
Lecture 5

Gaussian comparison inequalities

In our discussion of the DGFF and intermediate level sets thereof, we have so
far managed to avoid technical facts on Gaussian processes. However, our later
derivations will require these facts and so let us address these now. In this lecture
we will focus on Gaussian comparison inequalities, starting with Kahane’s inequal-
ity and its corollaries called the Slepian Lemma and Sudakov-Fernique inequality.
We also show an application of Kahane’s inequality to uniqueness of the Gaussian
Multiplicative Chaos.

5.1. Kahane’s inequality

In his development of the theory of Gaussian multiplicative chaos, Kahane made
convenient use of inequalities that, generally, give comparison estimates of expec-
tation of functions (usually convex in appropriate sense) of Gaussian random vari-
ables for two Gaussian vectors whose covariances can be compared pair by pair.
One version of this inequality is as follows:

Proposition 5.1 [Kahane’s Inequality] Let X, Y be centered Gaussian vectors on Rn

and f 2 C2(Rn) a function whose second derivatives have subgaussian growth. Assume

8i, j = 1, . . . , n :

8

>

>

>

<

>

>

>

:

E(YiYj) > E(XiXj) ) ∂ f
∂xixj

(x) � 0, x 2 Rn

E(YiYj) < E(XiXj) ) ∂ f
∂xixj

(x)  0, x 2 Rn
(5.1)

Then
E f (Y) � E f (X). (5.2)

A (multivariate) Gaussian vector X is said to be centered if it has vanishing ex-
pectation. A function f : Rn ! R has subgaussian growth if for each e > 0 there
is C(e) such that | f (x)|  C(e)e�e|x|2 holds for all x 2 Rn. Note also for pairs i, j
such that E(YiYj) = E(XiXj) the sign of ∂ f

∂xixj
is not constrained above. For the proof
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we will need the following standard fact:

Lemma 5.2 [Gaussian integration by parts] Let X be a centered Gaussian vector
on Rn and f 2 C1(Rn) with r f having subgaussian growth. Then for any i = 1, . . . , n

E
�

Xi f (X)
�

=
n

Â
j=1

Cov(Xi, Xj)E
⇣ ∂ f

∂xj
(X)

⌘

. (5.3)

Exercise 5.3 Prove the above lemma. Hint: The proof is elementary for X one-dimensional.
The n-dimensional case can be reduced to this by writing Xj = (Cij/Cii)Xi + Zj where
Cjk = Cov(XjXk) and where Z = (Z1, . . . , Zn) is independent of Xi on RHS.

Gaussian integration by parts is the basis of:

Exercise 5.4 [Wick pairing formula] Let (X1, . . . , X2n) be centered multivariate Gaus-
sian (with some variables possibly repeating). Show that

E(X1 . . . X2n) = Â
p : pairing

n

’
i=1

Cov
�

Xp1(i)Xp2(i)
�

(5.4)

where p being a pairing means that p is a partition of the form

{1, . . . , 2n} =
n
[

i=1

�

p1(i), p2(i)
 

(5.5)

labeled so that p1(i) < p2(i) for each i = 1, . . . , n and p1(1) < p1(2) · · · < p1(n).
(Note that p1(1) is always 1.)

The pairing formula plays an important role in computations involving Gaussian
fields; in fact, it is the basis of perturbation calculations of functionals of Gaussian
processes and organization of terms into Feynman diagrams.

Proof of Proposition 5.1. Suppose that X and Y are realized on the same probability
space such that X ?? Y. Define

Zt :=
p

1 � t2 X + tY, t 2 [0, 1]. (5.6)

Then Z0 = X and Z1 = Y and so

E f (Y)� E f (X) =
Z 1

0
dt

d
dt

E f (Zt) (5.7)

Using elementary calculus along with the above lemma,

d
dt

E f (Zt) =
n

Â
i=1

E
✓

⇣ �tp
1 � t2

Xi + Yi

⌘ ∂ f
∂xi

(Zt)

◆

= t
n

Â
i,j=1

E
✓

�

E(YiYj)� E(XiXj)
� ∂2 f

∂xi∂xj
(Zt)

◆ (5.8)

Based on our assumption, the expression in the expectation is non-negative for
every realization of Zt. Using this in (5.7) yields the claim.
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5.2. Kahane’s theory of Gaussian Multiplicative Chaos

