New trends in homogenization

Roscoff, France

November 28, 2023



This is a probability talk by a probabilist!
Expect different notation, very little “continuum” business, etc
The talk is an overview “panorama” lecture

Don’t hesitate to ask questions



Markov chains on Z4

Integer lattice: 7% .= {(x1,...,x3) € R: xq1,...,x;€ Z}.
Markov chain on Z? prescribed by P: Z¢ x Z? — [0,1] such that

vxez': D P(ry) =1

. eZ4
Notation: Y

@ X = {X,}n>0 sample path of the Markov chain
e P¥:=law of X on (Z4)N such that P*(Xp = x) = 1

Natural choices for transition probability:
@ P constant ...leads to “ordinary” random walks
@ P periodic ...basically the same
@ P aperiodic (deterministic) ...???
@ P random ...defines a random walk in random environment (RWRE)

In all cases we refer to the choice of P as environment



Continuum musings .. .just once!

Generator L := P — 1 acts as

= > Py[fly) —f(x)]

yez?
Continuum analogue of X: diffusion given via an SDE
dX; = v(X;)dt + o(X;)dBy
This has generator in non-gradient form
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T), can also be written in gradient form
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Discrete world is more complex ...

which, denoting &

I\J\H

i_
i_



Overall goals

@ Describe the long time statistical properties of sample paths n — X,
@ Track the effects caused by various irregularities of P
e Hopefully prove that averaging occurs and most of these wash out



SLLN & CLT

Homogeneous case: If y — P(x,y) independent of x then X is “ordinary”
random walk on Z°. Namely X, = Z1 + - - - + Z,, where {Z: k > 1} are ii.d.

Theorem (Strong Law of Large Numbers)

Assume Xy, := Z1 + - -+ + Zy, for {Zy: k = 1} i.i.d. R%*-valued with Z, € L'. Then

lim Kn _ E(Zy) as.

n—oo mn

Theorem (Multivariate Central Limit Theorem)
Assume Xy :=Zq1+ -+ Zn for {Zy: k = 1} i.id. R-valued with Z, € L2. Then
Xn - HE(Z1) law

where C is a d x d matrix determined by

v-Co=E((v-Z1)%), veR‘




Functional CLT

A (d-dimensional) standard Brownian motion {B;: t > 0} is a process with
@ continuous sample paths, and
e independent increments such that B; — B; = N'(0, (t —s)1) forall 0 <s <t

Wiener measure := law of Bon C(Ry,R?) := {f: R} — R?: continuous}
Theorem (Donsker’s Invariance Principle)

Assume Xy :=Z1 + -+ -+ Zy for {Z: k = 1} i.i.d. R%-valued with

Z1el? and E(Z;)=0
Set

1
B .= ﬁ(xlth + (1 — |tn]) (X1 — XWJ)), t>0

Then the law of t — B™ on C (H{+,]I{d) tends to that t — AB; where B is standard
Brownian motion and A is a d x d-matrix s.t. Cov(Z;) = AAT.




Key question and plan

Main question of interest:

How robust are the above limit results w.r.t. perturbations of P?

Plan of discussion:
@ Periodic environments
@ Stochastic reversible environments

@ Deterministic reversible environments



Periodic environments
A Probability-101 approach



Periodic environments

Assume that P is periodic in all directions:
3L > 1Vx,y,z€ Z%: P(x + Lz,y + Lz) = P(x,y)

Key fact: X has conditionally independent increments
Define Ap :=[0,L)? n Z%and Q. : Ar x AL — [0,1] by

Qr(x,y) == 2 P(x,y + Lz)

zeZ4
P(x,y + Lz)
z) = ——~——=
S e
(Make an arbitrary choice if Q.(x,y) = 0.) Then
@ Qq is a transition probability of a Markov chain on Ap,

and, for each y € Ay, set

® iy, is a probability on Z* for each x,y € Ay
We then have ...



