
Lecture 4

Intermediate level sets: nailing the limit

The content of this lecture is to finish the proof of Theorem 2.7 as well as of the
results that follow thereafter. This amounts to proving a number of properties of
the ZD

l -measures from Proposition 3.11 that will ultimately characterize these mea-
sures uniquely. This will imply the conformal invariance as well as characterization
of ZD

l as a Liouville Quantum Gravity. Finally, we will also comment on necessary
changes to the argument in the case when truncations are required for the second-
moment calculations to work.

4.1. Gibbs-Markov property in scaling limit

We have shown so far that every subsequential limit of the measures {hD
N : N � 1}

takes the form ZD
l (dx) ⌦ e�alhdh for some random Borel measure ZD

l on D. Our
aim is now to prove a number of properties that the ZD

l -measures satisfy the most
important of which is the behavior under restriction to subdomain. This will be
a direct consequence of the Gibbs-Markov decomposition of the DGFF. However,
as the ZD

l -measure appears only in the scaling limit, we have to first describe the
scaling-limit of the Gibbs-Markov decomposition itself.
The key point we wish to make is that, although the DGFF has no pointwise scaling
limit, the binding field does. This is facilitated (and basically implied) by the fact
that the binding field has harmonic sample paths. It is no surprise that so will the
limit binding field as well. To define the relevant objects, let eD, D 2 D be two
domains satisfying eD ✓ D. For each x, y 2 eD, set

CD, eD(x, y) := g
Z

∂D
PD(x, dz) log |y � z|� g

Z

∂ eD
P eD(x, dz) log |y � z| (4.1)

Given any admissible approximating sequences {DN : N � 1} and { eDN : N � 1}
of domains D and eD, respectively, of which we also assume that eDN ✓ DN for
each N � 1, we now observe:
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Figure 4.1: A sample of jD, eD
N where D := (�1, 1)2 and eD obtained from D by

removing points on the coordinate axes.

Lemma 4.1 [Convergence of covariances] Locally uniformly in x, y 2 eD,

GDN
�bxNc, byNc�� G eDN

�bxNc, byNc� �!
N!•

CD, eD(x, y). (4.2)

We leave it to the reader to solve:

Exercise 4.2 Prove Lemma 4.1 while noting that this includes uniform convergence on
the diagonal x = y. Hint: Use the representation in Lemma 1.19.

From here we get:

Lemma 4.3 For any D and eD as above, x, y 7! CD, eD(x, y) is a positive, positive semi-
definite kernel on eD ⇥ eD. In particular, there is a Gaussian process x 7! FD, eD(x) on eD
with zero mean and covariance

Cov
�

FD, eD(x), FD, eD(y)
�

= CD, eD(x, y), x, y 2 eD. (4.3)

Proof. Let U ⇢ V be non-empty and finite. The Gibbs-Markov decomposition
implies

Cov(jV,U
x , jV,U

y ) = GV(x, y)� GU(x, y). (4.4)

Hence, x, y 7! GV(x, y) � GU(x, y) is positive semi-definite on U ⇥ U. In light
of (4.2), this extends to CD, eD on eD⇥ eD by a limiting argument. Standard arguments
then imply existence of the Gaussian process FD, eD.

We will at times call the process FD, eD the continuum binding field. To justify this
name, let us abbreviate jDN , eDN

x as jD, eD
N (x) and observe:
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Lemma 4.4 [Coupling of binding fields] The sample paths of FD, eD are a.s. continu-
ous on eD. Moreover, for each d > 0 and each N � 1 there is a coupling of jD, eD

N and FD, eD

such that

sup
x2 eD

dist(x,∂ eD)>d

�

�FD, eD(x)� jD, eD
N (x/N)

�

� �!
N!•

0, in probability. (4.5)

Proof modulo regularity of the fields. The convergence of covariances from Lemma 4.1
implies jD, eD

