Lecture 7

Connection to Branching Random Walk

The aim of this lecture is to prepare the grounds for the proof of tightness of the
maximum of the DGFF. We will begin with a recount of the so called Dekking-Host
argument which yields, rather seamlessly, tightness along certain subsequences.
Going beyond this will require development of a connection to Branching Random
Walk and proving sharp concentration for the maximum thereof. We then show
how this can be used to curb the upper tail of the maximum of the DGFFE. The
lower tail will be dealt with in the next lecture.

7.1. Dekking-Host argument for DGFF

Understanding the law of the maximum of the DGFF has been one of the holy
grails of this whole subject area. We have already shown that the maximum My of
the DGFF in box of side N,

My := maxh/V, (7.1)

xeVn

grows as My ~ 2,/glog N in probability, with the same growth rate for EMy. The
natural questions then are:

(1) what is the precise growth rate of EMy; i.e., the lower order corrections?

(2) what is the size of the fluctuations, i.e., the growth rate of My — EMn?

As observed by Bolthausen, Deuschel and Zeitouni in 2011, an argument that goes
back to a paper by Dekking and Host from 1991 shows that for the DGFF that these
seemingly unrelated questions are tied together. This is quite apparent from:

Lemma 7.1 [Dekking-Host argument] For My as above and any N > 2,

E|My — EMy| < 2(EMay — EMy). (7.2)

Proof. We will use an idea underlying the solution to the second part of Exercise 3.4.
Consider the box Vsy and note that it embeds four translates V., ..., Vf\}‘) of Vy
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Figure 7.1: The partition of box V,n (both kinds of bullets) into four translates
of Vy for N := 8 and two line of sites (empty bullets) in the middle. The set Vyy
is the collection of all full bullets.

such that any pair of these translates is separated by a line of sites in-between;
see Fig. 7.1. Denoting the union of the four transates by V;;, the Gibbs-Markov
property tells us that the field

hYN = BV 4 @V VaN, with BV L @V Yan, (7.3)

has the law of DGFF in V,y. Writing Mpy for the maximum of the field on the left,
letting X denote the (a.s.-unique) vertex where h"2v achieves its maximum and
abbreviating

M) = max iy, i=1,...,4, (7.4)
erIS;)
it follows that ‘ -
EM,y = E( max, MY+ NN (7.5)
i=1,...,

But ¢"2v"av is independent of hVan and so of X as well. Hence, E(;);ZN’V;N = 0.
Moreover, {MX}: i =1,...,4} depend on independent DGFFs and are thus inde-
pendent as well. Bounding the maximum of four terms by that of just the first two,
we get

My ' My, My L My = EM,y > Emax{My, My} (7.6)
Now use that 2max{a, b} = a+ b+ |a — b to conclude
E‘MN - M&’ = 2E max{MN, Mg\[} - E(MN + Mé\[) < 2EMpny —2EMy.  (7.7)

The claim follows by using Jensen’s inequality to pass expectation over M}, inside
the absolute value. O

From the growth rate of EMy we then readily conclude:
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Corollary 7.2 [Tightness along subsequences] There is a deterministic sequence
{Ny: k > 1} of integers with Ny — oo such that { My, — EMy, : k > 1} is tight.

Proof. Denote a,, := EMp». The bound (7.2) shows that {a, } is non-decreasing. The
fact that EMy < clog N (proved earlier by elementary first-moment calculations)
reads as a, < ¢'n for ¢’ := clog?2. The increments of an increasing sequence with
at most linear growth cannot diverge to infinity, so there must be an increasing
sequence {n;: k > 1} such that a, 1 — a, < 2¢’. Setting Ny := 2", this implies
E|My, — EMy,| < 2¢/, which by Markov's inequality gives the stated tightness. [

Unfortunately, compactness along (existential) subsequences is the best one can
infer from the leading order asymptotic of EMy. If we want to get any better along
the same line of reasoning, we need to control the asymptotic of EMy up to terms
of order unity. This was achieved in:

Theorem 7.3 [Bramson and Zeitouni, 2012] Denote
3
my = 2,/¢ log N — 1\/§ loglog N . (7.8)
Then
sup ]EMN — mN‘ < oo, (7.9)
N>1

As a consequence, { My — my: N > 1} is tight.

The rest of this lecture will be spent on proving this theorem using, however, a
somewhat different (and in the eyes of the lecturer, easier) approach than the one
used by Bramson and Zeitouni.