Periodic case, factorization

Lemma (Factorization)
Given x € A, sample:
@ Y :=a path of Markov chain on A, with transition probability Qr, started from x
e independent {Z(y’y,): k=1,y,y € AL} with law(Z,((y’y,)) = Uy
For each n = 0 define ;
Xy:=Y,+L 2 Z]((Y"’Y"“)

k=1
Then X = {Xy}n>1 has the law P*

Proof: Fixy,y' € Ap and z,2’ € Z%. Then
P(Xys1 =y +LZ | Xy =y + Lz2)
= P(Yuy1 =, Z%%) =2 — 2| X, = y + 2)

= QL Y )iyy (@ —2) = P(x,y+L(Z' —2)) =P(x+ Lz,y + L) [



Periodic case, limit laws

As it turns out, all we need from Y are the jump counts

Nau(y, Zhnle1w
k=1

Assume henceforth Y irreducible; meaning Vx,y € Ap: inf,>1 P*(X,, =y) >0

(€% Y1 )

Xu:=Yu+L Y 12y

Lemma (SLLN for jump counts)
Forally,y' € AL thereis q(y,y') € [0,1] such that, for all x,y € Ay,

. Ny (y, ]//) . ’ X
lim — == =q(y,y) P'-as.
Proof: Renewal theorem for times between visits toy ... O

Corollary (SLLN for random walk)

Forall x € Ap,
wy') x_
JEEO?—LZCI]/, E(zy77) Pt-as.
yy'eAL




Periodic case, limit laws continued

Lemma (CLT for jump counts)

There exists a covariance matrix C such that, for all x € Ap,

Nuy,y') —aly.ym . x W
law of { NG : Y,y € AL under P* — N(0,C)

Proof: CLT for additive functionals of Markov chains (Gordin and Lif$ic 1981)
Corollary (CLT for random walk)
Abbreviate v := LY}, e, 4y, ¥)E (ZY¥)). Then

Xy —no law
N(0,%)
where v/nL e
= Y @ y)CovZ)+ Y N Oy y)@.7)EE) B

yy'eAL Yy eAL T EAL




Summary

All random walks in periodic environments are explicitly treatable

The key step is a decomposition of the Markov chain into
@ a finite state Markov chain representing “microscopic” steps
@ asequence of conditionally independent “macroscopic” steps

This is an example of two-scale decomposition

A crucial input is a CLT for additive functionals of Markov chains

Problem: Explicit decomposition unclear for non-periodic environments.



Periodic environments

Homogenization approach



Periodic balanced models

Keep assuming
3L = 1Vx,y,z€ Z*: P(x+ Lz,y + Lz) = P(x,y)

but consider first the symmetric (a.k.a. balanced) case:

Vxe z4: Z P(x,y)(y—x) =0

yez?

Then E(X,+1|Xn = x) = x + E(X;;4+1 — x| X, = x) = x and so X conforms to:

Definition (Martingale)
A sequence {X,},>0 of R%-valued random variables endowed with a

filtration {F,},>0 is a martingale if, for alln > 0,

X,eL! and X, is F,-measurable
and

E(Xy41|Fn) = Xn as.

Natural filtration: F, := o(Xp, ..., Xy,)



Limit theorems for martingales

Theorem (SLLN for martingales)

For each martingale X,

. X
lim =2 =0 as.
n—oo 1M1

Theorem (CLT for martingales)

Let M be an R-valued martingale such that M,, € L? for each n > 0. Assume that
there exists a covariance matrix C such that

P
*Z - (My — Mi—1))* | Fi1) — v-Co, veR?
and
1< ’ P
= 2 E(Myx = Mt Pl uty_yjmepym 1 Fim1) =2 0, €>0
k=1
Then 1

law
WMH njo)o (0, C)




CLT for balanced periodic environments

For each vy € Aj, set <
Y k Nn(y) = Z 1{Xk:ymodL}

k=0
By Renewal Theorem we know that, assuming Y irreducible,
— 1im V@)
a0) = im ==

exists P*-a.s. for all y € A (independently of x)

Theorem (CLT for balanced periodic environments)
Suppose P is L-periodic, balanced with the underlying chain Y irreducible. Assume
Vx e Z°: Z P(x,y)ly — x> <

Then yez!
1 law
—X, — (0,0)
where Vi e

C:= >, 4 Y, PEayy—2)®y—=x)

xXeA yeZd




Proof — key calculation

Note that, by the Markov property,

E((0- (Xe = Xk-1))? |Fi-1) = f(Xi1)

where 5
f@) = 3 Pxy) (v (y—x))
yezd
Hence we get
Z (X = Xee1))? [ Fic1) = ), Nuoa(0)f

XEAL

and so, since 2N,(x) — q(x) a.s.,

*Z - (Xi — X-1))? | Fe) 2 D a0 f(x) as.

XGAL

Now write the rh.s. as v - Cv and apply Martingale CLT!



