
Lecture 10

Nailing the intensity measure

In this lecture we first observe that the intensity measure associated with a subse-
quential limit of the extremal point process is in one-to-one correspondence with
the limit distribution of the DGFF maximum. A theorem of Bramson, Ding and
Zeitouni, which we state without proof, ensures that the limit law of the maximum
exists and so all subsequential limits converge to the same object. Next we state
properties that link the intensity measure in various domains; e.g., restriction to
a subdomain (Gibbs-Markov) and conformal maps between domains. These give
rise to a set of conditions that identify the intensity measure uniquely. We also
sketch a proof that these conditions are satisfied by, and the intensity measure thus
agrees with, a version the critical Liouville Quantum Gravity.

10.1. Limit law for DGFF maximum

On the way to the proof of Theorem 9.3 we have so far shown that any subsequential
limit point of the measures {hD

N,rN
: N � 1}, restricted to the first two coordinates,

is a Poisson Point Process with intensity ZD(dx) ⌦ e�ahdh. Our next task to to
prove the existence of the limit. Here we observe the fact used in the last proof of
the previous lecture:

Lemma 10.1 Suppose Nk ! • is such that hD
Nk ,rNk

law�! PPP(ZD(dx)⌦ e�ahdh). Then
for each t 2 R,

P
⇣

max
x2DNk

h
DNk
x < mNk + t

⌘

�!
k!•

E
⇣

e�ZD(D)a�1e�at
⌘

(10.1)

Proof. We have
�

max
x2DN

hDN
x < mN + t

 

=
n

hD
N,rN

�

D ⇥ [t, •)
�

= 0
o

(10.2)

Suitable approximation arguments then show that, along the given subsequence,
the probability of the latter event converges to that of P(hD(D ⇥ [t, •)) = 0). Not-
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ing that the probability that PPP(M) has no points in set A is e�M(A), the claim
follows by a straightforward calculation.

A key observation to make is that, as t varies through R, the parameter a�1e�at

varies through (0, •). The limit distribution of the maximum thus determines the
Laplace transform of the random variable ZD(D). Hence we get:

Corollary 10.2 If maxx2DN hDN
x �mN converges in distribution, then the law of ZD(D)

is the same for every subsequential limit of {hD
N,rN

: N � 1}.

The premise to this corollary has been supplied by:

Theorem 10.3 [Bramson, Ding and Zeitouni 2013] Recall VN := (0, N)2 \ Z2.
Then, as N ! •, the centered maximum maxx2VN hVN

x � mN of DGFF in VN converges
in law to a non-degenerate random variable.

We do not attempt to give the proof of this result as that would take us on a tour
involving comparisons with Modified Branching Random Walk. Notwithstanding,
let us at least highlight some of the main ideas.
The proof aims to show that any two subsequential limits of the centered maxi-
mum will give the same result. This is achieved by considering a Gibbs-Markov
decomposition of the DGFF on VKN , with both K and N large, into independent
copies of the DGFF on K2 translates {V(i)

N : i = 1, . . . , K2} of VN and the binding
field, and checking what having the field on VKN being close to mNK means for the
the corresponding translate of VN .

Explicitly, denoting V�
KN :=

SK2

i=1 V(i)
N , we realize the DGFF on VKN as

hVKN = hV�
KN + jVKN ,V�

KN with hV�
KN ?? jVKN ,V�

KN (10.3)

We can in fact always ignore the small neighborhood of the “dividing lines” be-
tween the boxes {V(i)

N : i = 1, . . . , K2} since we have:

Lemma 10.4 There is c > 0 such that for any N � 1 and any A ⇢ DN,

P
�

max
x2A

hDN
x = max

x2DN
hDN

x
�  c

|A|
N2 . (10.4)

As a corollary, we get:

Exercise 10.5 Use Lemma 10.4 to prove that, for every subsequential limit hD of processes
of interest, the associated ZD measure obeys

A ⇢ D Borel, Leb(A) = 0 ) ZD(A) = 0 a.s. (10.5)

Next let xi denote the vertex at the center (resolving ties arbitrarily) of V(i)
N . Then

