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Disclaimer 2

This is a probability talk by a probabilist!
Expect different notation, very little “continuum” business, etc
The talk is an overview “panorama” lecture
Don’t hesitate to ask questions



Markov chains on Zd 3

Integer lattice: Zd :“ tpx1, . . . , xdq P Rd : x1, . . . , xd P Zu.
Markov chain on Zd prescribed by P : Zd ˆZd Ñ r0, 1s such that

@x P Zd :
ÿ

yPZd

Ppx, yq “ 1

Notation:
X “ tXnuně0 sample path of the Markov chain
Px :“ law of X on pZdqN such that PxpX0 “ xq “ 1

Natural choices for transition probability:
P constant . . . leads to “ordinary” random walks
P periodic . . . basically the same
P aperiodic (deterministic) . . . ???
P random . . . defines a random walk in random environment (RWRE)

In all cases we refer to the choice of P as environment



Continuum musings . . . just once! 4

Generator L :“ P´ 1 acts as

Lf pxq “
ÿ

yPZd

Ppx, yq
“

f pyq ´ f pxq
‰

Continuum analogue of X: diffusion given via an SDE

dXt “ vpXtqdt` σpXtqdBt

This has generator in non-gradient form

Lf pxq :“
1
2

d
ÿ

i,j“1

pσσTqijpxq
B2

BxiBxj
f pxq `

d
ÿ

i“1

vipxq
B

Bxi
f pxq

which, denoting ṽ :“ v´ 1
2∇pσσTq, can also be written in gradient form

Lf pxq :“
1
2

d
ÿ

i,j“1

B

Bxi

pσσTqijpxq
B

Bxj
f pxq `

d
ÿ

i“1

ṽipxq
B

Bxi
f pxq

Discrete world is more complex . . .



Overall goals 5

Describe the long time statistical properties of sample paths n ÞÑ Xn

Track the effects caused by various irregularities of P
Hopefully prove that averaging occurs and most of these wash out



SLLN & CLT 6

Homogeneous case: If y ÞÑ Ppx, yq independent of x then X is “ordinary”
random walk on Zd. Namely Xn “ Z1 ` ¨ ¨ ¨ `Zn where tZk : k ě 1u are i.i.d.

Theorem (Strong Law of Large Numbers)

Assume Xn :“ Z1 ` ¨ ¨ ¨ `Zn for tZk : k ě 1u i.i.d. Rd-valued with Z1 P L1. Then

lim
nÑ8

Xn

n
“ EpZ1q a.s.

Theorem (Multivariate Central Limit Theorem)

Assume Xn :“ Z1 ` ¨ ¨ ¨ `Zn for tZk : k ě 1u i.i.d. Rd-valued with Z1 P L2. Then

Xn ´ nEpZ1q
?

n
law
ÝÑ
nÑ8

N p0, Cq

where C is a dˆ d matrix determined by

v ¨Cv “ E
`

pv ¨Z1q
2˘, v P Rd



Functional CLT 7

A (d-dimensional) standard Brownian motion tBt : t ě 0u is a process with
continuous sample paths, and
independent increments such that Bt ´ Bs “ N p0, pt´ sq1q for all 0 ď s ď t

Wiener measure :“ law of B on CpR`, Rdq :“
 

f : R` Ñ Rd : continuous
(

Theorem (Donsker’s Invariance Principle)

Assume Xn :“ Z1 ` ¨ ¨ ¨ `Zn for tZk : k ě 1u i.i.d. Rd-valued with

Z1 P L2 and EpZ1q “ 0
Set

Bpnqt :“
1
?

n

´

Xttnu ` ptn´ ttnuqpXttnu`1 ´Xttnuq

¯

, t ě 0

Then the law of t ÞÑ Bpnq on CpR`, Rdq tends to that t ÞÑ ABt where B is standard
Brownian motion and A is a dˆ d-matrix s.t. CovpZ1q “ AAT.



Key question and plan 8

Main question of interest:
How robust are the above limit results w.r.t. perturbations of P?

Plan of discussion:
Periodic environments
Stochastic reversible environments
Deterministic reversible environments
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Periodic environments
A Probability-101 approach



Periodic environments 10

Assume that P is periodic in all directions:

DL ě 1@x, y, z P Zd : Ppx` Lz, y` Lzq “ Ppx, yq

Key fact: X has conditionally independent increments
Define ΛL :“ r0, Lqd XZd and QL : ΛL ˆΛL Ñ r0, 1s by

QLpx, yq :“
ÿ

zPZd

Ppx, y` Lzq

and, for each y P ΛL, set

µx,ypzq :“
Ppx, y` Lzq
QLpx, yq

(Make an arbitrary choice if QLpx, yq “ 0.) Then
QL is a transition probability of a Markov chain on ΛL

µx,y is a probability on Zd for each x, y P ΛL

We then have . . .



