Extreme points of two-dimensional discrete Gaussian Free Field

Marek Biskup

(UCLA)

Joint work with **Oren Louidor** (Technion, Haifa)

Discrete Gaussian Free Field (DGFF)

 $D \subset \mathbb{R}^d$ (or \mathbb{C} in d=2) bounded, open, "nice" boundary $D_N := \{x \in \mathbb{Z}^d \colon x/N \in D\}$ $G_N^D :=$ Green function of SRW on D_N killed upon exit

$$G_N^D(x,y) = E^x \left(\sum_{k=0}^{\tau-1} 1_{\{X_k = y\}} \right)$$

where $\tau :=$ first exit time from D_N

Definition

DGFF on $D_N := \text{Gaussian process } \{h_x : x \in D_N\} \text{ with }$

$$E(h_x) = 0$$
 and $E(h_x h_y) = G_N^D(x, y)$

N.B. Zero values outside D_N

Gibbs-Markov property

Law of $\mathsf{DGFF} = \mathsf{finite}\text{-}\mathsf{volume}$ Gibbs measure characterized by

The Gibbs-Markov property:

Assume $\widetilde{D} \subset D$. Then

$$h^D \stackrel{\text{law}}{=} h^{\widetilde{D}} + \varphi^{D,\widetilde{D}}$$

where

- (1) $h^{\widetilde{D}}$ and $\varphi^{D,\widetilde{D}}$ independent Gaussian fields
- (2) $x \mapsto \varphi^{D,\widetilde{D}}(x)$ discrete harmonic on \widetilde{D}_N

Set
$$\varphi^{D,\widetilde{D}}(x) := E(h^D(x) \mid h^D(z) \colon z \in D_N \setminus \widetilde{D}_N)$$

Then $h^D - \varphi^{D,\widetilde{D}} \perp \!\!\!\perp \varphi^{D,\widetilde{D}}$ and $h^D - \varphi^{D,\widetilde{D}} \stackrel{\text{law}}{=} h^{\widetilde{D}}$

Why 2D?

For x with $\operatorname{dist}(x, D_N^c) > \delta N$,

In d = 2:

$$G_N(x,y) = g \log N - a(x,y) + o(1), \qquad N \gg 1$$

 $a(x,y) = g \log |x-y| + c_0 + o(1), \qquad |x-y| \gg 1$

where

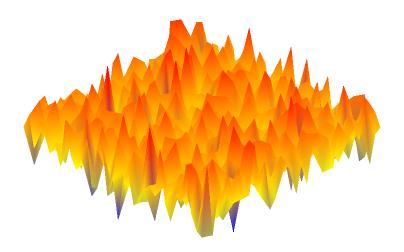
$$g := \frac{2}{\pi}$$
 (In physics, $g := \frac{1}{2\pi}$)

The model is asymptotically scale invariant:

$$G_{2N}(2x,2y) = G_N(x,y) + o(1)$$

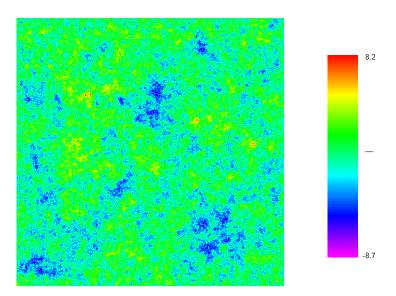
In fact: conformally invariant (S. Andres' talk)

DGFF: a sample figure Box 35×35, range of values $\approx [-5,5]$



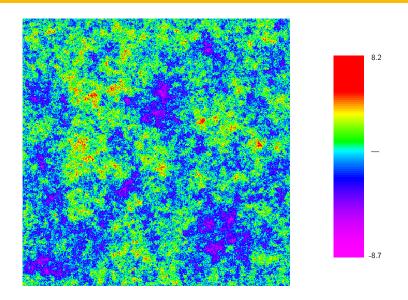
DGFF on 500×500 square

Uniform color system



DGFF on 500×500 square

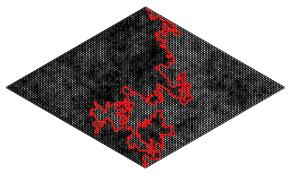
Emphasizing the extreme values



Level set (fractal) geometry

Some known facts

• O(1)-level sets: SLE_4 curves (Schramm & Sheffield)



• $O(\log N)$ -level sets: Hausdorff dimension (Daviaud)

$$\{x \in D_N \colon h(x) \ge 2\sqrt{g} \gamma \log N\}, \qquad 0 < \gamma < 1$$

has $N^{2(1-\gamma^2)+o(1)}$ vertices. Note: Maximum order log N!