Non-balanced cases

If P is not balanced, then we will make it to be one!

Key idea: Change/deform the embedding of Z“ by a function x + (x) so
that {¢(Xy) — kv}x>1 is a martingale. We need v to compensate for global drift.
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Introducing corrector

Write ¢(x) = x + x(x), where x will be the corrector
The Markov property gives

E(p(Xut1) [Fn) = $(X) + V(X) + Y P y)[x(y) — x(Xu)]
74
for the local drift V given by s
= > Payy -
yeZ4

This shows that x must solve the Poisson equation
DI PEY)[xy) — x(x)] =0 —V(x)
yeZ4

Since V is L-periodic, we can look for L-periodic solutions!



Finding the global drift

How to find v? Recall Y,, := X,, mod L. Then ‘ 2yezd POy X () —x(0)]=0=V(x)

X0 =V ot ¥ Qulrn) = = B BV o] ) + Ex(¥)

JeAL k=0
so, using Ny (y) := ZZ:O L=y}

x(0) = Y EX(Na@) [V(y) — 0] + E* (x(Ya))
yeAL

But N,,(y)/n — q(y) a.s. so the first term will grow linearly unless we set

vi= > qy)V(y)

yEAL
Here we used that 3, ., q(y) = 1. (In fact, q is the invariant distribution of Y)



Finding the solution

Poisson equation reads: (1-Qp)x =V —v

Natural L2-space: (*(Ar, q) with (f,¢) := ¥, .x q(x)f(x)g(x)
Kernel-Range duality: Ran(1 — Q;) = Ker(1 — Q;)* where

Qf (v,y) - :EZ;QL(}// x)

Now f € Ker(1 — Q;") along with irreducibility implies

n—1

fo =) QG eyfly) == % M@ y)f )
yeAL k=0
Yy
ot ST s S s

meaning that f is a constant. But v — V is orthogonal to constants in ¢*(Ar, q)
sov—V e Ran(1 —Qr). A solution x thus exists!



Periodic environments finished

Since X, = P(X,) + O(1), exactly the same proof as before now gives:

Theorem (CLT for periodic environments)
Suppose P is L-periodic with the underlying chain Y irreducible. Assume
Vxe Z%: Z P(x,y)|ly — x|* <

and set vez
= Y awV(y) for V()= > Pxy)(y-
and A yez!
= Y a) > Py (91) — ) —0) ® (Y(y) — p(x) — v)
xeAr yezZ4
Then X — 1o -
i 2 N(0,C)

Note: q is the stationary distribution of Y



Summary

We proved a CLT by employing these ideas:
@ X becomes a martingale once we embed Z* harmonically
@ Underlying chain on periodic cell is ergodic
@ Martingale CLT requires only a LLN-type of condition

Note: The same argument (supplied with Martingale Functional CLT) proves
convergence to Brownian motion



Random environments



Studied cases

A natural next step: Make P random

Main cases studied:

e {P(x,-): xe Z% iid. ... (true) random walk in random environment
@ balanced random walks ... >, :P(x,x+z)z=0
e divergence free random walks ... > i P(x,x+2) =3, ,P(x+2z2z)

@ conductance models ...to be defined next



Reversible Markov chains on Z4

Consider a Markov chain on Z¢ with transition probability P

A measure 7t on Z9, identified with 7r: Z9 — [0,00), is said to be
e invariant for P if Vx € Z4: m(x) = 2yezd T(Y)P (Y, x)
e reversible for P if Vx,y € Z4: 7(x)P(x,y) = r(y)P(y, x)
Reversibility natural: a statement of detailed balance condition

Conductance of (x,y):
c(x,y) = ()P (x,y)
Note: 7 reversible < Vx,ye Z%: c(x,y) = c(y,x)
)

Conversely, given conductances {c(x,y) = c(y,x): x,y € Z9} we define

P(x,y) := C7(rx(,x};) where 7t(x) := yEZZJdC(xry)

(We will always assume these are not singular.)

We refer to chains prescribed this way as conductance models



Pictures




Formal setup for (random) conductance models

Let () := set of all non-negative conductances, w an element of ()

Write ¢, (x, y) for coordinate projection of w for pair (x,y). By assumption

Vw e Q: cu(x,y) = cu(y, x)

Denote P7, := law of X in environment w with expectation EJ,
Write P, for transition probability, 77, reversible measure

Denote T := shift by x acting on () as

Cry(w) (1, 2) = Co(y + X, 2+ X)

We may drop w when these regarded as random variables

Note: w can be a deterministic configuration!