Periodic case, factorization 11

Lemma (Factorization)

Given x P ΛL, sample:
Y :“ a path of Markov chain on ΛL with transition probability QL started from x

independent tZpy,y1q
k : k ě 1, y, y1 P ΛLu with lawpZpy,y1q

k q “ µy,y1

For each n ě 0 define

Xn :“ Yn ` L
n
ÿ

k“1

ZpYk,Yk`1q

k

Then X “ tXnuně1 has the law Px

Proof: Fix y, y1 P ΛL and z, z1 P Zd. Then

P
`

Xn`1 “ y1 ` Lz1
ˇ

ˇXn “ y` Lz
˘

“ P
`

Yn`1 “ y1, Zpy,y1q
n`1 “ z1 ´ z

ˇ

ˇXn “ y` Lz
˘

“ QLpy, y1qµy,y1pz1 ´ zq “ P
`

x, y` Lpz1 ´ zq
˘

“ Ppx` Lz, y` Lz1q



Periodic case, limit laws 12

Xn :“Yn`L
řn

k“1 Z
pYk ,Yk`1q
k

As it turns out, all we need from Y are the jump counts

Nnpy, y1q :“
n
ÿ

k“1

1tYk´1“yu1tYk“y1u

Assume henceforth Y irreducible; meaning @x, y P ΛL : infně1 PxpXn “ yq ą 0

Lemma (SLLN for jump counts)

For all y, y1 P ΛL there is qpy, y1q P r0, 1s such that, for all x, y P ΛL,

lim
nÑ8

Nnpy, y1q
n

“ qpy, y1q Px-a.s.

Proof: Renewal theorem for times between visits to y . . .

Corollary (SLLN for random walk)

For all x P ΛL,
lim

nÑ8

Xn

n
“ L

ÿ

y,y1PΛL

qpy, y1qEpZpy,y1q
1 q Px-a.s.



Periodic case, limit laws continued 13

Lemma (CLT for jump counts)

There exists a covariance matrix C such that, for all x P ΛL,

law of
"

Nnpy, y1q ´ qpy, y1qn
?

n
: y, y1 P ΛL

*

under Px w
ÝÑ
nÑ8

N p0, Cq

Proof : CLT for additive functionals of Markov chains (Gordin and Lifšic 1981)

Corollary (CLT for random walk)

Abbreviate v :“ L
ř

y,y1PΛL
qpy, y1qEpZpy,y1q

1 q. Then
Xn ´ nv
?

nL
law
ÝÑ
nÑ8

N p0, Σq
where

Σ :“
ÿ

y,y1PΛL

qpy, y1qCovpZpy,y1qq `
ÿ

y,y1PΛL

ÿ

ỹ,ỹ1PΛL

C
`

py, y1qpỹ, ỹ1q
˘

EpZpy,y1q
1 q b EpZpỹ,ỹ1q

1 q



Summary 14

All random walks in periodic environments are explicitly treatable

The key step is a decomposition of the Markov chain into
a finite state Markov chain representing “microscopic” steps
a sequence of conditionally independent “macroscopic” steps

This is an example of two-scale decomposition

A crucial input is a CLT for additive functionals of Markov chains

Problem: Explicit decomposition unclear for non-periodic environments.
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Periodic environments

Homogenization approach



Periodic balanced models 16

Keep assuming

DL ě 1@x, y, z P Zd : Ppx` Lz, y` Lzq “ Ppx, yq

but consider first the symmetric (a.k.a. balanced) case:

@x P Zd :
ÿ

yPZd

Ppx, yqpy´ xq “ 0

Then EpXn`1|Xn “ xq “ x` EpXn`1 ´ x|Xn “ xq “ x and so X conforms to:

Definition (Martingale)

A sequence tXnuně0 of Rd-valued random variables endowed with a
filtration tFnuně0 is a martingale if, for all n ě 0,

Xn P L1 and Xn is Fn-measurable
and

EpXn`1 |Fnq “ Xn a.s.

Natural filtration: Fn :“ σpX0, . . . , Xnq



Limit theorems for martingales 17

Theorem (SLLN for martingales)

For each martingale X,
lim

nÑ8

Xn

n
“ 0 a.s.