Goal of today's talk Extreme values of DGFF

Main goal: Describe statistics of extreme values of h^D

Question of interest: What's the role of conformal invariance?

N.B.: Continuum GFF not a function!

Surprise connections:

- Invariant measures for independent particle systems
- ► Liouville Quantum Gravity (S. Andres' talk)

Further known facts

Absolute maximum

Setting and notation: $D_N := (0, N)^2 \cap \mathbb{Z}^2$

$$M_N := \max_{x \in D_N} h_x$$
 and $m_N := EM_N$

Leading scale (Bolthausen, Deuschel & Giacomin):

$$m_N \sim 2\sqrt{g} \log N$$

Tightness for a subsequence (Bolthausen, Deuschel & Zeitouni):

$$2E|M_N-m_N|\leq m_{2N}-m_N$$

Full tightness (Bramson & Zeitouni):

$$EM_N = 2\sqrt{g}\log N - \frac{3}{4}\sqrt{g}\log\log N + O(1)$$

Convergence in law (Bramson, Ding & Zeitouni)

Some known facts

Extremal process tightness

Ding & Zeitouni, Ding established extremal process tightness:

Extreme level set:

$$\Gamma_N(t) := \{ x \in D_N \colon h_x \ge m_N - t \}$$

$$\exists c, C \in (0, \infty) \colon \qquad \lim_{\lambda \to \infty} \liminf_{N \to \infty} P \big(e^{c\lambda} \le |\Gamma_N(\lambda)| \le e^{C\lambda} \big) = 1$$

and $\exists c > 0$ s.t.

$$\lim_{r\to\infty}\limsup_{N\to\infty}P\Big(\exists x,y\in\Gamma_N\big(c\log\log r\big)\colon r\leq |x-y|\leq N/r\Big)=0$$

Setup for extreme order theory

Extremal point process

Full process: Measure η_N on $\overline{D} \times \mathbb{R}$

$$\eta_N := \sum_{x \in D_N} \delta_{x/N} \otimes \delta_{h_x - m_N}$$

Problem: Values in each "peak" strongly correlated

Local maxima only:
$$\Lambda_r(x) := \{z \in \mathbb{Z}^2 : |z - x| \le r\}$$

$$\eta_{\mathit{N,r}} := \sum_{\mathsf{x} \in \mathit{D}_\mathit{N}} \mathbb{1}_{\{\mathit{h}_\mathsf{x} = \mathsf{max}_{\mathsf{z} \in \Lambda_\mathit{r}(\mathsf{x})} \, \mathit{h}_\mathsf{z}\}} \, \delta_{\mathsf{x}/\mathit{N}} \otimes \delta_{\mathit{h}_\mathsf{x} - \mathit{m}_\mathit{N}}$$

Theorem (Convergence to Cox process)

There is a random Borel measure Z^D on \overline{D} with $0 < Z^D(\overline{D}) < \infty$ a.s. such that for any $r_N \to \infty$ and $N/r_N \to \infty$,

$$\eta_{N,r_N} \xrightarrow[N \to \infty]{\text{law}} PPP\Big(Z^D(dx) \otimes e^{-\alpha h}dh\Big)$$

where
$$\alpha := 2/\sqrt{g} = \sqrt{2\pi}$$
.

Corollaries

Asymptotic law of maximum: Setting $Z := Z^D(\overline{D})$,

$$P(M_N \le m_N + t) \xrightarrow[N \to \infty]{} E(e^{-\alpha^{-1}Ze^{-\alpha t}})$$

N.B.: Laplace transform of Z

Joint law position/value: $A \subset D$ open, $\widehat{Z}(A) = Z^D(A)/Z^D(\overline{D})$

$$P\Big(M_N \le m_N + t, N^{-1} \operatorname{argmax} h^D \in A\Big) \underset{N \to \infty}{\longrightarrow} E\Big(\widehat{Z}(A) e^{-\alpha^{-1} Z e^{-\alpha t}}\Big)$$

In fact: Key steps of the proof

Proof of Theorem

Invariance under "Dysonization"

As $\{\eta_{N,r_N}\colon N\geq 1\}$ tight, we can extract converging subsequences Denote

$$\langle \eta, f \rangle := \int \eta(\mathrm{d}x, \mathrm{d}h) f(x, h)$$

Proposition (Distributional invariance)

Suppose $\eta := a$ weak-limit point of some $\{\eta_{N_k,r_{N_k}}\}$. Then for any $f: D \times \mathbb{R} \to [0,\infty)$ continuous, compact support,

$$E(e^{-\langle \eta, f \rangle}) = E(e^{-\langle \eta, f_t \rangle}), \qquad t > 0,$$

where

$$f_t(x,h) := -\log E e^{-f(x,h+B_t-\frac{\alpha}{2}t)}$$

with $B_t := standard Brownian motion$.