We will find this inequality useful later but Kahane’s specific interest in Gaussian
Multiplicative Chaos actually required a version that is not directly obtained from
the above. Let us recall the setting more closely.
Let D ⇢ Rd be a bounded open set and let n be a finite Borel measure on D. Assume
that C : D ⇥ D ! R [ {•} is a symmetric, positive definite kernel in L2(n); i.e.,

Z

D⇥D
C(x, y) f (y) f (x)n(dx) � 0 (5.9)

holds for every bounded measurable f : D ! R. If C is finite everywhere, then
one can define a Gaussian process j = N (0, C). Our interest is however in the
situation when C is allowed to diverge on the diagonal {(x, x) : x 2 D} ⇢ D ⇥ D
which means that the Gaussian process exists only in a generalized sense — e.g.,
as a random distribution on a suitable space of test functions.
We will not try to specify the conditions on C that would make this fully meaning-
ful; instead, we will just assume that C can be written as

C(x, y) =
•

Â
k=1

Ck(x, y), x, y 2 D, (5.10)

where Ck is a finite covariance kernel for each k and the sum converges pointwise
everywhere (including, possibly, to infinity when x = y). We then consider Gaus-
sian processes

jk = N (0, Ck) with {jk : k � 1} independent . (5.11)

Letting

Fn(x) :=
n

Â
k=1

jk(x) (5.12)

we define
µn(dx) := eFn(x)� 1

2 Var[Fn(x)]n(dx). (5.13)

Lemma 2.16 (or rather its proof) gives the existence of a random Borel measure µ•
such that for each A ⇢ D Borel,

µn(A) �!
n!•

µ•(A) a.s. (5.14)

As the covariances Cov(Fn(x), Fn(y)) converge to C(x, y), we take µ• as our in-
terpretation of the measure

“ eF•(x)� 1
2 Var[F•(x)]n(dx) ” (5.15)

for F• being the centered generalized Gaussian field with covariance C. A key
problem that Kahane faced was the issue of dependence of the limit measure on
the above construction, and the uniqueness of the law of µ• in general. This is, at
least partially, resolved in:
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Theorem 5.5 [Kahane’s Uniqueness Theorem] For D ⇢ Rd bounded and open,
suppose there are covariance kernels Ck, eCk : D ⇥ D ! R such that

(1) both Ck and eCk is continuous and non-negative everywhere on D ⇥ D,

(2) for each x, y 2 D,
•

Â
k=1

Ck(x, y) =
•

Â
k=1

eCk(x, y) (5.16)

with, possibly, both these sums simultaneously infinite, and

(3) jk = N (0, Ck) and ejk = N (0, eCk) have continuous paths a.s. for each k � 1.

Define, via (5.12–5.14), measures µ• and eµ• associated with these fields. Then

µ•(dx) law
= eµ•(dx). (5.17)

In order to prove this we will need the following version of Proposition 5.1:

Proposition 5.6 [Kahane’s convexity inequality] Let D ⇢ Rn be bounded, open
and let n be a finite Borel measure on D. Let C, eC : D ⇥ D ! R be covariances such
that j = N (0, C) and ej = N (0, eC) have continuous paths a.s. If

eC(x, y) � C(x, y), x, y 2 D, (5.18)

then for each convex F : [0, •) ! R with at most polynomial growth at infinity,

E F
⇣

Z

D
eej(x)� 1

2 Var[ej(x)]n(dx)
⌘

� E F
⇣

Z

D
ej(x)� 1

2 Var[j(x)]n(dx)
⌘

(5.19)

Proof. By approximation we may assume that F 2 C2(R) (still convex). By the
assumption of the continuity of the fields, it suffices to prove this for n being a
weighted sum of a finite number of Dirac masses, n = Ân

i=1 pidxi where pi > 0.
(The general case then follows by the weak limit of such measures to n.)
Assume that the fields j and ej are realized on the same probability space so that
j ?? ej. As before, set

jt(x) :=
p

1 � t2 j(x) + tej(x). (5.20)

Since j0(x) = j(x) and j1(x) = ej(x), it suffices to show

d
dt

E F
⇣ n

Â
i=1

piejt(xi)� 1
2 Var[jt(xi)]

⌘

� 0 . (5.21)

For this we abbreviate Wt(x) := ejt(x)� 1
2 Var[jt(x)] and use elementary calculus to get