N (x/N) ! FD, eD(x) in law for each x 2 eD, so the point is to extend this
to the convergence of these fields as functions. Fix d > 0 and denote

eDd :=
�

x 2 C : dist(x, ∂ eD) > d
 

. (4.6)

Fix r > 0 small and let x1, . . . , xk be an r-net in eDd. As convergence of the covari-
ances implies convergence in law, and convergence in law on Rn can be realized
as convergence in probability, for each N � 1 there is a coupling of jD, eD

N and FD, eD

such that
P
⇣

max
i=1,...,k

�

�FD, eD(bNxic)� jD, eD
N (xi)

�

� > e
⌘

�!
N!•

0. (4.7)

The claim will then follow if we can show that

lim
r#0

lim sup
N!•

P
✓

sup
x,y2 eDd

|x�y|<r

�

�FD, eD(x)� FD, eD(y)
�

� > e

◆

= 0 (4.8)

and similarly for FD, eD(·) replaced by jD, eD
N (bN·c). This, along with continuity

of FD, eD, will follow from the regularity estimates on Gaussian processes to be
proved in forthcoming lectures.

For future reference, we suggest that the reader solve:

Exercise 4.5 Prove (by comparing covariances) that FD, eD is the projection of the CGFF
on D onto the subspace of functions in H1

0(D) that are harmonic on eD.

We will also need to note that the binding field has a nesting property:

Exercise 4.6 [Nesting property] Show that if U ⇢ V ⇢ W, then

jW,U law
= jW,V + jV,U with jW,V ?? jV,U . (4.9)

Similarly, if D00 ⇢ D0 ⇢ D are admissible with Leb(D r D00) = 0, then

FD,D00
= FD,D0

+ FD0,D00
with FD,D0 ?? FD0,D00

. (4.10)

The binding fields behave nicely under conformal maps of the underlying do-
mains. Indeed, we have:
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Exercise 4.7 Show that under a conformal map f : D ! f (D), we have

C f (D), f ( eD)� f (x), f (y)
�

= CD, eD(x, y), x, y 2 eD, (4.11)

for any eD ⇢ D. Prove that this implies

F f (D), f ( eD) � f law
= FD, eD. (4.12)

4.2. Properties of ZD
l -measures

We are now ready to move to the discussion of the properties of (the laws of)
the ZD

l -measures. These will often relate the measures in two distinct domains
which requires that the subsequential limit be taken for both of these domains at
the same time. Applying Cantor’s diagonal argument, we can in fact use the same
subsequence of any countable collection D0 ⇢ D of admissible domains and assume
that a subsequential limit hD, and thus also the measure ZD

l , has been extracted for
each D 2 D0. All of our subsequent statements will now be restricted to the do-
mains in D0. We will later assume that D0 contains all finite unions of dyadic open
and/or half-open squares.
Some of the properties of the measures {ZD

l : D 2 D0} are quite elementary conse-
quences of the above derivations and so we relegate them to:

Exercise 4.8 [Easy properties] Prove that:

(1) for each D 2 D0, the measure ZD
l is supported on D; i.e., ZD

l (∂D) = 0 a.s.,

(2) if A ⇢ D 2 D0 is measurable with Leb(A) = 0, then ZD
l (A) = 0 a.s.,

(3) if D, eD 2 D0 obey D \ eD = ∆, then

ZD[ eD
l (dx) law

= ZD
l (dx) + Z eD

l (dx), (4.13)

with the measures ZD
l and Z eD

l on the right regarded as independent, and

(4) the law of ZD
l is translation invariant; i.e.,

Za+D
l (a + dx) law

= ZD
l (dx) (4.14)

for each a 2 C such that D, a + D 2 D0.

As already mentioned, a key point for us is to prove the behavior under restriction
to a subdomain. We formulate this as follows:

Proposition 4.9 [Gibbs-Markov for ZD
l -measures] For any D, eD 2 D0 satisfying

eD ✓ D and Leb(D r eD) = 0,

ZD
l (dx) law

= ealFD, eD(x) Z eD
l (dx), (4.15)

where FD, eD ?? Z eD
l with the law as above.
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Note that, by Exercise 4.8(2), both sides of the expression assign zero mass to Dr eD
a.s. It therefore does not matter that FD, eD is not really defined there.

