Phase Coexistence of Gradient Gibbs Measures

Marek Biskup

(UCLA)

joint work with Roman Kotecký (Prague & Warwick)

Gradient Measures :

Random field: $(\phi_x)_{x\in\mathbb{Z}^d}$, $\phi_x\in\mathbb{R}$

Potential: $V \colon \mathbb{R} \to \mathbb{R}$, even, diverges at $\pm \infty$

Gibbs measure: $\Lambda \subset \mathbb{Z}^d$, b.c.

$$P_{\Lambda}(\mathrm{d}\phi_{\Lambda}) = \frac{1}{Z_{\Lambda}} \exp\left\{-\beta \sum_{\langle x,y \rangle} V(\phi_y - \phi_x)\right\} \mathrm{d}\phi_{\Lambda}$$

Example: $V(\eta) = \frac{1}{2}\eta^2$ (Gaussian free field)

Localization vs delocalization

Gradient projections :

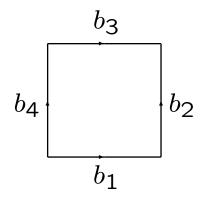
Gradient variables: b = (x, y)

$$\eta_b = \phi_y - \phi_x$$

Fact: V sufficient growth at $\pm \infty$ $\Rightarrow \Lambda \rightarrow \mathbb{Z}^d$ limit possible \Rightarrow DLR formalism

gives rise to Gradient Gibbs Measures (GGM)

Plaquette constraints:



$$\eta_{b_1} + \eta_{b_2} = \eta_{b_3} + \eta_{b_4}$$

Funaki-Spohn theory:

Tilt (or slope): $u \in \mathbb{R}^d$

$$E_{\mu}(\eta_b) = b \cdot u$$

 $\mathfrak{M}_u = \mathsf{set} \mathsf{ of} \mathsf{ ergodic}, \mathsf{ tr.-inv. } \mathsf{GGMs} \mathsf{ with} \mathsf{ tilt} u$

Theorem 1 (Funaki & Spohn, CMP 1997) Suppose V is uniformly strictly convex. Then

 $|\mathfrak{M}_u| = 1 \qquad \forall u \in \mathbb{R}^d$

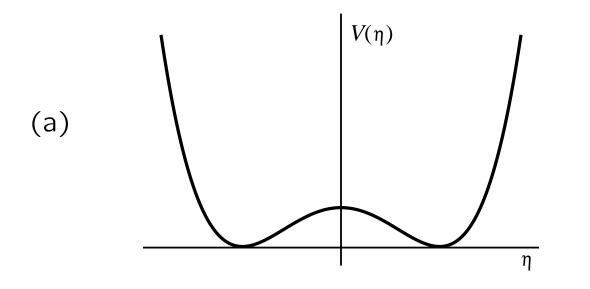
Main ideas:

Brascamp-Lieb inequality coupling via Langevin dynamics

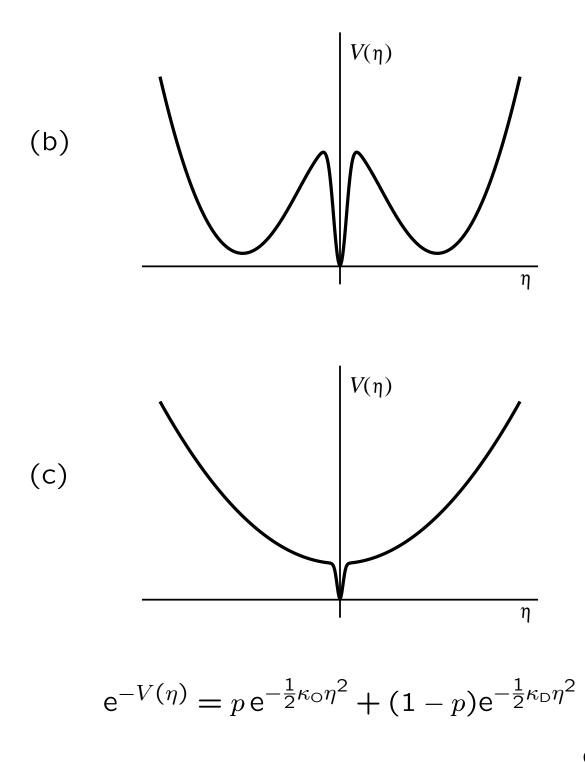
Both need $V''(\eta) \ge c > 0$

Extensions: Sheffield, 2003

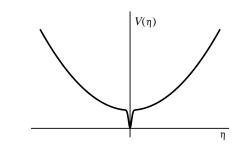
Beyond strict convexity I:



Ground states = ice model = disorder



6



Main results (d=2):

$$e^{-V_p(\eta)} = p e^{-\frac{1}{2}\kappa_0\eta^2} + (1-p)e^{-\frac{1}{2}\kappa_0\eta^2}$$

 $\mathfrak{M}_{u,p}=\operatorname{ergodic}\,\operatorname{GGMs}$ for $V=V_p$ & tilt u

Theorem 2 Consider model (c) with $\kappa_0 \gg \kappa_D$. Then $\exists p_t \in (0, 1)$ such that

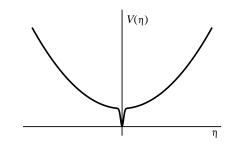
 $|\mathfrak{M}_{0,p_{t}}| \geq 2$ In fact, $\exists \mu^{\text{ord}}, \mu^{\text{dis}} \in \mathfrak{M}_{0,p_{t}}$ such that $(\underline{1}, \mu^{\text{ord}})$

$$\eta_b \sim \begin{cases} \overline{\sqrt{\kappa_o}} & & \text{in } \mu^{\text{ord}} \\ \frac{1}{\sqrt{\kappa_o}} & & \text{in } \mu^{\text{dis}} \end{cases}$$

Order-disorder transition $\frac{1}{\sqrt{\kappa_{\rm O}}} \ll \frac{1}{\sqrt{\kappa_{\rm D}}}$

Tools:

graphical representation chessboard estimates



Graphical representation:

$$e^{-V_p(\eta)} = p e^{-\frac{1}{2}\kappa_0\eta^2} + \underbrace{(1-p)e^{-\frac{1}{2}\kappa_0\eta^2}}_{\text{D-bond}}$$

Formally: for each bond

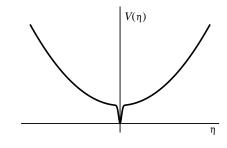
$$\mathrm{e}^{-V(\eta)} = \int_{\{\kappa > 0\}} \varrho(\mathrm{d}\kappa) \, \mathrm{e}^{-\frac{1}{2}\kappa\eta^2}$$

consider joint law of (κ_b, η_b)

Model (c): $\varrho = p \, \delta_{\kappa_{\rm O}} + (1-p) \delta_{\kappa_{\rm D}}$

Facts:

Conditional on κ , the η 's are Gaussian Joint measure is reflection positive



Duality (d=2)

Theorem 3 Suppose $\kappa_{O} \gg \kappa_{D}$. Then

$$\frac{p_{\rm t}}{1-p_{\rm t}} = \left(\frac{\kappa_{\rm D}}{\kappa_{\rm O}}\right)^{1/4}$$

Consequence of duality:

If p and p_{\star} are related via

$$\frac{p}{1-p}\frac{p_{\star}}{1-p_{\star}} = \sqrt{\frac{\kappa_{\rm D}}{\kappa_{\rm O}}}$$

Then bond marginals are dual under $\mathsf{O} \leftrightarrow \mathsf{D}$

TRUE on torus w/ proper b.c.

Concluding remarks :

- (1) Proof of coexistence: all $d \ge 2$
- (2) No control over $u \neq 0$ absence of RP
- (3) Classification of GGMs for given bond marginal
- (4) Crossover to 2nd order transition $\kappa_{\rm O}\gtrsim\kappa_{\rm D}$