Cov
⇣

j
VKN ,V�

KN
xi , j

VKN ,V�
KN

xj

⌘

= Cov
�

hVKN
xi

, hVKN
xj

�� Cov
�

hV(i)
N

xi , hV(j)
N

xj

�

(10.6)
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and so, checking the cases i = j and i 6= j separately, we get

Cov
⇣

j
VKN ,V�

KN
xi , j

VKN ,V�
KN

xj

⌘

= g log
⇣ KN
|xi � xj| _ N

⌘

+ O(1). (10.7)

This means that {j
VKN ,V�

KN
xi : i = 1, . . . , K2} behaves very much like the DGFF in VK.

This might suggest that we could replace the values of jVKN ,V�
KN on V(i)

N by the value
at xi but this is true only to the leading order as the field

x 7! j
VKN ,V�

KN
x � j

VKN ,V�
KN

xi , x 2 V(i)
N , (10.8)

retains variance of order unity (after all, it scales to a non-trivial Gaussian field with
smooth, but non-constant sample paths).
To see how scales pass from level NK to level N, solve:

Exercise 10.6 Prove that for c > 0 small enough,

sup
N�1

P
⇣

max
i=1,...,K2

j
VKN ,V�

KN
xi > 2

p
g log K � c log log K

⌘

�!
K!•

0 (10.9)

If we ignore the variations of the field in (10.8), and assuming K  N, this means
that for x 2 V(i)

N , the assumption hVKN
x = mKN + O(1) implies

hV(i)
N

x � mKN � 2
p

g log K + c log log K � mN + c log log K + O(1), (10.10)

i.e., hV(i)
N takes an unusually high value at x. We thus only have to tie the maxima at

different scales under the situation when these are conditioned to be already quite
large. Since the variations caused by the field (10.8) remains relevant in this regime
as well, we have to control both the value and the position of the maximum. The
proof is thus reduced to proving:

Proposition 10.7 There is a constant c? > 0 such that

P
�

max
x2VN

hVN
x � mN + t

�

=
⇥

c? + o(1)
⇤

te�at (10.11)

where o(1) ! 0 in the limit N ! • followed by t ! •. Furthermore, there is a bounded
and continuous function y : (0, 1)2 ! [0, •) such that for all A ⇢ (0, 1)2 open,

P
⇣

N�1 argmax
VN

hVN 2 A
�

�

�

max
x2VN

hVN
x � mN + t

⌘

= o(1) +
Z

A
y(x)dx , (10.12)

where o(1) ! 0 in the limit N ! • followed by t ! •.

This is still done by way of the above decomposition of VKN but now for the event
that the maximum of hVKN is much in excess of mKN . We refer the reader to the
original paper for further details.
Let us now comment on how the above implies the uniqueness of the subsequential
limit of the processes {hD

N,rN
: N � 1}. First off, all what we stated above was for
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square boxes VN but it can be extended to any admissible sequence DN of lattice
approximations of D 2 D. Defining, for A ⇢ D with a non-empty interior,

hDN
A,? := max

x2DN
x/N2Ai

hDN
x . (10.13)

the key is then to note that the techniques underlying the proof of Theorem 10.3
also give:

Lemma 10.8 Let A1, . . . , Ak ⇢ D be disjoint open sets. Then the joint law of

�

hDN
Ai ,? � mN : i = 1, . . . , k

 

(10.14)

admits a non-degenerate weak limit as N ! •.

A proof of this lemma can be found in the 2013 joint paper of the lecturer with
O. Louidor. Next we note:

Lemma 10.9 For any subsequential limit hD = PPP(ZD(dx) ⌦ e�ahdh) of processes
{hD

N,rN
: N � 1}, any disjoint open sets A1, . . . , Ak ⇢ D and any t1, . . . , tk 2 R,

P
�

hDN
Ai ,? < mN + ti : i = 1, . . . , k

� �!
N!•

E
�

e�ÂK
i=1 ZD(Ak)a

�1e�ati �. (10.15)

