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Random Schrodinger operator

Transport theory in disordered quantum systems

(Anderson tight-binding) Hamiltonian on lattice (x € Z):

(Hef)(x) == )}, [fly) = f(0)] + E(0f(x)

y: ly—x|=1
In short Hz := A +¢.
Objects:

f(x) = wave function at site x
&(x) = potential energy at x

Disordered system: ¢(x) random, i.i.d.

NOTE: Sign convention different from physics.



Main question

Eigenvalue order statistics

Dirichlet eigenvalues: For D C Z4 finite,
AR(@) 2 AZ (@) = = AR (@)
eigenvalues of Hz on functions f: Z9 — C with f := 0 on D¢

Scaled volume: Dy := (LD) N Z9 where D C RY open

Question: Are there a; and b; such that

- 1
B = {E(Agi(g)—aL); k= 1,...,\DL|}

scales, as L — oo, to a non-degenerate point process?




Some answers known
spec(Hg) = [—2d,0]+ supp &

Answer: In localization regime (a; constant, b, := L9)

=y L:> homogeneous Poisson point process
—00

Killip-Nakano, Germinet-Klopp (“localization” technology)
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Our interest: spectral edge

Some results there as well:

Germinet-Klopp (d =1 or d > 1 with long-range A)
“Heavy-tailed” potentials: Grenkova-Molchanov-Sudarev,

van der Hofstad-Morters-Sidorova, Konig-Locoin-Mdrters-Sidorova, Austrauskas

Note: Exponential, even Gaussian tails are heavy!



Motivation

Diffusive dynamics

Parabolic Anderson model (PAM):

—u(t,x) = Au(t,x) + &(x)u(t,x)

u(0, x) = do(x).

Applications:

» chemical kinetics (Zel'dovich et al)

» hydrodynamics (Carmona and Molchanov)

» magnetic phenomena (Molchanov and Ruzmaikin)
In probability:

» population dynamics w/ inhomogeneous rates

» Brownian motion among obstacles

> interacting random polymers



Time evolution

“To i or not to i”
Quantum evolution:
f(t,X) = <5X,eitH§f(0,-)>gz(Zd)

f(t,x) = wave function of an electron in a disordered metal

Diffusive dynamics:
f(t,X) = <(5X,etH§f(0, ‘)>£2(Zd)
f(t,x) = density profile in landscape of sources & sinks

Diffusive case “easier:” Only top of spec(Hz) matters



Anderson localization
Nobel prize for physics 1977: Anderson, van Vleck, Mott

A. Lagendijk, B. van Tiggelen, D.S. Wiersma (2009): Fifty years of
Anderson localization, Physics Today 62, no. 8

disorder

strength
> COI‘IdUCtOI’ <:> Continuous SpeCtrum Anderson Insulator
I
a.k.a. metal or extended state \
. \ /
» Insulator < discrete spectrum \ /
. \ /
a.k.a. localized state \ Metal /
o \ /
» Mott transition = line in-between gz \ I Gap
- \ i
also called mobility edge

energy

Rigorous work on localization: Frohlich-Spencer, Martinelli-Scoppola,
Simon-Wulff, Aizenman-Molchanov, ...

Delocalization on Cayley tree: AbouChacra-Anderson-Thouless, Klein,
Aizenman-Sims-Warzel, Aizenman-Warzel, ...



Main result

Assumptions on potential law

Gartner & Molchanov (1998), Gartner & den Hollander (1999)

Prob(&(0) > r) = exp{—e'/*}

Definition: We say that ¢ is in doubly-exponential class if

F(r) := loglog[P(&(0) > r)™}]

is C1 on its domain (r > essinf¢(0)) and the limit

1
E:: lim F'(r) exists in (0,00)

One out of 4 universality classes in PAM



Main result

Localization centers of eigenfunctions

1]1(36 := k-th eigenfunction (real-valued)

Heppe = A (G 9D

Localization center:
Xk 1= argmax, cp|P}5=(x)|
k- g xeD l/)D,(j
Ties resolved using lexicographic order

Ball: Br(x) :={z€Z?: |x—z| <R}



Main theorem

Eigenvalue order statistics

Suppose ¢ is in doubly-exponential class with parameter p. There
are x > 0 and a; with a; = maxyep, {(x) —x +o(1) as L — oo
such that for any bounded open D C RY:

(1) for any Ry — oo and each k > 1,

(2) The law of

{()ik logl)DL'(Agi(g) —aL)): k = 1,...,yDL|}

converges weakly to the ranking of a Poisson point process on
D x R with intensity measure dx ® e *dA.