Theorem (CLT for martingales)

Let M be an Rd-valued martingale such that Mn P L2 for each n ě 0. Assume that
there exists a covariance matrix C such that

1
n

n
ÿ

k“1

E
`

pv ¨ pMk ´Mk´1qq
2 |Fk´1

˘ P
ÝÑ
nÑ8

v ¨Cv, v P Rd

and
1
n

n
ÿ

k“1

E
`

|Mk ´Mk´1|
21t|Mk´Mk´1|ąε{

?
nu |Fk´1

˘ P
ÝÑ
nÑ8

0, ε ą 0

Then 1
?

n
Mn

law
ÝÑ
nÑ8

N p0, Cq



CLT for balanced periodic environments 18

For each y P ΛL, set
Nnpyq :“

n
ÿ

k“0

1tXk“y mod Lu

By Renewal Theorem we know that, assuming Y irreducible,

qpyq :“ lim
nÑ8

Nnpyq
n

exists Px-a.s. for all y P ΛL (independently of x)

Theorem (CLT for balanced periodic environments)

Suppose P is L-periodic, balanced with the underlying chain Y irreducible. Assume

@x P Zd :
ÿ

yPZd

Ppx, yq|y´ x|2 ă 8

Then
1
?

n
Xn

law
ÝÑ
nÑ8

N p0, Cq
where

C :“
ÿ

xPΛL

qpxq
ÿ

yPZd

Ppx, yqpy´ xq b py´ xq



Proof — key calculation 19

Note that, by the Markov property,

E
`

pv ¨ pXk ´Xk´1qq
2 |Fk´1

˘

“ f pXk´1q

where
f pxq :“

ÿ

yPZd

Ppx, yq
`

v ¨ py´ xq
˘2

Hence we get
n
ÿ

k“1

E
`

pv ¨ pXk ´Xk´1qq
2 |Fk´1

˘

“
ÿ

xPΛL

Nn´1pxq f pxq

and so, since 1
n Nnpxq Ñ qpxq a.s.,

1
n

n
ÿ

k“1

E
`

pv ¨ pXk ´Xk´1qq
2 |Fk´1

˘

ÝÑ
nÑ8

ÿ

xPΛL

qpxq f pxq a.s.

Now write the r.h.s. as v ¨Cv and apply Martingale CLT!



Non-balanced cases 20

If P is not balanced, then we will make it to be one!
Key idea: Change/deform the embedding of Zd by a function x ÞÑ ψpxq so
that tψpXkq ´ kvukě1 is a martingale. We need v to compensate for global drift.



Introducing corrector 21

Write ψpxq “ x` χpxq, where χ will be the corrector

The Markov property gives

E
`

ψpXn`1q |Fn
˘

“ ψpXnq `VpXnq `
ÿ

yPZd

Ppx, yq
“

χpyq ´ χpXnq
‰

for the local drift V given by

Vpxq :“
ÿ

yPZd

Ppx, yqpy´ xq

This shows that χ must solve the Poisson equation
ÿ

yPZd

Ppx, yq
“

χpyq ´ χpxq
‰

“ v´Vpxq

Since V is L-periodic, we can look for L-periodic solutions!



Finding the global drift 22

ř

yPZd Ppx,yqrχpyq´χpxqs“v´VpxqHow to find v? Recall Yn :“ Xn mod L. Then

χpxq “ Vpxq ´ v`
ÿ

yPΛL

QLpx, yqχpyq “ ¨ ¨ ¨ “ Ex
ˆ n
ÿ

k“0

“

VpYkq ´ v
‰

˙

`Ex`χpYn`1q
˘

so, using Nnpyq :“
řn

k“0 1tYk“yu,

χpxq “
ÿ

yPΛL

Ex`Nnpyq
˘“

Vpyq ´ v
‰

` Ex`χpYnq
˘

But Nnpyq{n Ñ qpyq a.s. so the first term will grow linearly unless we set

v :“
ÿ

yPΛL

qpyqVpyq

Here we used that
ř

yPΛL
qpyq “ 1. (In fact, q is the invariant distribution of Y)



Finding the solution 23

Poisson equation reads: p1´QLqχ “ V´ v

Natural L2-space: `2pΛL, qqwith x f , gy :“
ř

xPΛL
qpxqf pxqgpxq

Kernel-Range duality: Ranp1´QLq “ Kerp1´Q`L q
K where

Q`L px, yq “
qpyq
qpxq

QLpy, xq

Now f P Kerp1´Q`L q along with irreducibility implies

f pxq “
ÿ

yPΛL

Q`L px, yqf pyq “ ¨ ¨ ¨ “
1
n

n´1
ÿ

k“0

pQ`L q
kpx, yqf pyq

“
1

qpxq

ÿ

yPΛL

qpyq
Ey
`

Nnpxq
˘

n
f pyq ÝÑ

nÑ8

ÿ

yPΛL

qpyqf pyq

meaning that f is a constant. But v´V is orthogonal to constants in `2pΛL, qq
so v´V P Ranp1´QLq. A solution χ thus exists!