Proof. We can write the left-hand side as the probability of hhD
N,rN

, f i = 0, where
f := Âk

i=1 1Ai ⌦ 1[ti ,•). The right-hand side is checked to be the probability that
hhD, f i = 0 and so the claim follows by approximating f by bounded continuous
functions with compact support in D ⇥ (R [ {•}).
This permits us to give:

Proof of Theorem 9.3, first two coordinates. Lemmas 10.8 and 10.9 imply that the joint
law of (ZD(A1), . . . , ZD(Ak)) is the same for every subsequential limit hD of our
processes of interest. This means that we know the law of hZD, f i for any f of the
form f = Âk

i=1 ai1Ai with Ai open disjoint. Noting that every bounded and con-
tinuous f can be approximated by a function of the form Âk

i=1 ai1{ai�1 f<ai} with
Leb( f = ai) = 0 for every i = 1, . . . , k, by the result of Exercise 10.5 we get unique-
ness of the law of hZD, f i for any f 2 Cc(D ⇥ R). By the Riesz Representation
Theorem, this identifies the law of ZD uniquely. We must have ZD(D) 2 (0, •) a.s.
because the maximum is tight at scale mN + O(1).

10.2. Properties of ZD-measures

As was the case of intermediate level sets, once the convergence issue has been set-
tled, the next natural question is: What is ZD? And: Can its law be independently
characterized? The structure of the limit process offers a number of interpretations.
First we ask the reader to solve:
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Exercise 10.10 Let {(xi, hi) : i 2 Z} be points in a sample of PPP(ZD(dx)⌦ e�ahdh).
Show that

�

hi � a�1 log ZD(D) : i 2 N
 

(10.16)

has Gumbel law with intensity e�ahdh.

This shows that (the scaled logarithm of) the total mass acts as a random shift for
the values of the local maxima of the DGFF. (In particular, the gap between the
i-th and i + 1-st local maximum are distributed as the gaps in the Gumbel law.)
Another, perhaps more interesting, aspect to highlight is:

Lemma 10.11 Let XN denote the position where hDN
XN

= maxx2DN hDN
x . Then for any

A ⇢ D open with Leb(∂A) = 0 and any t 2 R,

P
⇣

1
N XN 2 A, max

x2DN
hDN

x < mN + t
⌘

�!
N!•

E
�

bZD(A)e�a�1e�atZD(D)�. (10.17)

where
bZD(A) :=

ZD(A)
ZD(D)

. (10.18)

Proof. Lemma 10.8 along with a continuity argument based on Leb(∂A) = 0 imply-
ing ZD(∂A) = 0 show

�

hDN
A,? � mN , hDN

Ac,? � mN
� law�! (h?A, h?Ac) (10.19)

The continuity of the law of the DGFF yields

P
⇣

1
N XN 2 A, max

x2DN
hDN

x < mN + t
⌘

= P
�

hDN
Ac,? < hDN

A,?, hDN
A,? � mN < t

�

= P
�

hDN
Ac,?  hDN

A,?, hDN
A,? � mN  t

�

.
(10.20)

Since the first line is the measure of an open set while the second line is the measure
of the closure thereof, the standard facts about the convergence in law imply

P
⇣

1
N XN 2 A, max

x2DN
hDN

x < mN + t
⌘

�!
N!•

P
�

h?Ac < h?A, h?A < t
�

. (10.21)

Now we invoke:

Exercise 10.12 Prove that

h?A
law
= inf

�

t 2 R : hD(A ⇥ [t, •)) = 0} (10.22)

and that this in fact applies jointly to (h?A, h?Ac).

This means that we can now rewrite the probability on the right of (10.21) in terms
of maximal points in the sample of hD. For h = PPP(M ⌦ eahdh) with a fixed M,
the probability density of the maximal point in A is e�ah M(A)e�a�1e�ah M(A) while
the probability that no point in Ac will be above h is e�a�1e�ah M(Ac). Hence,

P
�

h?Ac < h?A, h?A < t
�

=
Z t

�•
e�ah E

⇣

ZD(A)e�a�1e�ahZD(D)
⌘

dh (10.23)
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The result now follows by integrating.

Hereby we get:

Corollary 10.13 The measure A 7! E(bZD(A)) is the N ! • weak limit of the marginal
law of the (a.s.-unique) maximizer of hDN scaled by N.