E F
⇣ n

Â
i=1

piW(xi)
⌘

=
n

Â
i=1

piE
✓

h

� tp
1 � t2

j(xi) + ej(xi)

+ tVar
�

j(xi)
�� tVar

�

ej(xi)
�

i

W(xi)F0(· · · )
◆

(5.22)
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Next we integrate by parts the terms involving j(xi), which results in the j(xj)-
derivative of W(xi) or F(· · · ). A similar process is applied to the term ej(xi). A
key point is that the contribution stemming from differentiation of W(xi) exactly
cancels that coming from the variances. Hence we get

E F
⇣ n

Â
i=1

piW(xi)
⌘

=
n

Â
i,j=1

pi pj
⇥

eC(xi, xj)� C(xi, xj)
⇤

E
⇣

W(xi)W(xj)F00(· · · )
⌘

. (5.23)

As F00 � 0, W(x) � 0 and pi, pj � 0, the assumption in (5.18) indeed implies (5.21).
The claim follows by integration with respect to t.

This permits us to give:

Proof of Theorem 5.5. It suffices to show that

Z

f (x)µ•(dx) law
=

Z

f (x)eµ•(dx) (5.24)

for any continuous f : D ! [0, •) with compact A := supp( f ). Let {Ck : k � 1}
and { eCk : k � 1} be the covariances in the statement. We claim that, for each e > 0
and each n 2 N, there is m 2 N such that

m

Â
k=1

C(x, y) < e +
n

Â
k=1

eC(x, y), x, y 2 A. (5.25)

Indeed, letting Fm be the set of pairs (x, y) 2 A ⇥ A where this inequality fails,
the continuity of the covariances implies that Fm is closed (and thus compact) and
decreasing with m. Moreover, (5.16) implies

T

m�1 Fm = ∆. By Heine-Borel, we
must have Fm = ∆ for m large enough thus giving us (5.25).
Interpreting the e term on the right-hand side of (5.25) as the variance of the ran-
dom variable Ze = N (0, e) that is independent of ej, Proposition 5.6 with the
choice F(x) := e�lx for some l � 0 gives us

E
�

e�l eZe�e/2 R f deµm
� � E

�

e�l
R

f dµn
�

. (5.26)

Invoking the limit (5.14) and taking e # 0 afterwards yields

E
�

e�l
R

f deµ•
� � E

�

e�l
R

f dµ•
�

. (5.27)

By symmetry of the argument, equality holds here and since this is true for ev-
ery l � 0, we get (5.24) as desired.

We remark that (as noted above) uniqueness of the GMC measure is now proved
in a completely general setting in the recent work by Shamov.
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5.3. Comparisons for the maximum

Our next task is to use Kahane’s inequality from Theorem 5.1 to provide compar-
isons between the maxima of two Gaussian vectors with point-wise ordered co-
variances. We begin with a corollary to Theorem 5.1:

Corollary 5.7 Suppose that X and Y are centered Gaussians on Rn such that

E(X2
i ) = E(Y2

i ), i = 1, . . . , n (5.28)

and
E(XiXj)  E(YiYj), i, j = 1, . . . , n. (5.29)

Then for any t1, . . . , tn 2 R,

P
�

Xi  ti : i = 1, . . . , n
�  P

�

Yi  ti : i = 1, . . . , n
�

. (5.30)

Proof. Consider any collection g1, . . . , gn : R ! R of non-negative bounded func-
tions that are smooth and non-increasing. Define

f (x1, . . . , xn) :=
n

’
i=1

gi(xi). (5.31)

Then ∂2 f
∂xi∂xj

� 0 for each i 6= j. Hence, by Theorem 5.1, conditions (5.28–5.29) imply
E f (Y) � E f (X). From here the claim follows by letting gi decrease to 1(�•,ti ].

From here we now immediately get:

Corollary 5.8 [Slepian’s lemma] Suppose X and Y are centered Gaussians on Rn with

E(X2
i ) = E(Y2

i ), i = 1, . . . , n (5.32)

and
E
�

(Xi � Xj)
2�  E

�

(Yi � Yj)
2�, i, j = 1, . . . , n. (5.33)

Then for each t 2 R,

P
⇣

max
i=1,...,n

Xi > t
⌘

 P
⇣

max
i=1,...,n

Yi > t
⌘

. (5.34)

Proof. Set t1 = · · · = tn := t in the previous corollary.