Proposition explained

We may write

$$\eta = \sum_{i>1} \delta_{(\mathsf{x}_i, h_i)}$$

Let $\{B_t^{(i)}\} := i.i.d.$ standard Brownian motions. Set

$$\eta_t := \sum_{i \geq 1} \delta_{(\mathsf{x}_i, h_i + oldsymbol{B}_t^{(i)} - rac{lpha}{2}t)}$$

Well defined as $t\mapsto |\Gamma_N(t)|$ grows only exponentially. Then

$$E(e^{-\langle \eta_t, f \rangle}) = E(e^{-\langle \eta, f_t \rangle})$$

and so Proposition says

$$\eta_t \stackrel{\text{law}}{=} \eta, \qquad t > 0$$

Proof of Proposition I

Gaussian interpolation: $h', h'' \stackrel{\text{law}}{=} h$, independent

$$h \stackrel{\text{law}}{=} \underbrace{\left(1 - \frac{t}{g \log N}\right)^{1/2} h'}_{\text{main term}} + \underbrace{\left(\frac{t}{g \log N}\right)^{1/2} h''}_{\text{perturbation}}$$

Denote

$$\Theta_{N,r}(\lambda) := \{x \in D_N \colon h_x' \ge m_N - \lambda, \, h_x' = \max_{z \in \Lambda_r(x)} h_z' \}$$

For $x \in \Theta_{N,r}(\lambda)$ ("large *r*-local maximum"):

$$\begin{split} \left(1 - \frac{t}{g \log N}\right)^{1/2} h_x' &= h_x' - \frac{1}{2} \frac{t}{g \log N} h_x' + o(1) \\ &= h_x' - \frac{t}{2} \frac{m_N}{g \log N} + o(1) \\ &= h_x' - \frac{\alpha}{2} t + o(1) \end{split}$$

Proof of Proposition II

Concerning h'', abbreviate

viate
$$\widetilde{h}_{x}'' := \left(\frac{t}{g \log N}\right)^{1/2} h_{x}''$$

Properties of Green function:

$$\operatorname{Cov}(\widetilde{h}''_x,\widetilde{h}''_y) = egin{cases} t+o(1), & ext{if } |x-y| \leq r & ext{nearly constant} \ o(1), & ext{if } |x-y| \geq N/r & ext{nearly independent} \end{cases}$$

So we conclude: The law of

$$\left\{\widetilde{h}_{x}^{\prime\prime}\colon x\in\Theta_{N,r}(\lambda)\right\}$$

is asymptotically that of independent B.M.'s

Proof of Theorem

Invariant laws for independent particle systems

Problem: Characterize point processes on $\overline{D} \times \mathbb{R}$ are invariant under independent Dysonization

$$(x,h) \mapsto \left(x,h+B_t-\frac{\alpha}{2}t\right)$$

of (the second coordinate of) its points

Easy to check: $PPP(v(dx) \otimes e^{-\alpha h}dh)$ okay for any v (even random)

Any other solutions?

Liggett's "folk" theorem

Setting:

- ► Markov chain on (nice space) \mathscr{X} w/ transition kernel P
- System of particles evolving independently by P
- $ightharpoonup \mathscr{I} := loc.$ finite **invariant measures** on particle systems

Theorem (Liggett 1977)

Assume uniform dispersivity property:

$$\sup_{x \in \mathscr{X}} \mathsf{P}^n(x,C) \xrightarrow[n \to \infty]{} 0 \qquad \forall C \subset \mathscr{X} \ \textit{compact}$$