Although the laws of {ZD : D 2 D} are defined individually, just as for the mea-
sures arising from the intermediate level sets, they are very much interrelated. We
will now articulate properties that underpin these relations.

Theorem 10.14 [Properties of ZD-measures] The family {ZD : D 2 D} of intensi-
ties obeys the following properties:

(1) ZD(A) = 0 a.s. for any A ⇢ D with Leb(A) = 0,

(2) for any a 2 C and any b > 0,

Za+bD(a + bdx) law
= b4ZD(dx), (10.24)

(3) if D \ eD = ∆, then

ZD[ eD(dx) law
= ZD(dx) + Z eD(dx), ZD ?? Z eD, (10.25)

(4) if eD ✓ D and Leb(D r eD) = 0, then for FD, eD = N (0, CD, eD) and a := 2/pg,

ZD(dx) law
= Z eD(dx) eaFD, eD(x), Z eD ?? FD, eD, (10.26)

(5) there is ĉ 2 (0, •) such that for all open A ✓ D,

lim
l#0

E(ZD(A)e�lZD(D))
log(1/l)

= ĉ
Z

A
y D(x)dx, (10.27)

where yD(x) := rD(x)2.

Before we get on to the proof of this theorem, let us make a few remarks. First off,
with the exception of (5), appropriate versions of these properties are shared by
the whole family of measures {ZD

l : D 2 D} introduced early in this course. The
condition (5) is an exception as it shows that, unlike the measures ZD

l , we have
EZD(A) = • for any non-empty open A ⇢ D. This is what stands in the way of
proving uniqueness of the law of ZD by the argument underlying Proposition 4.11.

Proof of Theorem 10.14, (1) and (3). (1) was already stated as Exercise 10.5 while (3)
is a simple consequence of the fact that the DGFF on domains separated by at least
two lattice steps are independent. (This is one placed where the first condition
(1.23) of admissible approximations enters.)

Next we will address the statement of the Gibbs-Markov property in (4):
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Proof of Theorem 10.14(4). For a while we can follow the proof of Proposition 4.9 on
the Gibbs-Markov property for the measures arising from the intermediate level
sets. Let eD and D as in the statement, let f 2 Cc( eD ⇥ R) with f � 0 and recall the
notation

fF(x, h) := f
�

x, h + FD, eD(x)
�

. (10.28)

The argument leading up to (4.24) then ensures

hhD, f i law
= hh eD, fFi, FD, eD ?? h

eD, (10.29)

where hD and h eD are the limit processes in the respective domains. The Poisson
nature of the limit process then gives, via a routine change of variables,

E
�

e�hh eD , fFi� = E
⇣

exp
n

�
Z

Z eD(dx)e�ahdh
�

1 � e� f (x, h+FD, eD(x))�
o⌘

= E
⇣

exp
n

�
Z

Z eD(dx)eaFD, eD(x)e�ahdh
�

1 � e� f (x,h)�
o⌘

(10.30)

Comparing this with the expression one would get for the Laplace transform of
hhD, f i, and using that the above f ’s are sufficient to determine the intensity mea-
sure, the claim follows.

From here we get:

Exercise 10.15 Prove that the measure ZD charges every non-empty open subset of D
with probability one. In particular, supp ZD = D a.s.

The Gibbs-Markov property yields another useful fact:

Exercise 10.16 Let D 2 D and assume that {Dn : n � 1} 2 D are such that Dn " D
with CD,Dn

(x, y) ! 0 locally uniformly on D. Then

ZDn
(dx) law�!

n!•
ZD(dx). (10.31)

Proof of Theorem 10.14(2). The previous exercise allows us to assume that both a
and b are rational. As aN and bN will then be integer for an infinite number of N,
the existence of the limit permits us to in fact assume that a 2 Z2 and b 2 N. The
invariance of the law of ZD under integer-valued shifts is a trivial consequence of
the similar invariance of the DGFF. Concerning the behavior under scaling, here we
note that if {DN : N � 1} approximates D, then {DbN : N � 1} approximates bD.
The only item to worry about is the centering of the field which changes by

mbN � mN = 2
p

g log(b) + o(1). (10.32)