Periodic environments finished 24

Since Xn “ ψpXnq `Op1q, exactly the same proof as before now gives:

Theorem (CLT for periodic environments)

Suppose P is L-periodic with the underlying chain Y irreducible. Assume

@x P Zd :
ÿ

yPZd

Ppx, yq|y´ x|2 ă 8

and set
v :“

ÿ

yPΛL

qpyqVpyq for Vpxq :“
ÿ

yPZd

Ppx, yqpy´ xq

and
C :“

ÿ

xPΛL

qpxq
ÿ

yPZd

Ppx, yq
`

ψpyq ´ ψpxq ´ v
˘

b
`

ψpyq ´ ψpxq ´ v
˘

Then
Xn ´ nv
?

n
law
ÝÑ
nÑ8

N p0, Cq

Note: q is the stationary distribution of Y



Summary 25

We proved a CLT by employing these ideas:
X becomes a martingale once we embed Zd harmonically
Underlying chain on periodic cell is ergodic
Martingale CLT requires only a LLN-type of condition

Note: The same argument (supplied with Martingale Functional CLT) proves
convergence to Brownian motion
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Random environments



Studied cases 27

A natural next step: Make P random

Main cases studied:
tPpx, ¨q : x P Zdu i.i.d. . . . (true) random walk in random environment
balanced random walks . . .

ř

zPZd Ppx, x` zqz “ 0
divergence free random walks . . .

ř

zPZd Ppx, x` zq “
ř

zPZd Ppx` z, zq
conductance models . . . to be defined next



Reversible Markov chains on Zd 28

Consider a Markov chain on Zd with transition probability P

A measure π on Zd, identified with π : Zd Ñ r0,8q, is said to be
invariant for P if @x P Zd : πpxq “

ř

yPZd πpyqPpy, xq

reversible for P if @x, y P Zd : πpxqPpx, yq “ πpyqPpy, xq
Reversibility natural: a statement of detailed balance condition

Conductance of px, yq:
cpx, yq :“ πpxqPpx, yq

Note: π reversible ô @x, y P Zd : cpx, yq “ cpy, xq

Conversely, given conductances tcpx, yq “ cpy, xq : x, y P Zduwe define

Ppx, yq :“
cpx, yq
πpxq

where πpxq :“
ÿ

yPZd

cpx, yq

(We will always assume these are not singular.)
We refer to chains prescribed this way as conductance models



Pictures 29



Formal setup for (random) conductance models 30

Let Ω :“ set of all non-negative conductances, ω an element of Ω

Write cωpx, yq for coordinate projection of ω for pair px, yq. By assumption

@ω P Ω : cωpx, yq “ cωpy, xq

Denote Px
ω :“ law of X in environment ω with expectation Ex

ω

Write Pω for transition probability, πω reversible measure
Denote τx :“ shift by x acting on Ω as

cτxpωqpy, zq “ cωpy` x, z` xq

We may drop ω when these regarded as random variables
Note: ω can be a deterministic configuration!



First martingale decomposition 31

We want to prove a LLN. For this write

Xn “ X0 `

n
ÿ

k“1

pXk ´Xk´1q

“ X0 `

n´1
ÿ

k“0

VωpXkq `

n
ÿ

k“1

”

pXk ´Xk´1q ´ E0
ω

`

Xk ´Xk´1
ˇ

ˇFk´1
˘

ı

Denote second term by Mn. Then tMnuně0 is a martingale with

|Mk ´Mk´1| ď |Xk ´Xk´1| ` E0
ω

`

|Xk ´Xk´1|
ˇ

ˇFk´1
˘

First term is an additive functional of X so it perhaps averages out

An issue: The chain X definitely not ergodic
Need to find a version of the chain on periodic cell . . .



Point of view of the particle 32

Lemma

Given a sample X from P0
ω, the sequence tτXkpωqukě0 is a Markov chain on Ω with

transition probability Π : ΩˆF Ñ r0, 1s defined by

Πpω1, ¨q :“
ÿ

xPZd

Pω1p0, xqδτxpω1qp¨q

We will call tτXkpωqukě0 the environment chain. We now allow ω random . . .
Endow Ω with product sigma algebra F and let P be a probability on pΩ,Fq
with expectation denoted E. Then:

Lemma

If P is translation invariant, i.e., P ˝ τ´1
x “ P for all x P Zd, then

Qpdωq :“
πωp0q
Eπp0q

Ppdωq

is reversible and thus invariant for environment chain. Moreover, P ! Q and Q ! P



Proof of Lemma 33

Reversibility is equivalent to self-adjointness of transition probability
For f , g P L2pQqwith x f , gyL2pQq :“