First martingale decomposition

We want to prove a LLN. For this write
n

Xy = Xo+ 2. (Xe — Xe1)
k=1
n—1 n

= Xo+ D Vo(X) + ). [(Xk — Xi1) — B (Xi — X1 | ]:kfl)]
k=0 k=1
Denote second term by M,,. Then {M,,},>¢ is a martingale with
My = Mi_1| < |Xe — Xia| + E, (1Xk — Xia| | Fie1)

First term is an additive functional of X so it perhaps averages out

An issue: The chain X definitely not ergodic
Need to find a version of the chain on periodic cell ...



Point of view of the particle

Lemma

Given a sample X from PO, the sequence {Tx, (w)}x=0 is a Markov chain on Q with
transition probability I1: Q x F — [0, 1] defined by

H(w//'> = Z Pw’(orx)‘srx(w’)(')

xeZ4

We will call {tx, (w)}¢=0 the environment chain. We now allow w random ...
Endow Q) with product sigma algebra F and let IP be a probability on (€2, F)
with expectation denoted E. Then:

Lemma

If P is translation invariant, i.e., P o Tx_l =P forall x € 7% then

Q) = E

is reversible and thus invariant for environment chain. Moreover, P « Q and Q « P

P(dw)




Proof of Lemma

Reversibility is equivalent to self—adjointness of transition probability

Forf,g € L2(Q) with {f, §)12(q) = {f()g()Q(dw),

E((0))(f, TIg)120) = ( 2 Pul00)f (@) m(@))
Next note that ez
Tw(0)Pw(0,%) = c(0,x) = cr () (—%,0) = cg(w)(0, =X) = 7 (0) (0)Pr, () (0, —x)
to continue the calculation as

_E (ww) 0) 3 Pre (0, —2) flaw)g o a(w))

xeZ4

Finally, take out the sum and shift by —x to get

= 1E<7rw(0) A —x)fOT—x(w)g(w)> = E(7(0)IY, &12(q)

xeZ4

by relabeling —x for x O



Ergodicity of environment chain

Lemma

Suppose P jointly ergodic with respect to shifts {T,: x € Z}. Then environment
chain is ergodic (in time) in the sense that, for all f € L'(Q),

1 n—1
=Y fox(w) — Ealf), Ph-as.
k=0

n—0o0

for Q-a.e. w e Q)

Proof: Limit exists by Wiener’s Ergodic Theorem (and stationarity of Q)

Need to show: Q(A) € {0,1} if we A < 1x,(w) € A. Expectation conditional
on w gives

1p(w) = Z Pw(0,x)14 0 To(w)

xeZ4

and so 14(w) = 0 forces 14(tx(w)) = 0 whenever P (0, x) > 0. Iterating using
irreducibility, 14 o To(w) = 0 for all x € Z%. By ergodicity P(A) € {0,1}. O



Strong law of large numbers

Theorem (SLLN)
5
Hppose IE< Z C(O,x)|x\) < 0
Then for P-a.e. w € Q, e
Xy 0
aliaed 0, P,-as.
Proof: Recall n-l
Xy =Xo+ Y Veo(Xe) + My,
k=0
where M, is as above. Markov property and Ergodic Theorem give
M,

2 — EQE(M;) =0

n n—oo

Similarly, V., (Xy) = erk (w)(0) and V(0) € LY(Q). Ergodic Theorem:

n—1
%Z Vo(Xe) — Eq(V(0)) = IE< > C(O,x)x> =0 O
k=0

xeZ4



Solving for corrector

Insofar, we have
@ identified an analogue of the periodic-cell chain, and
@ proved its ergodicity

To complete the plan, we need to find the corrector

Idea: Reversibility reduces this to convex optimization problem

inf 1E< D C(O,x)|x+§00Tx—€0|2>

Lo (P
@eL®(PP) vezd

Any minimizing sequence converges (in the sense of discrete gradients) in L?
weighted by conductance. This gives:



Lemma

SuPPOSE IE( Z c(O,x)]x|2> < o0

xeZ

Then there exists x: Q x Z* — R? such that ¥(w, x) := x + x(w, x) obeys

E( 2 c<o,x>|¢<-,x>|2) <w
and, for all x € 74, xez!