7.2. Upper bound by Branching Random Walk

The Gibbs-Markov decomposition used in the proof of Lemma 7.1 can further be
iterated as follows: Consider a box Vy of side N = 2" for some n € IN. The
square Vy then contains four translates of V-1 separated by a “cross” of sites in-
between. Each of these squares then contain four translates of V,.-2, etc. Letting,
inductively, Vi’ denote the union of the resulting 4’ translates of V. contained in
the squares constituting Vi see Fig. 7.2, with VI(\(IJ) := Vj, we can then write

O
(2) (0) 1,(1) (1) 1,(2)
lgv I’ZVN + (PVN A% + (PVN VN
(7.10)

0 1 n—1 n
e VD L

(n) V(”*l) V(”) V(”*l) . . . .
where V' = @ and so ¢"N 'N = h'N . Asseen in Fig. 7.2, the latter field is
just a collection of independent Gaussians, one for each element of V,; .
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Figure 7.2: The sets Vy,, Vlg) and Vﬁ) corresponding to the hierarchical repre-
sentation of the DGFF on Vi with N := 16. The empty bullets mark the sets of
vertices that are being removed to define Vl(\}). Boundary vertices (where the fields
(1) ()
are set to zero by default) are not depicted otherwise. The binding field ¢"~ "N is
independent on each of the four squares constituting V', but is neither constant

nor independent on the squares constituting VZ(\?).

All fields on the right-hand side of (7.10) are independent. Moreover, gpvli;),v}j“) is
actually a concatenation of independent (and identically distributed) fields, one for
each of 4' copies of V,.: constituting V(. The point is that the values of g'N "N
are not constant on the copies of V,.-i-1 constituting VI(\}“). It it were constant and
independent as stated, we would get a representation of the DGFF by means of a

Branching Random Walk which we will introduce next.

For an integer b > 2, consider a b-ary tree T® which is a connected graph without
cycles where each vertex except one denoted by & has exactly b + 1 neighbors. The
distinguished vertex & is called the root; we require that the degree of the root is b.
We will write L, for the vertices at distance n from the root — these are the leaves
at depth n.

Every vertex x € L, can be identified with the sequence (x1,...,x,) € {1,...,b}"
where x; can be thought of as an instruction which “turn” to take at the i-th step
on the (unique) path from the root to x. Note that the specific case of b = 4 can
be identified with a binary decomposition of Z? as follows: Write x € Z? with
non-negative coordinates in vector notation as

x = (ZmZi,Z&i2i), (7.11)
>0  i>0
where 0;,0; € {0,1} for all i > 0. Setting
Xi = 20341+ Op—iy1 +1 (7.12)

we can then identify V,» with a (proper) subset of L,.
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Figure 7.3: An schematic picture of how the values of BRW on T* are naturally
interpreted as a field on Z2. There is a close link to the Gibbs-Markov decomposi-
tion of the DGFF from (7.10).

Definition 7.4 [Branching random walk] Given integersb > 2, n > 1 and a random
variable Z, let {Zy: x € T} be i.id. copies of Z indexed by the vertices of T". The
Branching Random Walk (BRW) on T? of depth n with step distribution Z is then

the family of random variables {@T" : x € Ly} where for x = (x1,...,%,) € L, we set

b [oe]
v =) Ly (7.13)

.....

with the k = 0 term associated with the root value Z 4.

The specific case of interest for us is the Gaussian Branching Random Walk where we
take Z normal. The value of the BRW at a given point x € L, is then very much
like (7.10) — the sum of the independent Gaussians along the unique path from the
root to x. As already noted, the correspondence is not perfect (also because L, has
more active vertices than V,:). However, we can still use it fruitfully to get:

Lemma 7.5 [Upper bound of DGFF by BRW] Consider a BRW ™" on a 4-ary tree T
with step distribution N'(0,1) and identify Vy for N := 2" with a subset of L,, as above.
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There is ¢ > 0 such that for each n > 1 and each x,y € Ly,

E([Y =) < e+ (glog2) E([¢1' — 9y 1) (7.14)
In particular, there is k € IN such that for eachn > 1 (and N := 2"),
W) < Tk
E(?;%hx ) < +/glog?2 E<xrenL€i)+(k¢x ) (7.15)

Proof. Since V +— E([hy — hy']*) is non-decreasing, the representation of the Green
function from Lemma 1.19 along with the asymptotic for the potential kernel from
Lemma 1.21 shows that, for some constant ¢ > 0 and all x,y € Vy,

E([hy¥ — hyN]?) < &+ 2glog |x —yl. (7.16)

Denoting by d,(x,y) the ultrametric distance between for x,y € Ly, i.e., the distance
on T? from x to the nearest common ancestor with y, we have

E([G”f - <PyT4]2) = 2d,(x,y). (7.17)
We now pose:
Exercise 7.6 There is &' € (0,00) such that for each n > 1 and each x,y € Ly,
|x —y| < & 2w (7.18)

Combining this with (7.16-7.17), we then get (7.14).

