|• < 2k}, if k < n,
DN , if k = n,

(8.25)

where n is the largest integer such that {x 2 Z2 : |x|•  2n+1} ✓ DN . The Gibbs-
Markov property now gives

hDN = hDn law
= hDn�1

+ hDnrDn�1
+ jDn,Dnr∂Dn�1

(8.26)
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where ∂D is the set of vertices on external boundary of D and D := D [ ∂D. This
relation can now obviously be iterated to yield:

Lemma 8.6 For the setting as above,

hDN law
=

n

Â
k=0

�

jk + h0k
�

(8.27)

where all fields on the right are independent with

jk
law
= jDk ,Dkr∂Dk�1

and h0k
law
= hDkrDk�1 (8.28)

for k = 1, . . . , n and
j0

law
= h{0} and h00 = 0. (8.29)

Proof. Apply induction on (8.26) watching for the provisos for k = 0.

The representation (8.27) is encouraging in that it break hDN into the sum of in-
dependent contributions of which one (the jk’s) are “smooth” while the other
(the h0k’s) is “rough” and large. However, to make the correspondence with the
BRW closer, we need to somehow identify a Gaussian random walk in this expres-
sion. Here we use that, since jk has harmonic sample paths on Dk r ∂Dk�1, its
values are well represented by the value at the origin. This is the content of:

Proposition 8.7 [Concentric decomposition of DGFF] For the setting as above,

hDN law
=

n

Â
k=0

⇣

�

1 + bk
�

jk(0) + ck + h0k
⌘

, (8.30)

where all the fields {ck : k � 0}, {h0k : k � 0} and the random variables {jk(0) : k � 0}
are independent with the law of jk(0) and h0k as in (8.28–8.29) and with

ck(·) law
= jk(·)� E

�

jk(·)
�

� s(jk(0))
�

(8.31)

and bk : Z2 ! R defined by

bk(x) :=
E
�

[jk(x)� jk(0)]jk(0)
�

E
�

jk(0)2
� . (8.32)

Proof. Define ck on the same probability space as jk by the right-hand side of (8.31).
Then ck and jk(0) are uncorrelated and thus independent. Moreover, the fact that
conditional expectation is a projection in L2 ensures that E

�

jk(·)
�

� s(jk(0))
�

is a
linear function of jk(0). The fact that these fields have zero mean then implies

E
�

jk(x)
�

� s(jk(0))
�

= fk(x)jk(0) (8.33)

for some deterministic fk : Z2 ! R. Comparing covariances then yields fk = 1+bk.
Substituting

jk = (1 + bk)jk(0) + ck, (8.34)

which, we note, includes the case k = 0, into (8.27) then gives the claim.

87 (Last update: June 21, 2017)



Figure 8.1: A plot of function bk on a large set Dk+1. The function equals �1
outside Dk and 0 at the origin. It is analytic on Dk r ∂Dk�1.

8.3. Bounding the bits and pieces

An obvious advantage of (8.30) is that it gives us a representation of DGFF as the
sum of independent objects. However, in order to make use of that, we need esti-
mates on the sizes of these objects as well. These will depend on the underlying
set DN but only via the smallest k1 2 N such that

DN ✓ {x 2 Z2 : |x|•  2n+1+k1} (8.35)

with n as above. We thus assume this k1 to be fixed; all estimates are then uniform
in domains satisfying (8.35). We begin with jk(0)’s:

Lemma 8.8 For each e > 0 there is k0 � 0 such that

max
k=k0,...,n�1

�

�

�

Var
�

jk(0)
�� g log 2

�

�

�

< e (8.36)

The variance of jn(0) is bounded only in terms of k1 above.

Proof (sketch). For k < n, jk(0) admits a scaling limit to the continuum binding
field FB2,B2r∂B1(0), where Br := [�r, r]2. An explicit calculation with the covari-
ances CD, eD shows Var(FB2,B2r∂B1(0)) = g log 2.

Lemma 8.9 The function bk is bounded uniformly in k. It is harmonic on Dk r ∂Dk�1

with bk(0) = 0 and bk(·) = �1 on (Dk)c. There is c > 0 such that for all k � 0,

�

�bk(x)
�

�  c
dist(x, ∂Dk)

dist(0, ∂Dk)
, x 2 Dk�2. (8.37)

Proof (sketch). The harmonicity of bk follows from harmonicity of jk. The overall
boundedness is checked by representing bk using covariances of jk. The bound
(8.37) then follows from uniform Lipschitz continuity of the (discrete) Poisson ker-
nels on square domains. (The bound is not claimed for k = n.) See Fig. 8.1.
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Figure 8.2: A plot of a sample of ck for k := 7.