Y e y)ploy) = n@p(,x),  Pas.
yezZ?
Furthermore, for P-a.e. w and all x,z € Z*,

P(w,x +2) = P(w, %) = P(T(w), 2)

Proof: First two properties follow directly from optimization. The last property
comes from the fact that y(x, -) is L?>-limit of ¢ 0 T, — ¢ O




CLT for deformed walk

Corollary

Suppose E ( Z

Then for P-a.e. w € Q),

where

1
€= {5, 000 89

xeZ4

Same applies to Functional CLT associated with {{(w, Xj)}i=0

New issue: The corrector x(-,x) := (-, x) — x is not bounded!



For CLT need to show that, for P-a.e. w € (),

x(w, Xu)| P
\/ﬁ n—0o0

For Functional CLT we even need

0

—maXIx(w X)) 4> 0

N = ’ n—00

Meaning of P matters a lot for how much we need to work!



Annealed/Averaged Functional CLT

Theorem (Kipnis and Varadhan 1986)

Suppose
]E( > c(o,x)yxyZ> < o

xeZ4

Let P(-) := EqPY,(-) be so called annealed law. Then

7 nklax Ix(w, Xk = 0 in probability w.r.t. P

In particular, a Functional CLT holds for X under P

We get even a bit better: For all F: C(R,,R?) — R bounded continuous
0 P
E,(F(B™)) — E(F(B))

This is sometimes called Invariance Principle in probability



Proof of annealed corrector subdiffusivity

Key idea: Forward/backward martingale decomposition

Let X be a Markov chain started from a reversible measure and let f be an
integrable function. Reversibility implies

E(f(Xks1) = f(Xi) |0(Xi)) = E(f(X1) = f(Xi) [ 0(Xp)) = Ap(X¢)

for
Ap(x) == E(f(Xq) — f(Xo) | Xo = x).

Hence we get
F)~f(Xo) = 1[Af<xo> ~ A¢(%)]
%i[ f (K1) = f(Xx) — Ay Xk] %Z[ (Xk-1) )_Af(Xk)]

Note: both sums are martingales (albeit for different filtrations), same law!



Proof of annealed corrector subdiffusivity

Returning to our RWRE, pick ¢ € L*(IP) and write S, for the first sum with
f@) = x(w,x) = (¢ o r(w) — p(w))

Since this is in L?(P) and Af(Xy) = Af(0) o Tx,, stationarity implies

P( max [4¢(Xy)| > 6v/n) — 0

0<k<n

Next, by Doob’s L2-inequality

P( max|s| > 6vn) < ——E(|S )

0<k<n

Since S, is a martingale, stationarity then gives

%E(|Sn\2) = E[lf(X1) —f(Xo) — A(Xo)[)
< 4E(|x(w, X1) — (9 0 T, (@) — 9())])

Optimizing over g, the r.h.s. tends to zero



Annealed vs Quenched curse

Annealed CLT quite useful in applications
Unfortunately, little can be said about limit law under quenched law P?,

We should have been here before lunch, grr!



Back to non-random environments



Quest for sharp Quenched Invariance Principle

Significant effort to prove a Quenched Invariance Principle; i.e., Functional
CLT under P, for IP-a.e. w € ) over 20 years. Completed for:

@ Uniformly elliptic environments (Sidoravicius & Sznitman 2004)
@ Supercritical percolation (Berger & B. 2007, Mathieu & Piatnitski 2007)
@ ii.d. nearest neighbor conductances (Mathieu 2008, B. & Prescott 2008,
Barlow& Deuschel 2012, Andres, Barlow, Deuschel, Hambly 2013)
@ Under moment conditions for nearest neighbor conductances:
Vx ~0: ¢(0,x) e LP(P) and ¢(0,x)"! e L1(IP)

for some p,q > 1 with 1/p +1/q < 2/d (Andres, Deuschel, Slowik 2015).
Generalized (B., Chen, Kumagai, Wang 2021) to long-range models with

Z c(0,x)|x* e I¥ and Vx~0: c(0,x)"! € LI(PP)
xeZ4

@ For nearest-neighbor models improved to 1/p + 1/g < 2/(d — 1) by Bella
& Schiffner (2020). Ind = 1,2 enough to have p = 1 and g = 1 (B. 2011).

Stationarity and ergodicity assumed throughout!



Key new ingredient: elliptic regularity theory

All known proofs of Quenched Invariance Principle (except for n.n.ind = 1, 2)
use some input from elliptic regularity theory.