Then each $\mu \in \mathscr{I}$ takes the form $\operatorname{PPP}(M(\mathrm{d} x))$, where M is a random measure satisfying

$$MP \stackrel{\text{law}}{=} M$$

Liggett's 1977 derivation

For t > 0 define Markov kernel P on $\overline{D} \times \mathbb{R}$ by

$$(\mathsf{P}g)(x,h) := E^0 g(x,h + B_t - \frac{\alpha}{2}t)$$

Set $g(x,h) := e^{-f(x,h)}$ for $f \ge 0$ continuous with compact support. Proposition implies

$$E(e^{-\langle \eta, f \rangle}) = E(e^{-\langle \eta, f^{(n)} \rangle})$$

where

$$f^{(n)}(x,h) = -\log(\mathsf{P}^n \mathrm{e}^{-f})(x,h)$$

P has uniform dispersivity property and so $\mathsf{P}^n\mathsf{e}^{-f}\to 1$ uniformly on $\overline{D}\times\mathbb{R}$. Expanding the log,

$$f^{(n)} \sim 1 - \mathsf{P}^n \mathrm{e}^{-f}$$
 as $n \to \infty$

Liggett's 1977 derivation (continued)

Hence

$$E\left(e^{-\langle \eta, f \rangle}\right) = \lim_{n \to \infty} E\left(e^{-\langle \eta, 1 - \mathsf{P}^n e^{-f} \rangle}\right) \tag{*}$$

But, as P is Markov,

$$\langle \eta, 1 - \mathsf{P}^n \mathrm{e}^{-f} \rangle = \langle \eta \mathsf{P}^n, 1 - \mathrm{e}^{-f} \rangle$$

(*) shows that $\{\eta P^n \colon n \ge 1\}$ is tight. Along a subsequence

$$\eta \mathsf{P}^{n_k}(\mathrm{d} x, \mathrm{d} h) \xrightarrow[k \to \infty]{\mathrm{law}} M(\mathrm{d} x, \mathrm{d} h)$$

and so

$$E(e^{-\langle \eta, f \rangle}) = E(e^{-\langle M, 1 - e^{-f} \rangle})$$

i.e., $\eta = PPP(M(dx,dh))$. Clearly,

$$MP \stackrel{\text{law}}{=} M$$

Proof of Theorem

Key problem II

Question: What *M* can we get in our case?

Theorem (Liggett 1977)

 $MP \stackrel{\text{law}}{=} M \text{ implies } MP = M \text{ a.s. when } P \text{ is a kernel of }$

- (1) an irreducible, recurrent Markov chain
- (2) a random walk on a closed abelian group w/o proper closed invariant subset

N.B.:(2) covers our case and

MP = M a.s. \Leftrightarrow M random mixture of P-invariant laws

For our chain Choquet-Deny (or $t \downarrow 0$) shows

$$M(\mathrm{d}x,\mathrm{d}h) = Z^D(\mathrm{d}x) \otimes \mathrm{e}^{-\alpha h} \mathrm{d}h + \widetilde{Z}^D(\mathrm{d}x) \otimes \mathrm{d}h$$

Tightness of maximum forces $\tilde{Z}^D = 0$ a.s.

Proof of Theorem completed

Uniqueness of the limit

We thus know $\eta_{N_k,r_{N_k}} \xrightarrow{\mathrm{law}} \eta$ implies

$$\eta = \operatorname{PPP}(Z^D(\mathrm{d}x) \otimes \mathrm{e}^{-\alpha h} \mathrm{d}h)$$

for some random Z^D — albeit **possibly depending** on $\{N_k\}$.

But for $Z := Z^D(\overline{D})$, this yields

$$P(M_{N_k} \leq m_{N_k} + t) \xrightarrow[k \to \infty]{} E(e^{-\alpha^{-1}Ze^{-\alpha t}})$$

Hence: law of $Z^D(\overline{D})$ unique if limit law of maximum unique (and we know this from Bramson & Ding & Zeitouni)

Existence of joint limit of maxima in finite number of disjoint subsets of $D\Rightarrow$ uniqueness of law of $Z^D(\mathrm{d} x)$

Some literature

Details for above derivation for $D := (0,1)^2$: Biskup-Louidor (arXiv:1306.2602)

Maxima for log-correlated fields:

Madaule (arXiv:1307.1365), Acosta (arXiv:1311.2000)

Ding, Roy and Zeitouni (in preparation)

Properties of Z^D -measure

Theorem

The measure Z^D satisfies:

- (1) $Z^D(A) = 0$ a.s. for any Borel $A \subset \overline{D}$ with Leb(A) = 0
- (2) $supp(Z^D) = \overline{D}$ and $Z^D(\partial D) = 0$ a.s.
- (3) Z^D is non-atomic a.s.