Proof. Suppose D, eD 2 D0 obey eD ✓ D and Leb(D r eD) = 0. The Gibbs-Markov
decomposition of the DGFF yields

hDN law
= h eDN + jD, eD

N . (4.16)

Hence, if f : D ⇥ R ! R is continuous with compact support in eD ⇥ R, then

hhD
N , f i law

= hh eD
N , fji (4.17)

where
fj(x, h) := f

�

x, h + jD, eD
N (bxNc)� (4.18)

with jD, eD
N independent of h eD

N on the right-hand side of (4.17). Invoking the cou-
pling of jD, eD

N to FD, eD from Lemma 4.4, along with continuity and restriction on the
support of f , we thus have

hh eD
N , fji = hh eD

N , fFi+ o(1) (4.19)

where o(1) ! 0 in probability (as N ! •) and where

fF(x, h) := f
�

x, h + FD, eD(x)
�

(4.20)

with FD, eD independent of h eD
N on the right-hand side of (4.19). Lemma 4.4 ensures

that x 7! FD, eD(x) is continuous on eD a.s. and so for any simultaneous subsequen-
tial limits hD of {hD

N : N � 1} and h eD of {h eD
N : N � 1} we thus obtain

hhD, f i law
= hh eD, fFi , (4.21)

where FD, eD (implicitly contained in fF) is independent of h eD on the right-hand
side. But the representation from Proposition 3.11 now permits us to write

Z

D⇥R
ZD

l (dx) e�alhdh f (x, h) = hhD, f i
law
= hh eD, fFi
=

Z

D⇥R
Z eD

l (dx)e�alhdh f
�

x, h + FD, eD(x)
�

=
Z

D⇥R
Z eD

l (dx)e�alhdh ealFD, eD(x) f (x, h).

(4.22)

As this holds for any continuous f : D ⇥ R ! R with support in eD, the desired
claim follows.
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4.3. Representation via Gaussian multiplicative chaos

We will now show that the above properties determine the laws of {ZD
l : D 2 D0}

uniquely. To this end we restrict our attention to dyadic open squares, i.e., those of
the form

2�nz + (0, 2�n)2 for z 2 Z2 and n � 0. (4.23)

For a fixed m 2 Z, set S := (0, 2�m)2 and let {Sn,i : i = 1, . . . , 4n} be an enumeration
of the dyadic squares of side 2�(n�m) that have a non-empty intersection with S.
(See Fig. 3.1 for an illustration of this setting.) Recall that we assumed that D0
contains all these squares which makes the ZD

l -measure defined on all of them.
The Gibbs-Markov decomposition then gives

ZS
l(dx) law

=
4n

Â
i=1

ealFS,S̃n
ZSn,i

l (dx), (4.24)

where we abbreviated

S̃n :=
4n
[

i=1
Sn,i (4.25)

and where the measures {ZSn,i
l : i = 1, . . . , 4n} and the field FS,S̃n on the right-hand

side are regarded as independent. The problem with expression (4.24) is that it
gives the Zl-measure in one set in terms of Zl-measures in other sets. (In the
language of the field, the Zl measure is a fixed point of a certain smoothing transfor-
mation.) To amend this, we formally replace the ZSn,i

l -measures by their expectation
and define a new measure

YS
n (dx) := ĉ

4n

Â
i=1

1Sn,i(x) ealFS,S̃n
yS̃n

l (x)(x)dx. (4.26)

where ĉ is as in (3.58). This is connected to the expectation applied on (4.24) be-
cause, in light of the fact that

yS̃n

l (x) = y
Sn,i
l (x) for x 2 Sn,i (4.27)

we have
Yn(A) = E

⇥

ZS
l(A)