Following this change through the limit procedure yields

ZbD(bdx) law
= ea2pg log(b)ZD(dx). (10.33)

The claim follows by noting that a2pg = 4.
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Proof of Theorem 10.14(5), sketch. The starting point is an extension of Proposi-
tion 10.7 to all D 2 D. This is technically achieved by considering two domains,
eD ⇢ D with eD a square, picking their approximating domains {DN} and { eDN}
respectively, and coupling the fields between these via the Gibbs-Markov property,

hDN = h eDN + jDN , eDN , h eDN ?? jDN , eDN (10.34)

We then claim without proof the following intuitive fact: Conditional on the maxi-
mum of the DGFF in DN to be large, the position of the maximizer of hDN will with high
probability coincide with the position of the maximizer of h eDN . Denoting the limit law
of the scale maximizer/centered maximum for domains DN by (X?, h?) and letting
( eX?,eh?) be the corresponding object of eDN , we thus get

P
�

X? 2 A, h? > t
�

=
�

1 + o(1)
�

P
⇣

eX? 2 A, h? + FD, eD( eX?) > t
⌘

, (10.35)

where N ! • could be taken in light of Lemma 10.11 and where o(1) ! 0 in
the limit t ! •. Since eD is a square, Proposition 10.7 and a judicious shift of t
by FD, eD(X?) then show

t�1eatP
⇣

eX? 2 A, eh? + FD, eD( eX?) > t
⌘

�!
t!•

E
⇣

Z

A
eaFD, eD(x)y

eD(x)dx
⌘

. (10.36)

Hereby we get

t�1eatP
�

X? 2 A, h? > t
� �!

t!•

Z

A
yD(x)dx , (10.37)

where
yD(x) := y

eD(x)e
1
2 a2 CD, eD(x,x). (10.38)

This is our version of Proposition 10.7 for general D 2 D. Note that yD is not
necessarily a probability density.

Since 1
2 a2g = 2, from the relation between CD, eD, the Green functions and the con-

formal radius we then get

yD(x)
rD(x)2 =

y eD(x)
r
eD(x)2 , x 2 eD. (10.39)

From here we find out that the ratio for eD does not change if we shift eD around
while keeping x 2 eD. This implies that the ratio for eD fixed is the same for all
x 2 eD. Consequently, the ratio for D is constant on neighborhoods of x and thus on
all connected components. Each connected component can be handled separately
due to independence of the DGFF on each of them. Hence, for all D and all x 2 D,

yD(x) = crD(x)2 (10.40)

for some c > 0 independent of D.
Having extended Proposition 10.7 to all D 2 D, writing l := a�1e�at, (10.37),
Corollary 10.13 and (10.17) then show

E(bZD(A)[1 � e�lZD(D)])
l log(1/l)

�!
l#0

ac?
Z

A
yD(x)dx (10.41)

116 (Last update: June 26, 2017)



Figure 10.1: A tiling of domain D by equilateral triangles of side-length K�1.

for any A ⇢ D open with Leb(∂A) = 0. Using straightforward monotonicity
arguments, we get the same for the quantity on the left of (10.27).

10.3. Connection to Liouville Quantum Gravity

As our final item of concern in this lecture, we wish to explain that the properties
listed in Theorem 10.14 actually determine the laws of the ZD’s uniquely. This
will then permit us to state that these measures coincide with the critical Liouville
Quantum Gravity measures associated with the continuum GFF.
Given an integer K � 1, consider consider a tiling of the plane by equilateral trian-
gles of side-length K. For a domain D 2 D, let T1, . . . , TmK be the triangles in the
tiling contained in D, cf Fig. 10.1. Abbreviate

eD :=
mK
[

i=1
Ti. (10.42)

Given d 2 (0, 1), assume that the triangles we were enumerated so that i = 1, . . . , nK,
for some nK  mK, label the triangles that are at least distance d away from Dc. De-
fine Td