Lemma 8.10 For k = 0, . . . , n and ` = 0, . . . , k � 2,

E
✓

max
x2D`

�

�c`(x)
�

�

◆

 c2`�k (8.38)

and
P
✓

�

�

�

max
x2D`

c`(x)� E max
x2D`

c`(x)
�

�

�

> l

◆

 e�c4k�`l2
. (8.39)

Proof (idea). These are consequences of Fernique majorization and Borell-TIS in-
equality and Lipschitz property of the covariances of jk (which inherit to ck).

The case when ` = k has intentionally been left out of the previous lemma be-
cause the function ck ceases to be regular near ∂Dk�1; see Fig. 8.2. Here we will
combine ck with h0k (and ck�1 to get:

Lemma 8.11 [Consequence of upper-tail estimate of MN] There is a > 0 such that
each k = 1, . . . , n and each t � 0,

P
⇣

max
x2DkrDk

⇥

ck�1(x) + ck(x) + h0k(x)
⇤ � m2k + t

⌘

 e�at. (8.40)

Proof. Recalling how the concentric decomposition was derived,

jk�1 + jk + h0k
law
= hDkrDk�1 on Dk r Dk�1 (8.41)

Lemma 8.2 along with the Gibbs-Markov property show this field has exponential
upper tail above m2k . But this field differs from the one in the statement by the
term (1 + bk)jk(0) + (1 + bk�1)jk�1(0) which has even a Gaussian tail. The claim
follows by a simple estimate of these contributions.
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Remark 8.12 Once we prove tightness of the maximum of the DGFF, we will in
fact be able to put absolute values around the field in square brackets in (8.40).
However, at this point we are able to claim only a bound on the upper tail thereof.

The fact that hDn
(0) = Ân

k=0 jk(0) now gives us a representation of the value at the
prospective maximum by a Gaussian random walk. The k-th step of this walk is

Sk :=
k�1

Ầ
=0

j`(0). (8.42)

Then
hDn

(0) = 0 , Sn+1 = 0. (8.43)

This drives the following interesting exercise:

Exercise 8.13 The DGFF on Z2 r {0} can be represented as the a.s.-convergent sum

hZ2r{0} law
=

•

Â
k=0

⇣

bk(x)jk(0) + ck + h0k
⌘

, (8.44)

where the objects on the right are independent and with laws as above. See Exercise 8.5.

We note in passing that the above random walk can be thought of as somehow
corresponding to circle averages of the CGFF; see Exercise 1.29. The best connection
that we can see is that the random walk will indeed pretty much determine the
behavior of the DGFF at a point where the field is large.

8.4. Random walk representation

We will now move to the discussion towards the proof of the lower bound on EMN .
A key technical step in this will be the proof of:

Proposition 8.14 For all e 2 (0, 1) there is c = c(e) > 0 such that for all N > 2 and
all sets DN ⇢ Z2 satisfying

[�eN, eN]2 \ Z2 ✓ DN ✓ [�e�1N, e�1N]2 \ Z2 (8.45)

we have
P
�

hDN  mN
�

� hDN
0 = mN

� � c
log N

. (8.46)

In order to prove this, we will need to control the growth of the various terms on
the right-hand side of (8.27). We will use this using a control variable K that we
define next:

Definition 8.15 [Control variable] For k, ` integers denote

Qk(`) :=
⇥

log(k _ (` ^ (n � `)))]2. (8.47)

Then define K be the smallest positive integer k such that for all ` = 0, . . . , n
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(1) |j`(0)|  Qk(`)

(2) for all r = 1, . . . , `� 2,

max
x2Dr

�

�c`(x)
�

�  2(r�`)/2Qk(`) (8.48)

(3)
max

x2D`rD`�1

⇥

c`(x) + c`�1(x) + h0`(x)
⇤  m2` + Qk(`) (8.49)

We call K the control variable.

Based on the above lemmas, we readily check that, for some c > 0,

P(K = k)  e�c(log k)2
, k � 1, (8.50)

which indicates that the control that the control variable provides will be good.
Unfortunately, we will need to control the growth of the relevant variables on the
background of events whose probability will decay to zero as n ! •. The key step
is to link the event in Proposition 8.14 to the behavior of the above random walk.
This is the content of:

Lemma 8.16 [Reduction to random walk event] Assume hDN is realized as the sum
on the right of (8.30). There is a numerical constant C > 0 such that uniformly in the
above setting, the following holds for each k = 0, . . . , n:

{hDN
0 = 0} \ �

hDN  mN(1 � gDN ) on Dk r Dk�1 

◆ {Sn+1 = 0} \ �

Sk � C[1 + QK(k)]
 

. (8.51)