�

� s(FS,S̃n
)
⇤

(4.28)

for any Borel A ⇢ C. The next point to observe is that these measures can be
interpreted in terms of Gaussian multiplicative chaos which, in particular, implies
existence of their n ! • limit:

Lemma 4.10 There is a random Borel measure Y• such that for each measurable A ⇢ C,

YS
n (A)

law�!
n!•

YS
•(A). (4.29)
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Proof. Denoting S0 := S, the nesting property of the binding field allows us to
represent all fields {FS,S̃n : n � 1} on the same probability space via

FS,S̃n
:=

n�1

Â
k=0

FSk ,Sk+1
(4.30)

where the fields {FSk ,Sk+1 : k � 0} are independent with the appropriate laws. In
this representation, the measures Yn are defined all on the same probability space
and so we can actually prove the stated convergence in almost-sure sense. Since
(2.50) and (4.1) imply

eD ✓ D ) y
eD
l (x) = yD

l (x)e
1
2 a2l2Var[FD, eD(x)], x 2 eD, (4.31)

we can now rewrite (4.26) as

YS
n (dx) := ĉ yS

l(x)
4n

Â
i=1

1Sn,i(x) ealFS,S̃n� 1
2 a2l2Var[FD, eD(x)] dx (4.32)

This casts YS
n in the form we encountered when defining the Gaussian Multiplica-

tive Chaos. Adapting the proof of Lemma 2.16, for any Borel A ⇢ C we get

YS
n (A) �!

n!•
YS

•(A), a.s. (4.33)

where YS
• is a random Borel measure on D. The claim follows.

We now claim:

Proposition 4.11 [Characterization of ZD
l measure] For each dyadic square S ⇢ C

and any bounded and continuous function f : S ! [0, •), we have

E
�

e�hZS
l, f i� = E

�

e�hYS
•, f i� (4.34)

In particular,

ZS
l(dx) law

= YS
•(dx). (4.35)

Proof of “�” in (4.34). Writing ZS
l via (4.24) and invoking conditional expectation

given FS,S̃n with the help of (4.28), the conditional Jensen’s inequality shows

E
�

e�hZS
l, f i� = E

⇣

E
�

e�hZS
l, f i �

� s(FS,S̃n
)
�

⌘

� E
�

e�E[hZS
l, f i | s(FS,S̃n

]� = E
�

e�hYS
n , f i� .

(4.36)

By Lemma 4.10, E(e�hYS
n , f i) ! E(e�hYS

•, f i) as n ! • and so we get “�” in (4.34).

For the proof of the opposite inequality in (4.34) we first note:
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Lemma 4.12 [Reverse Jensen’s inequality] If X1, . . . , Xn are non-negative indepen-
dent random variables, then for each e > 0,

E
✓

exp
n

�
n

Â
i=1

Xi

o

◆

 exp
n

�e�e
n

Â
i=1

E(Xi ; Xi  e)
o

. (4.37)

Proof. In light of assumed independence, it suffices to prove this for n = 1. This is
checked by bounding E(e�X)  E(e� eX), where eX := X1{Xe}, writing

� log E(e� eX) =
Z 1

0
ds

E( eXe�s eX)

E(e�s eX)
(4.38)

and invoking E( eXe�s eX) � e�eE( eX) and E(e�s eX)  1.

We are now ready to give:

Proof of “” in (4.34). Pick n large and assume ZS
l is again represented via (4.24).