To get (7.15), let k € IN be so large that ¢ in (7.14) obeys ¢ < kglog2. Now, for
eachx = (x1,...,x4) € L, let0(x) := (x1,...,%4,1,...,1) € L. Then (7.14) can,
with the help of (7.17), be recast as

E([WY = mP) < (31082) E( (@30 — #8iy)°),  xy € Ln (7.19)

The Sudakov-Fernique inequality then gives

W) < T
E(gg/ﬁhx ) < 4/glog?2 E(%aLf%(x))' (7.20)
The claim now follows by extending the maximum to all vertices in L, . O

7.3. Maximum of Gaussian Branching Random Walk

In order to use Lemma 7.5 to bound the expected maximum of the DGFF, we need
to control the maximum of the BRW. This is a classical subject with strong connec-
tions to large deviation theory. (Indeed, as there are b" branches of the tree the
maximum will be carried by unusual events whose probability decays exponen-
tially with n.) For Gaussian BRW, we can instead rely on explicit calculations and
so the asymptotic is completely explicit as well:
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Theorem 7.7 [Maximum of Gaussian BRW] For b > 2, let {(,bfb: x € x € Tt} be
the Branching Random Walk on b-ary tree with step distribution N'(0,1). Then

E(max@{b) = /2logh n — Z;i()gblogn +0(1), (7.21)

x€Ly
where O(1) is a quantity that remains bounded as n — oo.

Denote

1y, ::\/ZIOgbn—zjlogblogn (7.22)

The proof starts by showing that the expected maximum is > 1, + O(1). This is
achieved via a second moment estimate of the kind we saw in our discussion of the
intermediate level set of the DGFF. However, as we are dealing with the absolute
maximum, a truncation is necessary. Thus, for x = (x1,...,xn) € Ly, let

Ga(x) = kq{ﬁ;,_ka) > - fr iy — (kA (11— k)™ = 1} (7.23)

be the “good” event enforcing linear growth of the values of the BRW on the unique
path from the root to x. Now define

[p:={x€Ly: (sz > 1y, Gp(x) occurs } (7.24)

as the analogue of the truncated level set from our discussion of intermediate levels
of the DGFF. We now claim:

Lemma 7.8 For the setting as above,

inf E[T] >0 (7.25)
n>
while
sup E(|Tx|?) < oo. (7.26)
n>1

We will only prove the first part as it quite instructive while leaving the second part
as a technical exercise:

Proof of (7.25). Fix x € L, and, fork = 0,...,n, abbreviate Zy := Z,, .. Also
denote 0, (k) := (kA (n —k))3/* + 1. Then

P(qb,fb > 1y, Gn(x) occurs)

n—1
_ ko
k=0

Conditioning i.i.d. Gaussians on their total sum can be reduced to shifting these
Gaussians by the arithmetic mean of their values. Denoting

pn(ds) :=P(Zo+ -+ Z, —my € ds) (7.28)
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this allows us to express the desired probability as

n—1

/Oooun(ds)P< ﬂ{Zo+---+Zk > —nils—en(k)} ‘ZO+---+ZH :0) (7.29)
k=0

Realizing Z; as the increment of the standard Brownian motion on [k, k 4 1) and re-
calling that the Brownian Bridge from |0, r] is the standard Brownian motion condi-
tioned to vanish at time r, the giant probability on the right is bounded from below
by the probability that the standard Brownian bridge on [0, n 4 1] stays above —1
for all times in [0, n + 1]. Here we observe:

Exercise 7.9 Let {B;: t > 0} be the standard Brownian motion started from 0. Prove
that foralla > O and all v > 0,

P°(B; > —a|B, =0) =1 —exp{—2a*r'}. (7.30)

Hence, the giant probability in (7.29) is at least a constant times 1/7. A calculation
shows that, for some constant ¢ > 0,

1 ([0,00)) > —— e 20T = O logmpny (7.31)

c
Vn
thanks to our choice of m,. The linear term in n cancels the 1/n arising from the

Brownian-bridge estimate and so we conclude that the desired probability is at
least a constant times b~". Summing over all x € L,, we get (7.25). O

Exercise 7.10 Prove (7.26). (Note: It is here that we need the term (k A (n —k))3/* in
the definition of G,. Any power larger than 1/2 will do.)