1 , . . . , Td
nK

the the equilateral triangles of side length (1 � d)K�1 that have the
same orientation and centers as T1, . . . , TnK . Recall that the oscillation of a func-
tion f on a set A is given by

oscA f := sup
x2A

f (x)� inf
x2A

f (x) (10.43)

We then claim:
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Theorem 10.17 Consider the events Ai
K,R, i = 1, . . . , nK defined by

Ai
K,R :=

�

oscTi
d
FD, eD  R

 \ �

max
Ti

d

FD, eD  2
p

g log K � R
 

. (10.44)

Then for any family {MD : D 2 D} of random Borel measures satisfying conditions (0-4)
of Theorem 10.14 with constant ĉ 2 (0, •) and any D 2 D, the random measure

aĉyD(x)
nK

Â
i=1

1Ai
K,R

�

aVar(FD, eD(x))� FD, eD(x)
�

eaFD, eD(x)� 1
2 a2Var(FD, eD(x)) 1Ti

d
(x)dx

(10.45)
tends in law to MD in the limit as K ! •, R ! • and d # 0 (in this order). (This holds
irrespective of the orientation of the triangular grid.)

As a consequence, we then get:

Corollary 10.18 [Characterization of ZD-measures] The laws of {ZD : D 2 D} are
determined uniquely by conditions (1-5) up to the choice of the constant ĉ.

Proof of Theorem 10.17, sketch. The proof is based on a number of relatively straight-
forward observations. Denote eDd :=

SnK
i=1 Ti

d and, for f 2 Cc(D), let fd := f 1
eDd .

Property (1) above then ensures

hZD, fdi law�!
d#0

hZD, f i . (10.46)

So we may henceforth focus on fd. Properties (3-4) then give

1
eDd(x)MD(dx) law

=
nK

Â
i=1

eaFD, eD(x)1Td
i
(x) MTi(dx) , (10.47)

with MT1 , . . . , MTnK and FD, eD all independent. Let x1, . . . , xnK be the center points
of the triangles T1, . . . , TnK , respectively. A variation on Exercise 10.9 then shows

lim sup
K!•

P
⇣

max
i=1,...,nK

FD, eD(xi) > 2
p

g log K � c log log K
⌘

= 0. (10.48)

for some c > 0. The first harder bit of the proof is the content of:

Proposition 10.19 For any d 2 (0, 1) and any e > 0,

lim
R!•

lim sup
K!•

P
⇣

nK

Â
i=1

Z

Ti
d

MTi
(dx)eaFD, eD(x)1{oscTi

d
FD, eD>R} > e

⌘

= 0. (10.49)

We will not give the proof; instead we refer to Proposition 6.5 of the 2014 joint paper
of the lecturer with O. Louidor. We still remark, however, that it is this proposition
that forces us to work with triangles. Indeed, in this case the space of piecewise
harmonic continuous functions on eDd naturally decomposes into functions that
are linear on each Ti, and thus determined by their values at three points in Ti, and
functions whose contribution can already be neglected.
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The above observations permit us to restrict attention only to those triangles where
event Ai

K,R occurs. The key point is that Ai
K,R forces the field to be part of an

equicontinuous family. Let FT
R,b,d denote the class of continuous functions f : T !

R on triangle T such that

f(x) � b and |f(x)� f(y)|  R|x � y|, x, y 2 Td. (10.50)

For such functions, property (5) yields:

Proposition 10.20 Fix b > 0 and R > 0. For each e > 0 there are d0 > 0 and l0 > 0
such that, for all l 2 (0, l0), all d 2 (0, d0) and all f 2 FT

R,b,d,

(1� e)
Z

Td

f (x)yT(x)dx  log E(e�lMT( f1Td
))

l log l
 (1+ e)

Z

Td

f (x)yT(x)dx, (10.51)

where MT( f1Td
) :=

R

Td
MT(dx) f (x).