We first invoke an additional truncation: Fiven d > 0, let Sd
n,i be the translate

of (d2�(n�m), (1 � d)2�(n�m)) centered at the same point as Sn,i. Denote

S̃n
d :=

4n
[

i=1
Sd

n,i and fn,d(x) := f (x)1S̃n
d
(x). (4.39)

Denoting also

Xi :=
Z

Sn,i

fn,d(x) ealFS,S̃n
ZSn,i

l (dx) (4.40)

from f � fn,d we then have

E
�

e�hZS
l, f i�  E

�

e�hZS
l, fn,di� = E

✓

exp
n

�
n

Â
i=1

Xi

o

◆

. (4.41)

Conditioning on FS,S̃n , the bound (4.37) yields

E
�

e�hZS
l, f i�  E

✓

exp
n

�e�e
4n

Â
i=1

E
�

Xi1{Xie}
�

� s(FS,S̃n
)
�

o

◆

(4.42)

Since (4.28) shows
4n

Â
i=1

E
�

Xi
�

� s(FS,S̃n
)
�

= hYS
n , fn,di (4.43)

we will need:

Lemma 4.13 Assume l 2 (0, 1/
p

2). Then for each e > 0

lim
n!•

4n

Â
i=1

E
�

Xi; Xi > e
�

= 0 . (4.44)
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Proof. For this we note

4n

Â
i=1

E
�

Xi; Xi > e
�  1

e

4n

Â
i=1

E(X2
i )

 k f k2

e

4n

Â
i=1

E
✓

Z

Sd
n,i⇥Sd

n,i

E
�

eal[FS,S̃n
(x)+FS,S̃n

(x)]�ZSn,i
l (dx)ZSn,i

l (dy)
◆

.

(4.45)

Denote L := 2n. In light of the fact that, for some constant c independent of n,

Var(FS,S̃n
(x)) = g log

rS(x)
rSn,i(x)

 g log(L) + c (4.46)

holds uniformly in x 2 S̃n
d , the right-hand side of (4.45) is bounded by k f k2 times

c0e4 1
2 a2l2 log(L)

4n

Â
i=1

E
⇥

ZSn,i
l (Sn,i)

2⇤  c00L8l2+2�(4+4l2) = c00L�2(1�2l2), (4.47)

where we also invoked (3.60) and the fact that there are L2 terms in the sum. This
tends to zero as L ! • whenever l < 1/

p
2 thus proving (4.44).

Continuing in the proof of Proposition 4.11, from (4.42) and (4.44) we now get

E
�

e�hZS
l, f i�  lim sup

n!•
E(e�e�ehYS

n , fn,di) (4.48)

But
hYS

n , fn,di = hYS
n , f i � k f kYS

n (S r S̃n
d ) (4.49)

and so
E(e�e�ehYS

n , fn,di)  eek f k E(e�e�ehYS
n , f i) + P

�

YS
n (S r S̃n

d ) > e
�

(4.50)

A calculation based on (4.32) shows

P
�

YS
n (S r S̃n

d ) > e
�  ce�1Leb(S r S̃n

d )  c0e�1d. (4.51)

Hence

E
�

e�hZS
l, f i�  lim sup

e#0
lim sup

d#0
lim sup

n!•
E(e�e�ehYS

n , fn,di)  E(e�hYS
•, f i). (4.52)

This completes the proof of (4.34); the conclusion (4.35) then directly follows.

4.4. Finishing touches

Let us first check that the arguments above already imply our main conclusion
about the existence of the limit of processes {hD

N : N � 1}:

Proof of Theorem 2.7 for l < 1/
p

2. Pick D 2 D and assume without loss of gener-
ality that D0 used above contained D. For any subsequence of N’s for which the
limit of the measures in question exists we then the representation (3.46) and the
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conclusions of Proposition 4.9 and 4.11 apply to all domains in D0. We just have to
show that the law of the limit measures is uniquely determined as that will prove
the existence of the limit for all domains in D0. (As our domain of interest was
included there, the limit will then exist for all domains.)
By Exercise 4.8 it suffices to show that the law of hZD

l , f i is determined for any
continuous f : D ⇥ R ! R with compact support. Let Dn be the union of of all
open dyadic squares of side 2�n entirely contained in D. Letting n be so large
that supp( f ) ✓ Dn ⇥ [�n, n] and denoting eDn := D r ∂Dn, Proposition 4.9 and
Exercise 4.8(3) then imply

hZD
l , f i law

=
⌦

ZDn

l , ealFD, eDn
f
↵

with ZDn

l ?? FD, eDn
. (4.53)

It follows that the law of the left-hand side is determined once the law of ZDn

l
is determined. But Exercise 4.8(3) also shows that ZDn

l is the sum of independent
realizations of ZS

l for S constituting the squares making up Dn. The laws of these ZS
l

are determined by Proposition 4.11.