Uniformized version

Unfolded eigenvalues

Corollary
For each k € IN,

(e—%ugﬁa alog|ol =30/ @)-a) g D1

, €
LlaW (Zl/Zl+ZQ,...,Zl+-..+Zk),

where 21,25, ... are i.i.d. exponential with parameter one.

Falls under Gumbel Extreme-Order Class



Ideas from proof

Setting scales

Note: For purely doubly exponential case:

max &(x) = ploglog LY + o(1), L — oo.
xeb|

Gartner and Molchanov:

AD(E) = ploglog LY — x + o(1)

where

X = —sup{)\%)d(q)): Y e?(2)/p < 1}

zeZd

Minimizer(s) “spread” all over Z¢ — doubly-exponential class!

In general, ploglog L9 term gets lower-order corrections.



Ideas from proof

Percolation arguments

Standard ideology:

> Top of spectrum “carried” by spatial regions where ¢ large
and properly shaped (maximizer of x)

» Eigenfunctions decay exponentially away from these regions

These ideas underly all proofs of localization at spectral edges, but
Green-function/averaging techniques obscure this

Our contribution: We use these ideas throughout all proofs.



Extreme islands

Percolation in action

Fix D € Z9 and for A > 0 set

U:= U Br(z)N D
zeD
8(2)2A5)(6)—2A

Proposition
For all k =1,2,...,|U| such that

ABE) > AD(E) -

A
2 7
we have

A

AB (@) = A5(@)] <2d(1+ —)HR
D U — 2d




Proof of Proposition

Martingale approximation argument

Lemma
Let (A, ) be eigenvalue pairin D C Z9 and Y = (Yo, Y1,...) a
path of a (discrete-time) SRW. Set

T:=inf{k >0:&(Yx) > A or Yx & D}.

Then Mypp, where My := ¢(Yp) and

My = p(vo) T o2 n>1
n - nk:02d+A—g(Yk)’ - 7

is a martingale for the filtration %, := o (Yo,..., Yn).




Proof of Lemma

Key calculation
On {1 > n},

E(Yoa) Vi) Vo) = 9(Ya) + 5 (AP)(Va).

But (A+¢)yp = A and so

1 n 2d
— [¢(Yn) + @(Aw)mﬂ I£IOQd—|—/\—C(Yk)

1 L 2d
= (V) [14 55 (A = &(0))] o7 zvg =M

Hence, M;,, is a martingale. ]



Proof of Proposition ' o

Mass outside islands

Corollary

Yol < (1+2) " Ivl3

xgU

Proof: |M;,,|? is submartingale and so
2 X X
9 = EM[? < E* Mo
But M| < (1+ 45) R|¢p(Xcar)| pointwise and

Y EXlp(Xenr)” < Ilwll3

xgU

by reversibility of the SRW.




Proof of Proposition

Deforming potential landscape

Set {s(x) := &(x) — s 1 gyy- Then
Ay () =A5(E),  k=1,...]U]

Now, for a.e. s,

d k k
@/\(D)(Cs) =) W(ngs(Xﬂz

x&U

From Corollary:

A+s\ 2R
RHS. < (1+57) w3

Integrate over s from 0 to oo to get the result.




Coupling to i.i.d. process

Theorem
For each L > 1 there are random variables A1(§), ..., Am, (), with
m; — oo, and a number A > 0 such that

(1) A(E), ..., Am, (&) arei.id.
(2) IFAL(E),..., Am, () is a decreasing re-ordering of
A(E), ..., Am, (), then forall k =1,...,m,

~

MEO-M@) <A = ALE) -A@)]<2d(1+4) "

In fact, A1(),..., Am, () are principal Dirichlet eigenvalues in
(disjoint) boxes of intermediate scale



Why principal eigenvalues enough?
Enforced spectral gap

» To get large /\%)(C), the shape of the potential needs to be
close to that of a maximizer of x

» But then A3 (&) is smaller than A (&) by (essentially) plog 2.

Precise version links gap size to large-deviation rate function for
potential profiles

Bottom line: Only principal (local) eigenvalues can contribute to
top of spectrum



Consequences of coupling

Coupling to i.i.d. variables implies:
> order statistics can only be one of three max-order classes

> it remains to find a; and b; such that, roughly,
P(Ag), > ap+sb) =L % (14 0(1))

Here s = 0 is definition of a;. For s # 0, this is a Lemma.

Proof of this Lemma is the only point where double-exp needed



Eigenvector localization

Exponential decay

Deterministic claim: Whenever AW — A<D | > ep
|l/) ’ < C]_e CQaL|zka|

Gap ensured a posteriori by scaling limit

Proof based on controlling deformation ¢ — s outside U.

Bottom line: Minami estimate replaced by existential argument.



THE END