Property (3) is only barely true:

Conjecture

 Z^{D} is supported on a set of zero Hausdorff dimension

Recall
$$\widetilde{D} \subseteq D$$
 yields $h^D \stackrel{\text{law}}{=} h^{\widetilde{D}} + \varphi^{D,\widetilde{D}}$

Fact: $\varphi^{D,\widetilde{D}} \xrightarrow{\text{law}} \Phi^{D,\widetilde{D}}$ on \widetilde{D} where

(1) $\{\Phi^{D,\widetilde{D}}(x)\colon x\in\widetilde{D}\}$ mean-zero **Gaussian** field with

$$\operatorname{Cov} \big(\Phi^{D,\widetilde{D}}(x),\Phi^{D,\widetilde{D}}(y)\big) = G^D(x,y) - G^{\widetilde{D}}(x,y)$$

(2) $x \mapsto \Phi^{D,\widetilde{D}}(x)$ harmonic on \widetilde{D} a.s.

Theorem (Gibbs-Markov property)

Suppose
$$\widetilde{D}\subseteq D$$
 be such that $\mathrm{Leb}(D\smallsetminus\widetilde{D})=0$. Then
$$Z^D(\mathrm{d} x)\stackrel{\mathrm{law}}{=} \mathrm{e}^{\alpha\Phi^{D,\widetilde{D}}(x)}Z^{\widetilde{D}}(\mathrm{d} x)$$

Conformal symmetry

Theorem (Conformal symmetry)

Suppose $f: D \rightarrow f(D)$ analytic bijection. Then

$$Z^{f(D)} \circ f(dx) \stackrel{\text{law}}{=} |f'(x)|^4 Z^D(dx)$$

In particular, for D simply connected and $rad_D(x)$ conformal radius

$$\operatorname{rad}_D(x)^{-4}Z^D(\mathrm{d}x)$$

is invariant under conformal maps of D.

Note:

- (1) Leb $\circ f(dx) = |f'(x)|^2 \text{Leb}(dx)$ and so $\text{rad}_D(x)^{-2} \text{Leb}(dx)$ is invariant under conformal maps.
- (2) By GM property it suffices to know law($Z^{\mathbb{D}}$) for $\mathbb{D} := \text{unit}$ disc. So this is a **statement of universality**

Unifying scheme?

Continuum Gaussian Free Field

Continuum GFF := Gaussian on $\mathsf{H}^1_0(D)$ w.r.t. norm $f \mapsto \pi \|\nabla f\|_2^2$

Formal expression:
$$h(x) = \sum_{n \geq 1} Z_n \varphi_n(x)$$
 { φ_n } ONB

Exists only as a linear functional on $H_0^1(D)$:

$$h(f) = \sqrt{\pi} \sum_{n \geq 1} Z_n \langle \nabla f, \nabla \varphi_n \rangle_{L^2(D)}$$

Derivative martingale: $(\gamma = 2 \text{ in S. Andres' talk})$

$$M'(\mathrm{d}x) = \left[2\mathrm{Var}(h(x)) - h(x)\right] e^{2h(x) - 2\mathrm{Var}(h(x))} \mathrm{d}x$$

Defined by smooth approximations to h or expansion in ONB (Duplantier, Sheffield, Rhodes, Vargas)

KPZ relation links M'-measure of sets to Lebesgue measure

Unifying scheme?

Liouville Quantum Gravity/Multiplicative Chaos

Liouville Quantum Gravity (LQG):

$$M^D(\mathrm{d}x) := \mathrm{rad}_D(x)^2 M'(\mathrm{d}x)$$

Theorem (B-Louidor, in progress)

There is constant $c_{\star} \in (0, \infty)$ s.t. for all D

$$Z^D(\mathrm{d} x) \stackrel{\mathrm{law}}{=} c_{\star} M^D(\mathrm{d} x)$$

Current status: Law of Z^D characterized by

Gibbs-Markov property

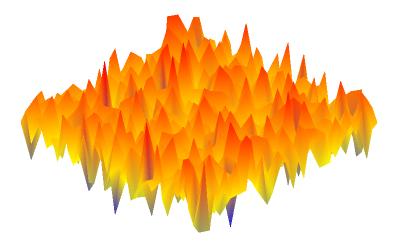
okay for LQG

shift and dilation symmetry

- okay for LQG
- precise upper tails of $Z^D(A)$

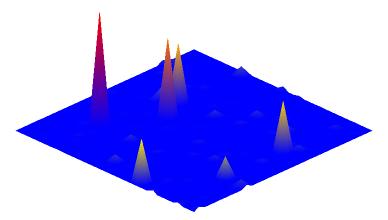
LQG in pictures

Naked GFF:



LQG in pictures

Derivative martingale:



THE END