As a consequence we get:

Corollary 7.11 Using the notation m, as above,

inf P(max ol > ﬁzn) > 0. (7.32)

n>1 x€L,

Proof. The probability is bounded below by P(|I',| > 0) which is bounded from
below by the ratio of the first moment squared and the second moment; see (2.13).
By (7.25-7.26), the said ratio is bounded away from zero uniformly in n > 1. O

Next we boost this lower bound to an exponential tail estimate. (Note that we could
have perhaps done this already at the level of the above moment calculation but
only at the cost of making that calculation yet more complicated.) Our method of
proof will be restricted to b > 2 and so this is what we will assume in the statement:

Lemma 7.12 For each integer b > 2 there is a = a(b) > 0 such that

sup P(maxcpgb < My — t) <e ™ t>0. (7.33)

7121 xGLn

In particular, “>" holds in (7.21).
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Proof. The proof will be based on a percolation argument. Recall that the threshold
for site percolation on T? is p.(b) = 1/b. Thus, for b > 2 there is € > 0 such that
the set {x € Tb: 7, > €} contains an infinite connected component C; we take the
one which is closest to the origin.

Exercise 7.13 Show that there are > 1 and ¢ > 0 such that forall r > 1,

P(an > 7 [CAL,| < 0") <e (7.34)
We will now show that this implies:

P(H{x e Ly: ¢I" >0} < 65) <e™*, k>1, (7.35)

for some ¢ > 0. First, a crude first moment estimate shows

P(miLn(pzb < —2y/logbr) <cb™’ (7.36)
XELy

Taking r := én, on the event when the above minimum is at least —2/log br and
that C N L, # @, we then have

¢ > —2\/loghén+e(n—én), x€CNLy. (7.37)

This is positive as soon as €(1 — ) > 2,/logb 4. Hence (7.35) follows via (7.34).

Moving to the proof of (7.33), let k € IN be largest such that m,, — t < m1,,_. Denote
A = {x € Ly: cpzb > 0}. On the event in (7.33), the maximum of the BRW of
depth n — k started at any vertex in Ay must be less than 1, _;. Conditional on Ay,
this has probability (1 — c)l4|, where ¢ is the infimum in (7.32). On the event that
|Ax| > 0%, this decays double exponentially with k. So the probability in (7.33) is
dominated by that in (7.35). The claim follows by noting that t ~ 2/logb k. O

We are now ready to address the upper bound as well:

Lemma 7.14 Thereis i = d(b) > 0 such that

sup P<max4)§b < myu+ t) <e ™ t>0. (7.38)

n>1 x€Ly

Proof. Fix x € L, and again write Z; := Z . Each vertex (x1,...,x¢) hasb — 1

xl,...,xk) -
“children” y1,...,y,_1 besides the one on the path from the root to x. Letting Mg)
denote the maximum of the BRW of depth ¢ rooted at y; and writing

M;:= max M), (7.39)

the desired probability can be cast as

0 n—1 N
/ yn(dS)P< ﬂ{Zo+"'+Zk+Mn_k§n~1n+S} Zo+ -+ 2, :ﬁn+s>
t k=0

(7.40)
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Figure 7.4: The picture demonstrating the geometric setup for the representation
in (7.40). The bullets mark the vertices on the path from the root (top vertex) to x
(vertex on the left). The union of the relevant subtrees of these vertices are marked
by shaded triangles. The maximum of the field in the subtrees of /-th vertex on
the path is the quantity in (7.39).

where i, is as in (7.28) and where Z,, ..., Z, Z\711, .. .,Z\//\In are independent with
their respective distributions. Shifting the normals by arithmetic mean of their
sum, the giant probability equals

n—1

. n—k,

P(ﬂ{zo+.--+zk+Mnkgw(mn+s)}‘zo+--.+zn:0> (7.41)
k=0

The quantity on the right-hand side of the inequality in this probability is at most
fity_x + 0, (k), where 8, (k) := (k A (n — k))3/4. Introducing

®n = k:g?%;)ffl [T}N’ln,k — Mnfk — 9,1 (k)] + (74:2)
the probability in (7.41) is then bounded by
n—1
P< ﬂ{Zo+---+Zk < ®n+29n(k)+s} ‘ZO+"‘+Zn =0> (7.43)

k=0
Here we again note:

Exercise 7.15 [Inhomogenous ballot problem] Let Sy := Zo+ - + Z; be the
Gaussian random walk. Prove that that there is ¢ € (0,00) such that for any a > 1
andanyn > 1,
n—1 az
P(koo{skgﬁzen(k)} ‘sn:o> <c. (7.44)
(This is quite hard. Check the Appendix of arXiv:1606.00510 for ideas and references.)
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This bounds the probability in (7.43) by a constant times n~'E([®, + s]?). The sec-
ond moment of ©, is bounded uniformly in n > 1 via Lemma 7.12. The probability
is (for s > 1) thus at most a constant times s2/#n. Since

pn([s,s+1]) <ce nb™" (7.45)

uniformly in 7, the claim follows. O

This now quickly concludes:

Proof of Theorem 7.7. Combining Lemmas 7.12-7.14, the maximum has exponential
tails away from 1, uniformly in n > 1. This yields the claim. O
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