ş

f pωqgpωqQpdωq,

Epπp0qqx f , ΠgyL2pQq “ E

ˆ

πωp0q
ÿ

xPZd

Pωp0, xq f pωqg ˝ τxpωq

˙

Next note that

πωp0qPωp0, xq “ cωp0, xq “ cτxpωqp´x, 0q “ cτxpωqp0,´xq “ πτxpωqp0qPτxpωqp0,´xq

to continue the calculation as

¨ ¨ ¨ “ E

ˆ

πτxpωqp0q
ÿ

xPZd

Pτxpωqp0,´xq f pωqg ˝ τxpωq

˙

Finally, take out the sum and shift by ´x to get

¨ ¨ ¨ “ E

ˆ

πωp0q
ÿ

xPZd

Pωp0,´xq f ˝ τ´xpωqgpωq
˙

“ Epπp0qqxΠf , gyL2pQq

by relabeling ´x for x



Ergodicity of environment chain 34

Lemma

Suppose P jointly ergodic with respect to shifts tτx : x P Zdu. Then environment
chain is ergodic (in time) in the sense that, for all f P L1pQq,

1
n

n´1
ÿ

k“0

f ˝ τXkpωq ÝÑnÑ8
EQpf q, P0

ω-a.s.

for Q-a.e. ω P Ω

Proof: Limit exists by Wiener’s Ergodic Theorem (and stationarity of Q)
Need to show: QpAq P t0, 1u if ω P A ô τX1pωq P A. Expectation conditional
on ω gives

1Apωq “
ÿ

xPZd

Pωp0, xq1A ˝ τxpωq

and so 1Apωq “ 0 forces 1Apτxpωqq “ 0 whenever Pωp0, xq ą 0. Iterating using
irreducibility, 1A ˝ τxpωq “ 0 for all x P Zd. By ergodicity PpAq P t0, 1u.



Strong law of large numbers 35

Theorem (SLLN)
Suppose

E

ˆ

ÿ

xPZd

cp0, xq|x|
˙

ă 8

Then for P-a.e. ω P Ω,
Xn

n
ÝÑ
nÑ8

0, P0
ω-a.s.

Proof: Recall
Xn “ X0 `

n´1
ÿ

k“0

VωpXkq `Mn

where Mn is as above. Markov property and Ergodic Theorem give

Mn

n
ÝÑ
nÑ8

EQE0
ωpM1q “ 0

Similarly, VωpXkq “ VτXk
pωqp0q and Vp0q P L1pQq. Ergodic Theorem:

1
n

n´1
ÿ

k“0

VωpXkq ÝÑnÑ8
EQ

`

Vp0q
˘

“ E

ˆ

ÿ

xPZd

cp0, xqx
˙

“ 0



Solving for corrector 36

Insofar, we have
identified an analogue of the periodic-cell chain, and
proved its ergodicity

To complete the plan, we need to find the corrector

Idea: Reversibility reduces this to convex optimization problem

inf
ϕPL8pPq

E

ˆ

ÿ

xPZd

cp0, xq|x` ϕ ˝ τx ´ ϕ|2
˙

Any minimizing sequence converges (in the sense of discrete gradients) in L2

weighted by conductance. This gives:



37

Lemma
Suppose

E

ˆ

ÿ

xPZd

cp0, xq|x|2
˙

ă 8

Then there exists χ : ΩˆZd Ñ Rd such that ψpω, xq :“ x` χpω, xq obeys

E

ˆ

ÿ

xPZd

cp0, xq|ψp¨, xq|2
˙

ă 8

and, for all x P Zd,
ÿ

yPZd

cpx, yqψp¨, yq “ πpxqψp¨, xq, P-a.s.

Furthermore, for P-a.e. ω and all x, z P Zd,

ψpω, x` zq ´ ψpω, xq “ ψpτxpωq, zq

Proof: First two properties follow directly from optimization. The last property
comes from the fact that ψpx, ¨q is L2-limit of ϕ ˝ τx ´ ϕ



CLT for deformed walk 38

Corollary

Suppose
E

ˆ

ÿ

xPZd

cp0, xq|x|2
˙

ă 8

Then for P-a.e. ω P Ω,
ψpω, Xnq
?

n
law
ÝÑ
nÑ8

N p0, Cq

where
C :“

1
Epπp0qq

E

ˆ

ÿ

xPZd

cp0, xqψp¨, xq b ψp¨, xq
˙

Same applies to Functional CLT associated with tψpω, Xkqukě0

New issue: The corrector χp¨, xq :“ ψp¨, xq ´ x is not bounded!



Corrector subdiffusive along paths 39

For CLT need to show that, for P-a.e. ω P Ω,

|χpω, Xnq|
?

n
P
ÝÑ
nÑ8

0

For Functional CLT we even need

1
?

n
max
kďn

|χpω, Xkq|
P
ÝÑ
nÑ8

0

Meaning of P matters a lot for how much we need to work!



