
Lecture 11

Local structure of extremal points

In this lecture we augment the prior description of the point processes associated
with extremal local maxima by adding information about the local behavior of the
field in a neighborhood thereof. A number of interesting corollaries are stated at the
end concerning the cluster-process structure of the extremal level sets, the Poisson-
Dirichlet limit of the Gibbs measure associated with the DGFF, the Liouville Quan-
tum Gravity in the so called glassy phase and freezing phenomenon.

11.1. Cluster at absolute maximum

Our interest in this lecture is on the local behavior of the field near its large val-
ues. We will refer to these values vaguely as cluster. A natural starting point, and
pretty much all that will technically be required, is the situation near the absolute
maximum. We will proceed by conditioning on the location of the maximum; the
translation invariance of the DGFF permits us to shift this location to the origin.
The desired conclusion is then the content of:

Theorem 11.1 [Cluster law] Let D 2 D with 0 2 D and let {DN : N � 1} be
an admissible sequence of approximating domains. Then for each t 2 R and each f 2
Cc(RZ2

) depending only on a finite number of coordinates,
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where n is a measure defined from f := DGFF on Z2 r {0} via

n(·) := lim
r!•
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with a denoting the potential kernel on Z2.

The existence of the limit in (11.2) is part of the statement of the theorem. However,
this can be seen already from:
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Figure 11.1: A sample of the configuration of the DGFF in the vicinity of its (large)
absolute maximum.

Exercise 11.2 Let nr be the conditional measure on the right of (11.2). Prove that r 7! nr
is stochastically increasing. [Hint: This is true for any strong-FKG measure.]

This means that r 7! nr(A) is increasing on increasing events and so the limit
in (11.2) exists in the sense of convergence of finite-dimensional distribution func-
tions. The problem is that nr is a measure on a non-compact space and the in-
terpretation of the limit as a distribution thus requires a proof of tightness. This
additional ingredient will be supplied by our proof of Theorem 11.1.
The fact that the limit takes the form in (11.2) can be understood on the basis of a
simple heuristic calculation. Indeed, conditioning the field on hDN

0 = mN + t shifts
the mean of hDN

0 � hDN
x by the quantity with N ! • asymptotic

(mN + t)
�

1 � gDN (x)
� �!

N!•

2pg
a(x). (11.3)

A variance computation then identifies the asymptotic law of hDN
0 � hDN

x as 2pga(x)
plus the pinned DGFF; see Fig. 11.1. The conditioning on 0 being the maximum
then forces the additional conditioning on positivity in (11.2). This would more or
less prove the result directly, except for the following caveat:

Theorem 11.3 There exists c? 2 (0, •) such that

P
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◆

=
c?

p

log r
�

1 + o(1)
�

, r ! •. (11.4)

The conditioning in (11.2) is thus increasingly singular and so it is hard to imagine
that one could control the limit solely by manipulations with weak convergence.
We remark that the proof of Theorem 11.3 along with the asymptotic (1.33) for
the potential kernel tell us that max|x|r fx will grow to the leading order as r 7!
2pg log r. An interesting question is to determine the precise subleading order
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(which we expect to be log log r-order). This would be a version of the Law of the
Iterated Logarithm for the pinned DGFF.

11.2. Random walk based estimates

The proof of Theorem 1.11 will be based on the concentric decomposition of the
DGFF developed in Sections 8.2–8.4. The main difference is that, as these sections
were devoted to the proof of the tightness of the lower tail of the maximum, we
were not allowed to assume that in estimates there. With the tightness now settled
in Lemma 8.21, Lemma 8.11 can be rephrased as:

Lemma 11.4 There is a > 0 such that each k = 1, . . . , n and each t � 0,
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 e�at. (11.5)

This allows for control of the deviations of the field hDN from �Sk in both directions
which upgrades Lemma 8.16 into the form:

Lemma 11.5 [Reduction to random walk event] Assume hDN is realized as the sum
on the right of (8.30). There is a numerical constant C > 0 such that uniformly in the
above setting, the following holds for each k = 0, . . . , n and each t 2 R:

{Sn+1 = 0} \ �

Sk � RK(k) + |t| 

✓ {hDN
0 = 0} \ �

hDN  (mN + t)(1 � gDN ) on Dk r Dk�1 

✓ {Sn+1 = 0} \ �

Sk � �RK(k)� |t| . (11.6)

where K is the control variable from Definition 8.15 and

Rk(`) := C[1 + Qk(`)]. (11.7)

We will now use the random walk {S0, . . . , Sn} to control all important aspects of
the conditional expectation in the statement of Theorem 11.1.
First note that the event

Tn
k=0{SK � �RK(k)� |t|} encases all of the events of inter-

est and so we can use it as the basis for estimates of various undesirable scenarios.
(This is necessary because the relevant events will have probability tending to zero
proportionally to 1/n.) In particular, we upgrade Lemma 8.19 to the form:

Lemma 11.6 There are c1, c2 > 0 such that for all n � 1 and all k = 1, . . . , bn/2c,
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n
e�c2(log k)2

(11.8)

Since the target decay is order-1/n, we see that in the forthcoming derivations we
can assume {K  k} for k sufficiently large but independent of n. Lemma 8.18 then
takes the form:
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Lemma 11.7 [Entropic repulsion] For each t 2 R there is c > 0 such that for all
n � 1 and all k = 1, . . . , bn/2c
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◆
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1
16 (11.9)

Consider now the expectation in the statement of Theorem 11.1. We first invoke
Lemma 8.3 to shift the conditioning event to hDN

0 = 0 at the cost of adding the term
(mN + t)gDN to all occurrences of the field. Denoting

mN(t, x) := (mN + t)(1 � gDN (x)) (11.10)

the expectation can be written as the ratio
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⇣
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Both the numerator and the denominator have the same structure, so we will just
focus on the numerator. We claim:

Proposition 11.8 For each e > 0 and each t0 > 0 there is k0 � 1 such that for all k
with k0  k  n1/6 and all t 2 [�t0, t0],
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where
fk(x) := hDk

0 � hDk

x . (11.13)

Proof (sketch). Invoking the sets underlying the concentric decomposition, we write
the “hard” event in the expectation as the intersection of an “inner”, “middle” and
“outer” event,

1{hDNmN(t,·)} = 1{hDNmN(t,·) in Dk}
⇥ 1{hDNmN(t,·) in Dn�krDk}1{hDNmN(t,·) in DNrDn�k}. (11.14)

Plugging this in the expectation and invoking Lemma 11.6 to insert {K  k} into
the expectation, the bounds in (11.6) permit us to replace the “middle” event

{hDN  mN(t, ·) in Dn�k r Dk} (11.15)
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by the event
n�k
\

`=k
{S` � ±(Rk(`) + |t|)} (11.16)

with the sign depending on we aim to get upper or lower bounds. Lemma 11.7 then
tells us that the difference between and these upper and lower bounds is negligible,
and so we may further replace {S` � ±(Rk(`) + |t|)} by {S` � 0}.
The restriction to Sk, Sn�k � k1/6 then comes via Lemma 11.7 and the bounds
Sk, Sn�k  k2 arise from the restriction to {K  k} and the fact that Rk(k)  k
for k large. We can also use continuity of f to replace mN(t, ·) in the argument of f
by its limit value (11.3). Finally, noting that, conditional on hDN

0 we have

hDN
x = �fk(x) + Ầ

>k

⇥

b`(x)j`(0) + c`
⇤

, (11.17)

we use the entropy repulsion arguments to replace the “inner” event

{hDN  mN(t, ·) in Dk} (11.18)

by
{fk +

2pga � 0 in Dk} . (11.19)

This requires showing that the entropic repulsion creates enough of a gap to neglect
the sum on the right of (11.17) as well as the difference between mN(t, ·) and 2pga
without much cost in overall expectation. Since the quantity under expectation
remains concentrated on

Tn
`=0{S` � �Rk(`)� |t|}, we can use Lemma 11.7 to drop

the restriction to {K  k} and get the desired result.