Concerning the proof of conformal invariance and full characterization by the LQG
measure, we will need the following result:

Theorem 4.14 [Uniqueness of the GMC/LQG measure] The law of the Gaussian
Multiplicative Chaos measure µ

D,b
• does not depend on the choice of the orthonormal ba-

sis {jn : n � 1} in H1
0(D) that was used to define it.

We will not prove this theorem in these notes as that would take us on a tangent
that we do not wish to follow. We remark that the result has a rather neat proof due
to Shamov from 2015 which was made possible by his ingenious characterization of
the GMC measures using Cameron-Martin shifts. Earlier work of Kahane required
uniform convergence of the covariances of the approximating fields.
Equipped with the uniqueness Theorem 4.14, let us now annotate the steps that
identify ZD

l with the LQG-measure ĉyD
l (x)µD,la

• (dx). For that pick any D 2 D and
let {Sk,i : i = 1, . . . , n(k)} be the collection of open dyadic squares of side 2�k that
are entirely contained in D. Now observe:

Exercise 4.15 Let Hk denote the subspace of all functions in H1
0(D) that are harmonic

in Sk,i for each i = 1, . . . , n(k). Prove that

H1
0(D) =

•
M

k=0
Hk (4.54)

Next, for each k � 1, let {ejk,j : j � 1} be an orthonormal basis in Hk with respect to
the Dirichlet inner product. Denote Dk :=

Sn(k)
j=1 Sk,j with D0 := D and observe that

Dk ⇢ Dk�1. Then show:

Exercise 4.16 For {Xk,j : k, j � 1} i.i.d. standard normals prove that, for each k � 1,

FDk�1,Dk law
= Â

j�1
Xk,j ejk,j on Dk. (4.55)
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In particular, by the nesting property, for each m � 1,

FD,Dm law
=

m

Â
k=1

Â
j�1

Xk,j ejk,j on Dm . (4.56)

From here and Theorem 4.14 we now infer the following:

Exercise 4.17 Prove that for any open dyadic square S

YS
•(dx) law

= ĉyS
l(x)µS,la

• (dx). (4.57)

Similarly, show that for any eD ⇢ D with Leb(D r eD) = 0,

µ
D,b
• (dx) law

= ebFD, eD(x)� 1
2 b2Var[FD, eD(x)] µ

eD,b
• (dx) , (4.58)

where FD, eD and µ
eD,b
• are regarded as independent.

The point here is that although the right-hand side (4.55) casts the binding field
from D to Dm in the form akin to (2.39), the sum over j is infinite. One thus has to
see that a suitable truncation to a finite sum will do as well. Once this exercise is
solved, we just re-run the argument around (4.53) to get Theorem 2.17.
Once we identify the limit measure with the LQG-measure, the proof of conformal
invariance is quite easy. A key point is to solve:

Exercise 4.18 [Conformal transform of GMC measure] Let f : D 7! f (D) be a
conformal map between bounded and open domains in C. Show that if {jn : n � 1} is an
orthonormal basis in H1

0(D) with respect to the Dirichlet product, then {jn � f�1 : n � 1}
is an orthonormal basis in H1

0( f (D)). Prove that this implies

µ
f (D),b
• � f (dx) law

=
�

� f 0(x)
�

�

2
µ

D,b
• (dx). (4.59)

To get the proof of Theorem 2.13, one just needs to observe:

Exercise 4.19 For any conformal bijection f : D ! f (D),

y
f (D)
l

�

f (x)
�

=
�

� f 0(x)
�

�

2l2
yD

l (x), x 2 D. (4.60)

4.5. Dealing with truncations

The above completes the proof of our results in the regime where second-moment
calculations can be applied without truncations. To get the feeling what happens
in the the complementary regime, 1/

p
2  l < 1, let us at least introduce the basic

definitions and annotate the relevant steps.
Denote Lr(x) := {y 2 Zd : |x � y|•  r}. Given a discretized version DN of a
continuum domain D, for each x 2 DN define

Dk(x) :=

8

>

<

>

:

∆ for k = 0 ,
Lek(x) for k = 1, . . . , n(x)� 1 ,
DN for k = n(x) ,

(4.61)
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Figure 4.2: An illustration of the collection of sets Dk(x) above.

where n(x) := max{n � 0 : Len+1(x) ✓ DN}. See Fig. 4.2 for an illustration.
Recalling the definition of the field jDN ,Dk

(x), we now define the truncation event

TN,M(x) :=
n(x)
\

k=kN

⇢

�

�

�

jDN ,Dk
(x)� aN

n(x)� k
n(x)

�

�

�

 M
⇥

n(x)� k
⇤3/4

�

, (4.62)

where M is a parameter and kN := 1
8 log(KN) ⇡ 1

4 (1 � l2) log N. Now we intro-
duce the truncated point measure

bhD,M
N :=

1
KN

Â
x2DN

1TN,M(x) dx/N ⌦ d hDN (x)�aN
(4.63)

The following monotonicity will be quite useful:

hD
N � hD,M

N , M 2 (0, •). (4.64)

Indeed, the tightness of {bhD
N : N � 1} is thus inherited from {hD

N : N � 1} and,
as M ! •, the limits points of the former increase to those of the latter. The
requisite (now really ugly) 2nd moment calculations are then performed which
yields the following conclusions for all M < • and all l 2 (0, 1):

(1) Defining bGD,M
N (b) := {x 2 DN : hDN

x � aN + b, TN,M(x) occurs}, we have

sup
N�1

1
K2

N
E
�|bGD,M

N (b)|2� < •. (4.65)

By a second-moment argument, the limits of {bhD,M
N : N � 1} are non-trivial.
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(2) The factorization property proved in Proposition 3.11 applies to limit points of
{bhD,M

N : N � 1} with ZD
l replaced by some bZD,M

l instead.

The property (4.63) now implies that M 7! bZD,M
l is pointwise increasing and so we

may define
ZD

l (·) := lim
M!•

bZD,M
l (·). (4.66)

We then check that this measure has the properties in Exercise 4.8 as well as the
Gibbs-Markov property from Proposition 4.9. However, although the limit in (4.66)
exists in L1 for all l(0, 1), it does not in L2 for l � 1/

p
2 and so we have to keep

using bZD,M
l in whenever estimates involving second moments are needed.

This comes up only in one proof: “” in (4.34). There we use ZD
l (·) � bZD,M

l (·) and
the fact that ZD

l satisfies the Gibbs-Markov property to dominate ZD
l (·) from below

by measure

eZS
l(dx) :=

4n

Â
i=1

ealFS,S̃n
bZSn,i ,M

l (dx), (4.67)

Then we perform the calculation after (4.24) with this measure instead of ZS
l mod-

ulo one caveat: In the proof of Lemma 4.13 we truncate to the event

sup
x2eSn

d

FS,eSn
(x) < 2

p
g log(2n) + c

q

log(2n) . (4.68)

which has probability very close to one. On this event, writing again L := 2n, the
sum on the right-hand side of (4.45) is thus bounded by

c0e2pgal log(L)+c
p

log(L) e
1
2 a2l2g log(L)L2L�2(2+2l2) (4.69)

Using the definition of a, this becomes L�2(1�l)2+o(1) which tends to zero as n ! •
for all l 2 (0, 1). The rest of the proof is then more or less the same.
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