Annealed/Averaged Functional CLT 40

Theorem (Kipnis and Varadhan 1986)

Suppose
E

ˆ

ÿ

xPZd

cp0, xq|x|2
˙

ă 8

Let Pp¨q :“ EQP0
ωp¨q be so called annealed law. Then

1
?

n
max
kďn

|χpω, Xkq| ÝÑnÑ8
0 in probability w.r.t. P

In particular, a Functional CLT holds for X under P

We get even a bit better: For all F : CpR`, Rdq Ñ R bounded continuous

E0
ω

`

FpBpnqq
˘ P
ÝÑ
nÑ8

E
`

FpBq
˘

This is sometimes called Invariance Principle in probability



Proof of annealed corrector subdiffusivity 41

Key idea: Forward/backward martingale decomposition
Let X be a Markov chain started from a reversible measure and let f be an
integrable function. Reversibility implies

E
`

f pXk`1q ´ f pXkq | σpXkq
˘

“ E
`

f pXk´1q ´ f pXkq | σpXkq
˘

“ Af pXkq

for
Af pxq :“ E

`

f pX1q ´ f pX0q
ˇ

ˇX0 “ x
˘

.

Hence we get

f pXnq´f pX0q “
1
2
“

Af pX0q ´Af pXnq
‰

`
1
2

n´1
ÿ

k“0

”

f pXk`1q ´ f pXkq ´Af pXkq
ı

´
1
2

n
ÿ

k“1

”

f pXk´1q ´ f pXkq ´Af pXkq
ı

Note: both sums are martingales (albeit for different filtrations), same law!
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Returning to our RWRE, pick ϕ P L8pPq and write Sn for the first sum with

f pxq :“ χpω, xq ´
`

ϕ ˝ τxpωq ´ ϕpωq
˘

Since this is in L2pPq and Af pXkq “ Af p0q ˝ τXk , stationarity implies

P
´

max
0ďkďn

ˇ

ˇAf pXkq
ˇ

ˇ ą δ
?

n
¯

ÝÑ
nÑ8

0

Next, by Doob’s L2-inequality

P
´

max
0ďkďn

ˇ

ˇSk
ˇ

ˇ ą δ
?

n
¯

ď
4
δ2

1
n

E
`

|Sn|
2˘

Since Sn is a martingale, stationarity then gives

1
n

E
`

|Sn|
2˘ “ E

“

|f pX1q ´ f pX0q ´Af pX0q|
2˘

ď 4E
`ˇ

ˇχpω, X1q ´ pϕ ˝ τX1pωq ´ ϕpωqq
ˇ

ˇ

2˘

Optimizing over ϕ, the r.h.s. tends to zero
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Annealed CLT quite useful in applications
Unfortunately, little can be said about limit law under quenched law P0

ω

We should have been here before lunch, grr!



44

Back to non-random environments
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Significant effort to prove a Quenched Invariance Principle; i.e., Functional
CLT under P0

ω for P-a.e. ω P Ω over 20 years. Completed for:
Uniformly elliptic environments (Sidoravicius & Sznitman 2004)
Supercritical percolation (Berger & B. 2007, Mathieu & Piatnitski 2007)
i.i.d. nearest neighbor conductances (Mathieu 2008, B. & Prescott 2008,
Barlow& Deuschel 2012, Andres, Barlow, Deuschel, Hambly 2013)
Under moment conditions for nearest neighbor conductances:

@x „ 0 : cp0, xq P LppPq and cp0, xq´1 P LqpPq

for some p, q ą 1 with 1{p` 1{q ă 2{d (Andres, Deuschel, Slowik 2015).
Generalized (B., Chen, Kumagai, Wang 2021) to long-range models with

ÿ

xPZd

cp0, xq|x|2 P Lp and @x „ 0 : cp0, xq´1 P LqpPq

For nearest-neighbor models improved to 1{p` 1{q ă 2{pd´ 1q by Bella
& Schäffner (2020). In d “ 1, 2 enough to have p “ 1 and q “ 1 (B. 2011).

Stationarity and ergodicity assumed throughout!
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All known proofs of Quenched Invariance Principle (except for n.n. in d “ 1, 2)
use some input from elliptic regularity theory.
Usually, this is in the form of heat-kernel upper bounds, i.e.,

Px
ωpXn “ yq ď

c1

nd{2 e´c2|x´y|2{n

or Moser iteration etc.
Key objective: prove (everywhere) sublinearity of the corrector

max
|x|ďn

|χp¨, xq|
n

ÝÑ
nÑ8

0 P-a.s.

Known to fail unless p, q-condition holds with 1{p` 1{q ď 2{pd´ 1q (n.n) and
1{p` 1{q ď 2{d (long range)!
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The elliptic regularity input is inherently deterministic
The stochasticity of environment enters in two crucial non-constructive steps

limits using the Spatial Ergodic Theorem
extraction and control of the corrector

These actually muddle the conclusion!
Indeed, for each translation-invariant, ergodic law ν on pΩ,Fq, stochastic
homogenization outputs an inexplicit set Ων P F which is full-measure,
νpΩνq “ 1, and such that an invariant principle holds for all ω P Ων.
Issues with this:

If µ and ν distinct (ergodic), then we could have Ωµ XΩν “ H

Barring the periodic cases, νptωuq “ 0 for each ω P Ων

We thus cannot claim an Invariance Principle for any single ω P Ω!
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We will thus follow a fully deterministic approach:
Impose mixing conditions directly on conductance configurations
Effectively eliminate the above non-constructive steps by working with
spatial averaging, rather then ensemble averaging

We will work with non-degenerate nearest-neighbor models, so

Ω :“ p0,8qEpZ
dq

where EpΛq :“ tn.n. edges incident with Λu
F :“ product Borel sigma algebra on Ω
Blocks denoted by Λn :“ r´n, nsd XZd

As before cωpx, yq “ cωpy, xq :“ coordinate projection of ω on edge px, yq
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Let Clocpf q :“ continuous local functions with compact support

Definition
An ω P Ω is said to be averaging if the limit

`ωpf q :“ lim
nÑ8

1
|Λn|

ÿ

xPΛn

f ˝ τxpωq

exists for each f P ClocpΩq

Lemma
Denote

Ω1 :“
"

ω P Ω : lim
εÓ0

lim sup
nÑ8

1
nd

ÿ

ePEpΛnq

1Rrrε,1{εspcωpeqq “ 0
*

.

For each averaging ω P Ω1, there exists a unique probability measure Pω on pΩ,Fq
such that

@f P ClocpΩq : EPωpf q “ `ωpf q.

Moreover, Pω is translation invariant, i.e., @x P Zd : Pω ˝ τ´1
x “ Pω

Proof: Riesz Representation Theorem
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Definition
An averaging ω P Ω1 is said to be ergodic if Pω is jointly ergodic with respect
to the shifts tτx : x P Zdu on pΩ,Fq

Not a superfluous concept: Take d “ 1 and let

cωpx, x` 1q :“

#

1, if |x| P rn3{2, pn` 1q3{2q for n even,
2, else,

Then ω is averaging but, since Pω “
1
2pδ1 ` δ2q, not ergodic!

Lemma
The set

Ω‹ :“
 

ω P Ω1 : averaging and ergodic
(

is F -measurable and translation invariant. We have
νpΩ‹q “ 1

for each translation-invariant, ergodic probability measure ν on pΩ,Fq
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For p, q ą 0 denote

Ωp,q :“
"

ω P Ω : sup
ně1

1
nd

ÿ

ePEpΛnq

cωpeqp ă 8 ^ sup
ně1

1
nd

ÿ

ePEpΛnq

cωpeq´q ă 8

*

Theorem (Homogenization of deterministic conductance models)

Let p, q P p1,8q be such that
1
p
`

1
q
ă

2
d

if d ě 2

An Invariance Principle then holds under P0
ω for all ω P Ω‹ XΩp,q. The covariance

of the limiting Brownian motion is given for each v P Rd by

v ¨Cv “
1

EPω πp0q
inf

ϕPClocpΩq
EPω

˜

ÿ

xPZd

p0,xqPEpZdq

cp0, xq|v ¨ x` ϕ ˝ τx ´ ϕ|2

¸
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We have spatial averages, but for control of X we need averaging in time
So our first concern is the proof of:

Theorem (Ergodicity in time)

Let p, q ą 1 be as above. Then for all ω P Ω‹ XΩp,q and all f P CbpΩq,

1
n

n´1
ÿ

k“0

f ˝ τXkpωq ÝÑnÑ8
EQω

pf q in L1pP0
ωq,

where
Qωpdω1q :“

πω1p0q
EPω πp0q

Pωpdω1q
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Let Yt :“ XNt for Nt :“ homogeneous Poisson process

Proposition (Andres, Deuschel, Slowik 2016)

Let p, q ą 1 be as above. Then for each ω P Ωp,q there exist c1, c2, c3, c4 P p0,8q such
that for all x, y P Zd and all t ě 0 with

?
t ě c3p1`mint|x|1, |y|1uq:

(1) if |x´ y|1 ď c4t, then

Px
ωpYt “ yq ď c1t´d{2 exp

!

´c2
|x´y|21

t

)

πωpyq,

(2) while if |x´ y|1 ą c4t, then

Px
ωpYt “ yq ď c1t´d{2 exp

"

´c2|x´ y|1
´

1` log
`

1` |x´y|1?
t

˘

¯

*

πωpyq

Here | ¨ |1 is the `1-norm on Rd.