Usually, this is in the form of heat-kernel upper bounds, i.e.,

C1 ey /n

PZ}(X” = y) < nd/z

or Moser iteration etc.

Key objective: prove (everywhere) sublinearity of the corrector

maxM —> 0 DP-as.

|x|<n n n—00

Known to fail unless p, g-condition holds with 1/p+1/q < 2/(d — 1) (n.n) and
1/p +1/q < 2/d (long range)!



Eliminating “spurious” stochasticity

The elliptic regularity input is inherently deterministic

The stochasticity of environment enters in two crucial non-constructive steps
@ limits using the Spatial Ergodic Theorem
@ extraction and control of the corrector

These actually muddle the conclusion!

Indeed, for each translation-invariant, ergodic law v on (), F), stochastic
homogenization outputs an inexplicit set (), € 7 which is full-measure,
v(Qy) = 1, and such that an invariant principle holds for all w € Q).

Issues with this:
@ If y and v distinct (ergodic), then we could have O, n ), =
@ Barring the periodic cases, v({w}) = 0 for each w € ),

We thus cannot claim an Invariance Principle for any single w € Q!



Eliminating “spurious” stochasticity

We will thus follow a fully deterministic approach:
@ Impose mixing conditions directly on conductance configurations
e Effectively eliminate the above non-constructive steps by working with
spatial averaging, rather then ensemble averaging

We will work with non-degenerate nearest-neighbor models, so
Q := (0, 00)F@)

where E(A) := {n.n. edges incident with A}

J := product Borel sigma algebra on ()

Blocks denoted by A, := [-n,n]¢ N Z¢

As before ¢, (x,y) = cu(y, x) := coordinate projection of w on edge (x,y)



Deterministic mixing assumptions

Let Cjoc(f) := continuous local functions with compact support
Definition
An w € Q) is said to be averaging if the hrmt

ly(f) := lim |A | Zfo’fx

n—o0
_ An
exists for each f € Cjoc(Q) -

Lemma

Denote . 1
O : {w e (): hrghmsup 3 Z IR [e1/¢](cw(e)) = 0}-
n—oo M ecE(A,)

For each averaging w € (Y, there exists a unique probability measure P, on (Q), F)

such that
Vf € CIOC(Q): E]EU (f) = gw(f)

Moreover, P, is translation invariant, i.e., Vx € Z%: P, o T, =P,

Proof: Riesz Representation Theorem



Ergodic averaging conductances

Definition
An averaging w € () is said to be ergodic if IP,, is jointly ergodic with respect
to the shifts {7,: x € Z4} on (Q, F)

Not a superfluous concept: Take d = 1 and let

1, if |x| € 132, (n + 1)%?) f ’
Cw(x,x+1):= {2 ;ll’j [n°/%, (n + 1)°/%) for n even

Then w is averaging but, since P, = %(51 + 62), not ergodic!

Lemma
The set
O := {w e (Y: averaging and ergodic}
is F-measurable and translation invariant. We have
v(QY*) =1

for each translation-invariant, ergodic probability measure v on (Q, F)




Main theorem

For p,q > 0 denote

1 1
Qpy = {w €Q: sup — Z cw(e)l <o A sup — 2 cw(e)™ < oo}
n=1 b, n=1 B,

Theorem (Homogenization of deterministic conductance models)
Let p,q € (1,0) be such that

=4k 1 < 2 if d>2

qg d

An Invariance Principle then holds under PY, for all w € O* n O, ;. The covariance
of the limiting Brownian motion is given for each v € R? by

1
v-Cv=——= inf E (0,0)[0- % + 00T — o
Ele 7-((0) q)GClOC(Q) ]Pw < xéd ( )| go X (P| )

(0,x)eE(2%)




Point of view of the particle

We have spatial averages, but for control of X we need averaging in time
So our first concern is the proof of:

Theorem (Ergodicity in time)

Let p,q > 1 be as above. Then for all w € OO* n Q4 and all f € C,(Q)),

n—o0

n—1
LY fom(w) — Equf)  inL'(Ph),
k=0

where

Qu(dw') := —" 2P, (dw’)




Heat-kernel bounds

Let Y; := Xy, for Ny := homogeneous Poisson process

Proposition (Andres, Deuschel, Slowik 2016)