We will not give a proof and instead refer to Proposition 6.6 of the aforementioned
paper. Using this proposition with l := K�4eaFD, eD(xi), on Ai

K,R we then get

E
✓

exp
n

�eaFD, eD(xi)MTi
( f1Ti

d
ea(FD, eD�FD, eD(xi)))

o

�

�

�

�

FD, eD
◆

= exp
⇢

(1 + ẽ)K�4 log
�

K�4eaFD, eD(xi)
�

Z

Ti
d

f (x)K4yTi
(x)eaFD, eD(x) dx

� (10.52)

for some ẽ 2 [�e, e] depending only on FD, eD.
Denote by ZD

K,R,d the measure in (10.45) and use MD
K,R,d be the expression on the

right of (10.47) with the sum restricted to i where Ai
K,R occurs. Noting that

log(K�4eaFD, eD(xi)) =
�

1 + o(1)
�

a
�

FD, eD(x)� aVar(FD, eD(x))
�

(10.53)

with o(1) ! 0 as K ! • uniformly in x 2 Ti
d and recalling that

yTi
(x) = yD(x)e�

1
2 a2Var(FD, eD(x)), x 2 Ti, (10.54)

we thus get

E
�

e�(1+2e)eZD
K,R,d( f )�  E

�

e�MD
K,R,d( f )�  E

�

e�(1�2e)eZD
K,R,d( f )�. (10.55)

Since MD
K,R,d( f ) tends in distribution to MD( f ) in the stated limits, the law of MD( f )

is given by the corresponding limit law of eZD
K,R,d( f ).

Another consequence of the above theorem is the behavior of the measures under
conformal transforms of the underlying domain:

Corollary 10.21 [Conformal invariance] Let f : D ! f (D) be a conformal bijection
between admissible domains D, f (D) 2 D. Then

Z f (D) � f (dx) law
=

�

� f 0(x)
�

�

4 ZD(dx) (10.56)

In particular, the law of rD(x)�4ZD(dx) is invariant under conformal maps.
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This follows, roughly speaking by the fact that the law of FD, eD is conformally in-
variant and also the observation that a conformal map is locally a dilation and
rotation. Hence, the triangles Ti map to near-triangles f (Ti) with the deformation
tending to zero with the size of the triangle.
As a final remark we provide identification with a white-noise version of the crit-
ical Liouville Quantum Gravity constructed by Duplantier, Rhodes, Sheffield and
Vargas. We choose to work with the so called Seneta-Heyde normalization. The
specifics are as follows: For {Bt : t � 0} the standard Brownian motion, let pD

t (x, y)
be the transition density from x to y before exiting D. More precisely, letting
tDc := inf{t � 0 : Bt 62 D} we have

pD
t (x, y)dy := Px�Bt 2 dy, tDc > t

�

. (10.57)

Writing W for the white noise on D ⇥ (0, •) with respect to the Lebesgue measure,
consider the Gaussian process

jt(x) :=
Z

D⇥[e�4t,•)
pD

s/2(x, z)W(dz ds). (10.58)

Note that then the Markov property of pD gives

Cov
�

jt(x), jt(y)
�

=
Z

D⇥[e�4t,•)
pD

s (x, y)ds �!
t!•

GD(x, y). (10.59)

Define the random measure

MD
t (dx) :=

p
t 1D(x)yD(x)eajt(x)� 1

2 a2Var[jt(x)] dx (10.60)

We then have:

Theorem 10.22 [Duplantier, Rhodes, Sheffield and Vargas, 2014] There is a non-
vanishing a.s.-finite random measure MD

• such that for every A ⇢ D,

MD
t (A) �!

t!•
MD

•(A), a.s. (10.61)

The measure MD
• is the critical Liouville Quantum Gravity. It is a fact that this mea-

sure has infinite expectation on any non-empty open subset of D. The measure is
thus not really fixed by its expectation and so it is determined only up to a con-
stant. Other definitions exists and, through several contributions by various au-
thors, these are now known to be all equal up to a constant multiple. The measure
in (10.45) is another example of this kind, although the uniqueness theorems do
not apply to this case. We thus use the opportunity to announce:

Theorem 10.23 [B-Louidor, 2017] The measures {MD
• : D 2 D} obey conditions (1-5)

of Theorem 10.14 for some constant ĉ. In particular, there is c? 2 (0, •) such that

ZD(dx) law
= c?MD

•(dx), D 2 D. (10.62)
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