Proof. Fix k as above and let x 2 Dk r Dk�1. In light of (8.43), on {hDN
0 = 0} we can

drop the “1” on the right-hand side of (8.30) without changing the result. Noting
that b`(x) = �1 for ` < k, on this event we then get

hDN (x)� m2k = �Sk +
n

Ầ
=k

b`(x)j`(0)

+
n

Â
`=k+1

c`(x) +
⇥

ck�1(x) + ck(x) + h0k(x)� m2k
⇤

. (8.52)

The bounds in the definition of the control variable permit us to bound all terms
but �Sk by CQK(k) from above, for C > 0 a constant independent of k and x.
Adjusting ĉ if necessary, a careful use of the representation (8.23) shows

mN
�

1 � gDN (x)
� � m2k � C. (8.53)

Hence

mN(1 � gDN )� hDN (x) � m2k � hDN (x)� C � Sk � C[1 + QK(k)]. (8.54)
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This now readily yields the claim.

Moving over to the probability in the statement of Proposition 8.14, we first write

P
�

hDN  mN
�

� hDN
0 = mN

�

= P
�

hDNr{0}  mN(1 � gDN )
�

(8.55)

Next we observe:

Exercise 8.17 Prove that, for any finite V ⇢ Z2, the DGFF on V is positively associated
in the sense of FKG. Explicitly, show that any two increasing integrable functions of hV are
positively correlated.

We are now ready to give:

Proof of Proposition 8.14. We now fix k 2 {1, . . . , n} and note that the relevant
probability (recast for the DGFF in DN r {0} and adjusted via Lemma 8.3) can
be bounded via

P
�

hDNr{0}  mN(1 � gDN )
� � P(A1

n,k)P(A2
n,k)P(A3

n,k) (8.56)

where
A1

n,k :=
�

hDNr{0}  mN(1 � gDN ) on Dk 

A2
n,k :=

�

hDNr{0}  mN(1 � gDN ) on Dn�k r Dk 

A3
n,k :=

�

hDNr{0}  mN(1 � gDN ) on Dn r Dn�k 
(8.57)

We now observe that, for any k fixed, we have

inf
n�1

P(A1
n,k) > 0 (8.58)

due to the fact that hDNr{0} tends in law to hZ2r{0} (see Exercise 8.5) while the
bound on its values tends to 2pga, see (8.24). Noting similarly that

mN(1 � gDN ) � mN � c on Dn r Dn�k (8.59)

with c depending only on k,

P(A3
n,k) � P

�

MN  mN � c
�

(8.60)

which is uniformly positive in N � 1 by a simple rewrite of the proof of Lemma 8.2.
(The value of mN there could be changed by a constant without changing the ar-
gument.) Hence, it suffices to bound P(A2

n,k). Using Lemma 8.16 and the fact
that k 7! Qk(`) is non-decreasing, we bound this as

P(A2
n,k) � P

✓

{K  k} \
n�k�1
\

`=k+1

�

S` � C[1 + Qk(`)]
 

�

�

�

�

Sn+1 = 0
◆

� P
✓ n�k�1

\

`=k+1
{S` � C[1 + Qk(`)]

 \
n
\

`=0
{S` � �1}

�

�

�

�

Sn+1 = 0
◆

� P
✓

{K > k} \
n
\

`=0
{S` � �1}

�

�

�

�

Sn+1 = 0
◆

(8.61)

Next we note:
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Lemma 8.18 [Entropic repulsion] There is a constant c > 0 such that for all n � 1
and all k = 1, . . . , bn/2c

P
✓ n�k�1

\

`=k+1
{S` � C[1 + Qk(`)]

 

�

�

�

�

n
\

`=0
{S` � �1} \ {Sn+1 = 0}

◆

� c (8.62)

Lemma 8.19 There is a constant c0 > 0 such that for all n � 1 and all k = 1, . . . , bn/2c,

P
✓

{K > k} \
n
\

`=0
{S` � �1}

�

�

�

�

Sn+1 = 0
◆

 1
n

e�c0(log k)2
(8.63)

We will not prove these lemmas here as that would take us on a detour to the
area of “random walks above polylogarithmic curves” or “Inhomogenous Ballot
Theorem” that we have no time for. Bramson’s seminal work (Commun. Pure
Appl. Math. 31 (1978), no. 5, 531–581) addresses these and so does the joint paper
of the lecturer with O. Louidor (arXiv:1606.00510).
Denoting by {Bt : t � 0} the standard Brownian motion and letting s2

n := Var(Sn+1),
we can embed the random walk into Brownian motion to get

P
✓ n

\

`=0
{S` � �1}

�

�

�

�

Sn+1 = 0
◆

� P0
⇣

B � �1 on [0, s2
n ]
�

�

�

Bs2
n
= 0

⌘

. (8.64)

As s2
n is proportional to n, the Reflection Principle bounds the last probability

by c00/n for some c00 > 0. Putting these together and choosing k sufficiently large,
we thus get P(An,k) � c/n. Since n ⇡ log2 N, this yields (8.46) via (8.56).