Let p,q > 1 be as above. Then for each w € ), 4 there exist ¢y, 2, c3,¢4 € (0, 0) such
that for all x,y € Z% and all t > 0 with /t > c3(1 + min{|x|1, |y|1}):
(1) if |x —y|1 < cat, then

x—yl|?
PL(Yi = y) < et P2 exp{—o M ),
(2) while if |x —y|1 > cat, then

P’&(Yt=y)<clt‘d/2e><p{ Calx — y|1(1+10g(1+f'1))}7rw(y)

Here | - |y is the £'-norm on R?,

Note: ¢y, ..., c4 may depend on w!
Proof: Elliptic regularity theory (explicitly: Moser iteration)



Conversion Lemma

Lemma (Conversion Lemma)

Let p,q > 1 be as above. For each w € ), 4 there exists c(w) € (0,0) such that for all

bounded f: Z* — [0, 0),

n—1

limsup — ZEO (Xk)) < c(w) limsup —— |A | Zf X) T (X

n—0o0 n—aoo xeA

Proof: Fix € > 0. Then, roughly,

Z EX (F(Xi) < enlfloo + 1 Z S F)ma (x)e el

k=en xez4

Now divide by n and take n — o



Proof, part I

Want to show

n—o0

n—1
LY for(w) — Equf)  inL'(P),
k=0

Suffices to prove this for f with Eq_(f) =0
Recall that the transition probability of environment chain acts as

M@ = —— 3 cul0,f orlw)

7w (0) xeZ?
(0,x)eE(Z%)
The generator is given by £ = IT — 1.

We proceed by martingale approximation: Given € > 0, set

he(@) = 3 (1))

Then n=0 (1+e)

(€ = L)he(w') = f()

Now use this to write ...



Proof, part II

n—1 n—1
Zforxk(a)) = Z(e +1—TT)he o Tx, (w)
k=0 k=0

n—1

n—1
=€) heotx (W) + Y. [he 0 Tx, (w) — The 0 Tx (w) ]
k=0

Since k:O
TThe o Tx, (W) = ES, (he 0 T, ()] Fe)
we have .
Y
$ e o 7 () — Tk o 7, ()]
k=0

=he(w) — E(he o Tx, (w |.7:n_1)
2 (e 0 T, (@) = E(he © T, (@) | Fi1) |-

As h. bounded, the first two terms bounded. The sum is a martingale with
bounded increments so it’s sublinear in n by Azuma-Hoeffding inequality



Proof, part III

Using Conversion Lemma, the averaging property of w (along with w € () )
and Cauchy-Schwarz, 1
€ Z he o tx, (W)
k=0

is bounded as
1S 1
limsup — Z|eh o Tx, (w)| < ¢ (w)limsupm Z |ehe o Ty (w) |10 (x)
n—oo

=0 k 0 Tl xen,

= c(w)Ep, (7(0)elhe|) < c(w)Ep, (n(O))\\ehGHLz(Qw)

We are now in a probability space so back to stochastic homogenization!
Let i := spectral measure of —£L on L?(Q,,). Concentrated on [0, 2]
Spectral Theorem gives:

HethiZ(Qw) = <€h€, €h€>L2(Qw)
_ _ €
- <e(e - L) 1f,e(e - L) 1f>L2(Qw) = J[ ]<€ n A) ]/tf(d/\)



Proof, part IV

Bounded Convergence shows

2
lehelf g,y — 1({0)

Spatial ergodicity of IP, induces ergodicity of Q. w.r.t. environment chain.

This implies that Ker(L£) is just constants!
But Eq(f) = O means f | Ker(£) so

wr({0}) =0

We have thus shown that Eq_(f) = 0 implies

n—o0

1 n—1 ‘
. Zfo Tx, (w) — 0 in L1(PY),
k=0

Shifting by a constant, this is the claim



Summary of remaining steps

With averaging along the path in hand, we need to do corrector method

@ Define approximate corrector via (€ — £)x. = V. Solution:

Xe(w) == ¥H”V(w)

1
= (1+¢€)"

@ Use martingale approximation trice in a row
n

Xn=Xo+ Z Vot ,(w)+ M,
k=1 n
= X0+ Xe(w) — xeotx, + Z €Xe © Tx,_, (W) + M,
k=1
and once again, this time with an actual corrector albeit in box A, with
Dirichlet b.c. This kills the pesky additive term!
@ Take r := € !y/n and control n — o followed by € | 0 by homogenization
of finite-box Dirichlet energy

Details: arXiv:2303.08382



THANK YOU!