A key point to observe now is that, conditionally on Sk and Sn�k and Sn+1 = 0, the
“inner” field fk, the random variables {S` : ` = k, . . . , n � k}, and the “outer” field
{hDN

x : x 2 DN rDn�k} are independent. (This is the reason why we strove to get fk
into the “inner” event. The restriction to Sn+1 = 0 allows us to label the random
walk “backwards” in the “outer” part of the domain.) This allows us to replace the
product of indicators of {S` � 0} by its conditional expectation given Sk and Sn�k.
We then invoke:

Lemma 11.9 For each t0 > 0 there is c > 0 such that for all 1  k  n1/6,
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(11.20)

holds everywhere on {Sk, Sn�k 2 [k1/6, k2]}.

Proof (idea). We will only explain the form of the leading term leaving the error to a
reference to the aforementioned 2016 joint paper with O. Louidor. Calling x := Sk
and y := Sn�k, the probability is lower bounded by

P
⇣

Bt � 0 : t 2 [tk, tn�k]
�

�

�

s(Btk , Btn�k)
⌘

, (11.21)
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where we used the fact that the random walk has Gaussian steps to embed it into
the Brownian motion {Bt : t � 0} via

Sk := Btk where tk :=
k�1

Ầ
=0

Var
�

j`(0)
�

. (11.22)

Note that, in light of Lemma 8.8, we know that

tk =
�

g log 2 + o(1)
�

k. (11.23)

Next we observe:

Exercise 11.10 For B a standard Brownian motion, prove that for any x, y > 0 and t > 0,

Px�Bs � 0 : 0  s  t
�

� Bt = y
�

= 1 � exp
��2 xy

t
 

. (11.24)

For xy ⌧ t, the expression on the right of (11.24) is asymptotic to 2 xy
t . This shows
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whenever k4 ⌧ n.
To get a similar upper bound, one writes the Brownian motion on interval [t`, t`+1]
as a linear curve connecting S` to S`+1 plus a Brownian bridge. Then we observe
that the entropic repulsion pushes the walk far away from the positivity constraint
so that these Brownian bridges do not affect the resulting probability much.

Define the quantities

Xin
` ( f ) := E

⇣

f
�

fk +
2pga

�

1{fk+
2pga� 0 in Dk}1{Sk2[k1/6, k2]}Sk

⌘

(11.26)

and

Xout
N,`(t) := E

✓
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◆

(11.27)

The stated independence along with the asymptotic for the conditional probability
in Lemma 11.9 then shows
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(11.28)
with o(1) ! 0 in the limits as N ! • followed by k ! •. Using this in the ratio
(11.11), the quantity Xout

N,`(t) cancels and, since the right-hand side depends on N
only through the o(1) terms that tend to zero, we get:

Corollary 11.11 For any f as above,

lim
N!•
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0 = mN + t, hDN  hDN

0
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Xin
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(11.29)

where both limits exist.
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11.3. Full process convergence

Thanks to the representation of the pinned DGFF in Exercise 8.13, the above deriva-
tion applies, albeit in somewhat simpler terms, also the limit of the probabilities
in (11.2). The difference is that here the random walk is not constrained to Sn+1 = 0.
This affects the asymptotics of the relevant probability as follows:

Lemma 11.12 For any f 2 Cc(RZ2
) depending only on a finite number of coordinates,

E
⇣

f
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f + 2pga
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1{f+ 2pga�0 in Dr}
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=
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p

log 2
Xin

k ( f )p
r

�

1 + o(1)
�

, (11.30)

where o(1) ! 0 as r ! • followed by k ! •.

Note that the asymptotic 1/
p

r is exactly that of a random walk of r steps to stay
positive. Indeed, the reader will readily check:

Exercise 11.13 Let {Bt : t � 0} be the standard Brownian motion with Px denoting the
law started from B0 = x. Prove that for all x > 0 and all t > 0,
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We will not give further details concerning the proof of Lemma 11.12 as that amounts
to repetitions that the reader may not find illuminating. Rather we move on to:

Proof of Theorem 11.1. From the previous lemma we have

lim
r!•

P
✓

f +
2pg
a 2 ·
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fx +
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a(x) � 0 : |x|  r

◆

= lim
k!•

Xin
k ( f )

Xin
k (1)

. (11.32)

Jointly with Corollary 11.11, this proves equality of the limits in the statement.