Note: c1, . . . , c4 may depend on ω!
Proof: Elliptic regularity theory (explicitly: Moser iteration)
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Lemma (Conversion Lemma)

Let p, q ą 1 be as above. For each ω P Ωp,q there exists cpωq P p0,8q such that for all
bounded f : Zd Ñ r0,8q,

lim sup
nÑ8

1
n

n´1
ÿ

k“0

E0
ω

`

f pXkq
˘

ď cpωq lim sup
nÑ8

1
|Λn|

ÿ

xPΛn

f pxqπωpxq

Proof: Fix ε ą 0. Then, roughly,

n´1
ÿ

k“0

E0
ω

`

f pXkq
˘

ď εn}f }8 ` c1

n
ÿ

k“εn

ÿ

xPZd

f pxqπωpxqe´c2|x|2{n

Now divide by n and take n Ñ8
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Want to show

1
n

n´1
ÿ

k“0

f ˝ τXkpωq ÝÑnÑ8
EQω

pf q in L1pP0
ωq,

Suffices to prove this for f with EQω
pf q “ 0

Recall that the transition probability of environment chain acts as

pΠf qpωq :“
1

πωp0q

ÿ

xPZd

p0,xqPEpZdq

cωp0, xqf ˝ τxpωq

The generator is given by L “ Π´ 1.
We proceed by martingale approximation: Given ε ą 0, set

hεpω
1q :“

ÿ

ně0

1
p1` εqn`1 pΠ

nf qpω1q

Then

pε´Lqhεpω
1q “ f pω1q

Now use this to write . . .
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n´1
ÿ

k“0

f ˝ τXkpωq “
n´1
ÿ

k“0

pε` 1´Πqhε ˝ τXkpωq

“ ε
n´1
ÿ

k“0

hε ˝ τXkpωq `
n´1
ÿ

k“0

“

hε ˝ τXkpωq ´Πhε ˝ τXkpωq
‰

.

Since

Πhε ˝ τXkpωq “ E0
ω

`

hε ˝ τXk`1pωq
ˇ

ˇFk
˘

we have
n´1
ÿ

k“0

“

hε ˝ τXkpωq ´Πhε ˝ τXkpωq
‰

“hεpωq ´ E
`

hε ˝ τXnpωq
ˇ

ˇFn´1
˘

`

n
ÿ

k“1

“

hε ˝ τXkpωq ´ E
`

hε ˝ τXkpωq
ˇ

ˇFk´1
˘‰

.

As hε bounded, the first two terms bounded. The sum is a martingale with
bounded increments so it’s sublinear in n by Azuma-Hoeffding inequality
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Using Conversion Lemma, the averaging property of ω (along with ω P Ωp,q)
and Cauchy-Schwarz,

ε
n´1
ÿ

k“0

hε ˝ τXkpωq

is bounded as

lim sup
nÑ8

1
n

n´1
ÿ

k“0

ˇ

ˇεhε ˝ τXkpωq
ˇ

ˇ ď cpωq lim sup
nÑ8

1
|Λn|

ÿ

xPΛn

ˇ

ˇεhε ˝ τxpωq
ˇ

ˇπωpxq

“ cpωqEPω

`

πp0qε|hε|
˘

ď cpωqEPω

`

πp0q
˘

}εhε}L2pQωq

We are now in a probability space so back to stochastic homogenization!
Let µf :“ spectral measure of ´L on L2pQωq. Concentrated on r0, 2s
Spectral Theorem gives:

}εhε}
2
L2pQωq

“ xεhε, εhεyL2pQωq

“
@

εpε´Lq´1f , εpε´Lq´1f
D

L2pQωq
“

ż

r0,2s

´ ε

ε` λ

¯2
µf pdλq,
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Bounded Convergence shows

}εhε}
2
L2pQωq

ÝÑ
εÓ0

µf pt0uq

Spatial ergodicity of Pω induces ergodicity of Qω w.r.t. environment chain.
This implies that KerpLq is just constants!
But EQω

pf q “ 0 means f K KerpLq so

µf pt0uq “ 0

We have thus shown that EQω
pf q “ 0 implies

1
n

n´1
ÿ

k“0

f ˝ τXkpωq ÝÑnÑ8
0 in L1pP0

ωq,

Shifting by a constant, this is the claim
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With averaging along the path in hand, we need to do corrector method
Define approximate corrector via pε´Lqχε “ V. Solution:

χεpωq :“
ÿ

ně0

1
p1` εqn`1 ΠnVpωq

Use martingale approximation trice in a row

Xn “ X0 `

n
ÿ

k“1

V ˝ τXk´1pωq `Mn

“ X0 ` χεpωq ´ χε ˝ τXn `

n
ÿ

k“1

εχε ˝ τXk´1pωq `
rMn

and once again, this time with an actual corrector albeit in box Λr with
Dirichlet b.c. This kills the pesky additive term!
Take r :“ ε´1?n and control n Ñ8 followed by ε Ó 0 by homogenization
of finite-box Dirichlet energy

Details: arXiv:2303.08382
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THANK YOU!