8.5. Tightness of DGFF maximum: lower bound

We will now harvest the fruit of our hard labor in the previous sections and prove
tightness of the maximum of DGFF. First we claim:

Lemma 8.20 For the DGFF in VN, we have

inf
N�1

P
�

MN � mN) > 0. (8.65)

Proof. Let V 0
N/2 be the square of side N/2 centered at the same point as VN . For

each x 2 V 0
N/2 and denoting DN := �x + VN , we have

P
�

hVN
x � mN , hVN  hVN

x
�

= P
�

hDN
0 � mN , hDN  hDN

0
�

=
Z •

0
P
�

hDN
0 � mN 2 ds

�

P
�

hDN  mN + s
�

� hDN
0 = mN + s

�

(8.66)

Rewriting the conditional probability using the DGFF on DN r{0}, Proposition 8.14
yields for any s � 0 that

P
�

hDN  mN + s
�

� hDN
0 = mN + s

�

� P
�

hDN  mN
�

� hDN
0 = mN

� � c
log N

. (8.67)
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Hence we get

P
�

hVN
x � mN , hVN  hVN

x
� � c

log N
P
�

hVN
x � mN

�

. (8.68)

A calculation now shows P
�

hVN
x � mN

� � c0(log N)N�2. The constants c and c0
work uniformly for all x 2 V 0

N/2. Invoking

P(MN � mN) � Â
x2V0

N/2

P
�

hVN
x � mN , hVN  hVN

x
�

(8.69)

the claim thus follows the fact that |V 0
N/2| has order N2 vertices.

Now we claim:

Lemma 8.21 [Tightness of lower tail] There is a > 0 and t0 > 0 such that

sup
N�1

P
�

MN < mN � t
�  e�at2

, t > t0. (8.70)

We remark that this bound is not sharp even as far its structure is concerned. In-
deed, the lower tails of MN are known to have a doubly exponential tail. However,
the proof of the above is easier and suffices for our needs.

Proof. Consider the box V3N and let V 0
N be the translate of VN centered at the same

point as V3N . Define
eMN := max

x2V0
N

hV3N
x . (8.71)

Now consider the box V18N and let V 0
6N be the translate of V6N centered at the same

point as V18N . Removing the “axes of symmetry” from V 0
6N , we get four translates

V(1)
3N , . . . , V(4)

3N of V3N . Letting

V�
18N := V18N r

4
[

i=1
∂V(i)

3N (8.72)

the Gibbs-Markov property then permits us to realize hV18N as hV�
18N + jV18N ,V�

18N .
Let bM(i)

N , for i = 1, . . . , 4, be the maximum of hV�
18N in the translate of VN centered

at the same point as V(i)
3N . Let bji denote the minimum of jV18N ,V�

18N on the same
translate. For any l 2 R, we then have

�

bM18N  l
 ✓

4
\

i=1

�

bM(i)
N + bji  l

 

. (8.73)

A combined use of Fernique majorization and Borell-TIS inequality imply that
each ĵi, and thus also their minimum, has a Gaussian tail. Using this above, from
the fact that the bM(i)

N ’s are independent and equidistributed we get

P
�

bM18N  l
�  e�cr2

+ P
�

bMN  l + r
�4 (8.74)
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as soon as, say, r � 1.
Suppose we know that, for some t0 > 0 and a > 0,

P
�

bMN  mN � t
�  e�at2

, t > t0. (8.75)

Then (8.74) along with the fact that m18N  mN + g log(18) yields

P
�

bM18N  m18N � t
�  e�cr2

+ P
�

bMN  m18N � t + r
�4

 e�cr2
+ e�4a[t�r�g log(18)]2

(8.76)

Setting r := t/3 (which requires t � 3) and assuming that also t > 6g log(18) then
bounds the right hand side by e�ct2/9 + e2at2 . This is less than e�at2 provided we
choose a so small that c/9 > 2a and t0 such that eat0 � 2. Since the bound (8.75)
obviously holds for N := 18 and a small enough, we get it for any power of 18.
To get the desired claim from (8.75), we first note that MN � bMN and then observe
that N 7! MN is stochastically increasing (and so proving the claim along powers
of 18 is sufficient).

From here we now get:

Proof of Theorem 7.3. Thanks to Lemmas 8.2 and 8.21, we have EMN = mN + O(1).
Lemma 7.1 then ensures that {MN � mN : N � 1} is tight.
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