Slepian’s lemma has a nice verbal formulation using the following concept: Given
a Gaussian process {Xt : t 2 T} on a set T, then

rX(t, s) :=
q

E
�

(Xt � Xs)2
�

(5.35)

defines a pseudometric on T. Disregarding the prefix “pseudo”, we will call this the
canonical, or intrinsic, metric associated with Gaussian processes. Slepian’s lemma
can then be verbalized as follows: For two process with the same variances, the one with
larger intrinsic distances has stochastically larger maximum.
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Exercise 5.9 Verify that rX is indeed a pseudo-metric on T.

The requirement of equal variances is actually often quite inconvenient as that re-
quires adding suitable independent random variables to one, or both, Gaussians.
It turns out, this inconvenience is removed when we restrict attention to the com-
parison of expected maxima:

Proposition 5.10 [Sudakov-Fernique inequality] Suppose X and Y are centered
Gaussians in Rn such that

E
�

(Xi � Xj)
2�  E

�

(Yi � Yj)
2�, i, j = 1, . . . , n. (5.36)

Then
E
�

max
i=1,...,n

Xi
�  E

�

max
i=1,...,n

Yi
�

(5.37)

Before we start the proof, notice a simple consequence of this inequality:

Exercise 5.11 Show that, for any centered Gaussians X1, . . . , Xn,

E
�

max
i=1,...,n

Xi
� � 0. (5.38)

Prove that equality occurs if and only if Xi = X1 for all i = 1, . . . , n a.s.

Proof of Proposition 5.10. Consider the function

fb(x1, . . . , xn) :=
1
b

log
⇣ n

Â
i=1

ebxi
⌘

. (5.39)

For readers familiar with statistical mechanics, this quantity is a free energy of
sorts. Hölder’s inequality implies that x 7! fb(x) is convex (and smooth). In addi-
tion, we also get

lim
b!•

fb(x) = max
i=1,...,n

xi. (5.40)

Using dominated convergence, it therefore suffices to show that

E fb(X)  E fb(Y), b 2 (0, •). (5.41)

The proof of this inequality will be based on a re-run of the proof of Kahane’s in-
equality. Assuming again X ?? Y and letting Zt :=

p
1 � t2 X + tY, differentiation

yields
d
dt

E fb(Zt) = t
n

Â
i,j=1

E
⇣

⇥

E(YiYj)� E(XiXj)
⇤ ∂2 fb

∂xi∂xj
(Zt)

⌘

. (5.42)

Now
∂ fb

∂xi
=

ebxi

Ân
j=1 ebxj

=: pi(x) (5.43)

where we note that pi � 0 with Ân
i=1 pi(x) = 1. For the second derivatives we get

∂2 fb

∂xi∂xj
= b

⇥

pi(x)dij � pi(x)pj(x)
⇤

. (5.44)
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Plugging this on the right of (5.42) (and omitting the arguments of the second
derivative as well as the pi’s) we then observe

n

Â
i,j=1

⇥

E(YiYj)� E(XiXj)
⇤ ∂2 fb

∂xi∂xj

= b
n

Â
i,j=1

⇥

E(YiYj)� E(XiXj)
⇤⇥

pidij � pi pj
⇤

= b
n

Â
i,j=1

⇥

E(Y2
i ) + E(X2

i )
⇤

pi pj + b
n

Â
i,j=1

⇥

E(YiYj)� E(XiXj)
⇤

pi pj

=
1
2

b
n

Â
i,j=1

h

E
�

(Yi � Yj)
2�� E

�

(Xi � Xj)
2�
i

pi pj,

(5.45)

where we used that {pi : i = 1, . . . , n} are probabilities in the second line and then
symmetrized the first sum under the exchange of i for j to wrap the contributions
into the form on the third line. Invoking (5.36), this is non-negative (pointwise) and
so we get (5.41) by integration. The claim follows.

The Sudakov-Fernique inequality can be verbalized as follows: For two Gaussian
processes, the one with larger intrinsic distances has larger expected maximum.
Here is another, quite simple, inequality of this kind:

Exercise 5.12 Suppose that X, resp., Y are centered Gaussian vectors on Rn with covari-
ances C, resp., eC. Show that if eC � C is positive semi-definite, then (5.37) holds.
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