To see that n concentrates on RZ2 we observe that all derivations above were uni-
form in f varying throughout any fixed equicontinuous and bounded family of
functions of given number of variables. Taking f " 1 along such a family can then
be interchanged with the k ! • limit in (11.32). This implies n(RZ2

) = 1.

We will now show how this can be built into the proof of Theorem 9.3. Consider
the three coordinate process hD

N,r defined in (9.6) and let f 2 Cc(D ⇥ R ⇥ RZd
)

depend only on a finite number of coordinates of the “cluster” variable. The idea
is to consider the Laplace transform of hhD

N,r, f i, condition on the location of, and
value of the field at, the relevant local maxima and wrap the result into a Laplace
transform of a function of just the first two variables only. To this we then apply
the already proved limit result.
The implementation of this will require working with a slight modification of our
original process. Given x 2 DN and a sample of hDN , define the field

FM,x(z) := Â
y2DN\∂LM(x)

H(DN\LM(x))r{x}(z, y) hDN (y). (11.33)
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This is the harmonic extension of the values of hDN distance M away from x while
pretending that the value at x is zero. Note that Fr,x(x) = 0. Then we set

bhD
N,M := Â

x2DN

1{x2bQN,M}d x/N ⌦ d
hDN

x �mN
⌦ d{hDN

x �hDN
x+z+FM,x

x+z : z2Z2}, (11.34)

where
bQN,M :=

n

x 2 DN : hDN
x = max

y2L3M(x)
(hDN

y � Fr,x
y )

o

(11.35)

We now observe that the two processes are very close to each other:

Lemma 11.14 For any f as above,
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= 0. (11.36)

Proof (idea). We need to show two things: First, the field Fr,x is very small near x.
This follows from the fact that it has harmonic paths and is equal to zero at x with
the boundary values more or less averaging away. Second, we need to show that
the points bQN,N/r where hDN

x = mN + O(1) coincide with the rN-local extrema
of hDN of that height with high probability. This again boils down to smallness
of FN/r,x in Lr(x) along with the fact that the local maximum will always be strict,
and the fact that points at height mN + O(1) are either closer than r or farther
than N/r with high probability (cf Theorem 9.2).

We are now ready to give:

Proof of Theorem 9.3. Suppose r is so large that f does not depend on cluster vari-
ables outside Lr(0). We begin by invoking the inclusion-exclusion formula to get

ehh
D
N,N/r , f i = Â

A⇢DN

’
x2A

h

1{x2bQN,N/r}
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e� f (x/N, hDN
x �mN , ... ) � 1

�

i

(11.37)

where the dots denote the cluster variables {hDN
x � hDN

x+z + Fr,x
x+z : z 2 Z2}. The key

point is that the product of the indicators is non-zero only if any pair of distinct
points in A is at least distance 3N/r away. Assuming 2r < N/r, for any A possi-
bly contributing to (11.37), any two distinct sets from {LN/r(x) : x 2 A} are well
separated. This means that we can take conditional expectation given

FA,r := s
⇣n

hDN
y : y 2 A [ \

x2A
LN/r(x)c

o⌘

(11.38)

and use the Gibbsian property of the DGFF to get

E
✓

’
x2A

h

1{x2bQN,N/r}
�

e� f (x/N, hDN
x �mN , ... ) � 1

�

i

�

�

�

�

FA,r

◆

= ’
x2A

E
⇣

1{x2bQN,N/r}
�

e� f (x/N, hDN
x �mN , ... ) � 1

�

�

�

�

FA,r

⌘

(11.39)
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Now note that on {x 2 bQN,N/r} the value of the field at x dominates all values
in LN/r(x) and, once that is arranged, the values of hDN outside LN/r(x) are only
restricted by the value of hDN

x . Also note that, for x 2 A and any event B 2 RLr(x),

P
�

hDN � FN/r,x 2 B
�

�FA,x
�

= P
�

hLN/r(x) 2 B
�

� hLN/r(x)
0 = t

�

�

�

�

t:=hDN
0

(11.40)

Since f (x/N, hDN
x �mN , . . . ) depends only on the coordinates in Lr(x), we thus get
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where, abbreviating LN/r := LN/r(0),

e� fN,r(x,t) := E
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Wrapping the inclusion-exclusion formula back together, we thus get
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D
N,N/r , fN,ri� (11.43)

Since t is restricted to a compact set by the support restriction on f , Theorem 11.1
shows that the function fN,r is uniformly approximated by fn defined

fn(x, t) := � log
⇥

En e� f (x,t,f)⇤ . (11.44)

The tightness of the processes {hD
N,rN

: N � 1} and routine approximations based
on Theorem 9.2 then show
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, fni�+ o(1) (11.45)

with o(1) ! 0 as N ! •, where (we note) we again replaced N/r by rN in the
second occurrence of the point process.
As fn 2 Cc(D ⇥ R), the convergence of the two-coordinate process now yields
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Now observe
Z

D⇥R
ZD(dx)⌦ e�ahdh

�

1 � e� fn(x,h)�

=
Z

D⇥R⇥RZ2
ZD(dx)⌦ e�ahdh ⌦ n(df)

�

1 � e� f (x,h,f)� (11.47)

to write the limit as the Laplace transform of PPP(ZD(dx)⌦ e�ahdh ⌦ n(df)). This
holds for a generating class of functions f and so the claim follows.

Lemma 11.12 then also pretty much the asymptotic (11.4):
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Proof of Theorem 11.3, mail idea. Routine (by now) upper and lower bounds us-
ing random walk {Sk : k � 1} show that the probability in the statement is of or-
der 1/

p
r. Lemma 11.12 then shows

c1 < Xin
k (1) < c2, k � 1, (11.48)

for some constants c1, c2 2 (0, •). The statement of Lemma 11.12 then permits to
take r ! • independently of k ! • (albeit in this order) which means that

Xin
•(1) := lim

k!•
Xin

k (1) (11.49)

exists, is positive and finite. Since the r log 2 is, to the leading order, the logarithm
of the diameter of Dr, the claim follows with c? := Xin

•(1).

11.4. Some corollaries

Having established the limit of the structured point measure, we can go back to the
“ordinary” extreme value process and extract its limit form as well:

Corollary 11.15 [Cluster process] Under the above assumptions,

Â
x2DN

dx/N ⌦ d
hDN

x �mN

law�!
N!• Â

i2N
Â

z2Z2

d
(xi , hi�f

(i)
z )

. (11.50)

where

• {(xi, hi) : i 2 N} are points in a sample from PPP(ZD(dx)⌦ e�ahdh), and

• {f(i) : i 2 N} are i.i.d. samples from n.

The measure on the right is locally finite on D ⇥ R a.s.

Note the limit process on the right of (11.50) takes the form of a cluster process. This
term generally refers to a collection of random points obtained by first sampling
points in a Poisson point process and then associating with each point a cluster of
points. The clusters are independent from each other although the points within
each cluster can be heavily dependent.
Another observation that is derived from the above limit law concerns the Gibbs
measure on DN associated with the DGFF on DN as follows:

µD
b,N

�{x}� :=
1

ZN(b)
ebhDN

x where ZN(b) := Â
x2DN

ebhDN
x . (11.51)

In order to study the scaling limit of this object, we associate the value µD
b,N({x})

with a point mass at x/N. From the convergence of properly normalized measure

Â
x2DN

ebhDN
x dx/N (11.52)
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to the Liouville Quantum Gravity for b < bc := a it is known that

Â
z2DN

µD
b,N

�{z}�d z/N(dx) law�!
N!•

ZD
l (dx)

ZD
l (D)

(11.53)

where l := b/bc and where ZD
l is the measure we saw in the discussion of the

intermediate level sets (for l < 1). The result extends (although the proof details
of this are scarce) to the case b = bc, where we get the bZD(dx) instead. The super-
critical case b > bc has been open for quite a while. It was finally settled in:

Corollary 11.16 [Poisson-Dirichlet limit for the Gibbs measure] Let PD(s) de-
note the Poisson-Dirichlet law with parameter s 2 (0, 1). For all b > bc := a,

Â
z2DN

µD
b,N

�{z}�d z/N(dx) law�!
N!• Â

i2N

pid Xi , (11.54)

where {Xi} are (conditionally on ZD) i.i.d. with common law bZD, while {pi}law
= PD(bc/b)

is independent of ZD and thus also {Xi}.

We recall that PD(s) is a law on decreasing sequences of non-negative numbers
with total sum equal to one obtained by taking a sample from the Poisson process
on [0, •) with intensity x�1�sdx, ordering the points and normalizing them. The
above corollary actually follows from our description of the supercritical Liouville
Quantum Gravity measure. Given a (Borel) probability measure Q on C and a
parameter s > 0, define the point measure Ss,Q by

Ss,Q(dx) := Â
i2N

qi d Xi , (11.55)

where {qi} enumerates the sample points of a Poisson process on [0, •) with inten-
sity x�1�sdx and {Xi} are independent samples from Q, independent of the {qi}.

Theorem 11.17 [Liouville measure in the glassy phase] Let ZD and n be as in
Theorem 9.3. For each b > bc := a there is c(b) 2 (0, •) such that

Â
z2DN

eb(hz�mN)d z/N(dx) law�!
N!•

c(b) ZD(D)b/bc Sbc/b, bZD(dx), (11.56)

where ZD is sampled first and Sbc/b, bZD is defined conditionally on ZD. Moreover,

c(b) = b�b/bc
⇥

En(Yb(f)bc/b)
⇤b/bc with Yb(f) := Â

x2Z2

e�bfx . (11.57)

In particular, En(Yb(f)bc/b) < • for each b > bc.

Note that the limit laws in (11.54) and (11.56) are purely atomic, in contrast to the
limits of the subcritical measures (11.52) which are singular with respect to the
Lebesgue measure but non-atomic.
The reader might wonder how is it possible that the rather complicated structure of
the cluster law n only manifests itself though the expectation of the quantity Yb(f).
This can, more or less, be traced to the following property of the Gumbel law:

129 (Last update: June 28, 2017)



Exercise 11.18 Let {hi : i 2 N} be samples from PPP(e�ahdh) and let {Xi : i 2 N} be
independent, i.i.d. random variables with c := EeaX1 < •. Prove that

�

hi + Xi : i 2 N} law
= PPP

�

ce�ahdh
�

. (11.58)

The mechanism behind the above corollary is that the contribution of the cluster
associated with a given large local maximum then projects into the shift of the local
maximum by an independent random variable. Exercise 11.18 shows that this is in
law equivalent to a deterministic shift by a�1 log c.
Our final corollary concerns the behavior of the function

GN,b(t) := E
✓

exp
n

�e�bt Â
x2DN

ebhDN
x
o

◆

, (11.59)

which, we observe, is a reparametrization of the Laplace transform of the normal-
izing constant ZN(b) from (11.51). In their work on Branching Brownian Motion,
Derrida and Spohn and later Fyodorov and Bouchaud observed that, in a suitable
limit, an analogous quantity ceases to depend on b once b crosses a critical thresh-
old. They referred to this as freezing. Our control above is able to establish the same
phenomenon for the quantity arising from DGFF:

Corollary 11.19 [Freezing] For each b > bc := a there is c̃(b) 2 R such that

GN,b
�

t + mN + c̃(b)
� �!

N!•
E
�

e�ZD(D) e�at�
. (11.60)

The constant c̃(b) depends only on the law of n and that only via the expectation in (11.57).

We refer to the aforementioned 2016 joint paper with O. Louidor for further conse-
quences of the above limit theorem and additional details.
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