Eigenvalue order statistics for random Schrödinger operators

Marek Biskup

(UCLA)

Joint work with
Wolfgang König (WIAS \& TU Berlin)

Random Schrödinger operator

Transport theory in disordered quantum systems
(Anderson tight-binding) Hamiltonian on lattice $\left(x \in \mathbb{Z}^{d}\right)$:

$$
\left(H_{\xi} f\right)(x):=\sum_{y:|y-x|=1}[f(y)-f(x)]+\xi(x) f(x)
$$

In short $H_{\xi}:=\Delta+\xi$.
Objects:

$$
\begin{gathered}
f(x)=\text { wave function at site } x \\
\xi(x)=\text { potential energy at } x
\end{gathered}
$$

Disordered system: $\xi(x)$ random, i.i.d.

NOTE: Sign convention different from physics.

Main question

Eigenvalue order statistics

Dirichlet eigenvalues: For $D \subset \mathbb{Z}^{d}$ finite,

$$
\lambda_{D}^{(1)}(\xi) \geq \lambda_{D}^{(2)}(\xi) \geq \cdots \geq \lambda_{D}^{(D \mid)}(\xi)
$$

eigenvalues of H_{ξ} on functions $f: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ with $f:=0$ on D^{c}
Scaled volume: $D_{L}:=(L D) \cap \mathbb{Z}^{d}$ where $D \subset \mathbb{R}^{d}$ open
Question: Are there a_{L} and b_{L} such that

$$
\Xi_{L}:=\left\{\frac{1}{b_{L}}\left(\lambda_{D_{L}}^{(k)}(\xi)-a_{L}\right): k=1, \ldots,\left|D_{L}\right|\right\}
$$

scales, as $L \rightarrow \infty$, to a non-degenerate point process?

Some answers known

$$
\operatorname{spec}\left(H_{\xi}\right)=[-2 d, 0]+\operatorname{supp} \xi
$$

Answer: In localization regime (a_{L} constant, $b_{L}:=L^{d}$)
$\Xi_{L} \underset{L \rightarrow \infty}{\Longrightarrow}$ homogeneous Poisson point process
Killip-Nakano, Germinet-Klopp ("localization" technology)

Some answers known

$$
\operatorname{spec}\left(H_{\xi}\right)=[-2 d, 0]+\operatorname{supp} \xi
$$

Answer: In localization regime (a_{L} constant, $b_{L}:=L^{d}$)

$$
\Xi_{L} \underset{L \rightarrow \infty}{\Longrightarrow} \text { homogeneous Poisson point process }
$$

Killip-Nakano, Germinet-Klopp ("localization" technology)
Our interest: spectral edge
Some results there as well:
Germinet-Klopp ($d=1$ or $d>1$ with long-range Δ)
"Heavy-tailed" potentials: Grenkova-Molchanov-Sudarev, van der Hofstad-Mörters-Sidorova, König-Locoin-Mörters-Sidorova, Austrauskas

Note: Exponential, even Gaussian tails are heavy!

Motivation

Diffusive dynamics

Parabolic Anderson model (PAM):

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x)=\Delta u(t, x)+\xi(x) u(t, x) \\
u(0, x)=\delta_{0}(x)
\end{array}\right.
$$

Applications:

- chemical kinetics (Zel'dovich et al)
- hydrodynamics (Carmona and Molchanov)
- magnetic phenomena (Molchanov and Ruzmaikin)

In probability:

- population dynamics w/ inhomogeneous rates
- Brownian motion among obstacles
- interacting random polymers

Time evolution

"To i or not to ${ }^{\prime \prime}$
Quantum evolution:

$$
f(t, x)=\left\langle\delta_{x}, \mathrm{e}^{i t H_{\tilde{S}}} f(0, \cdot)\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}
$$

$f(t, x)=$ wave function of an electron in a disordered metal

Diffusive dynamics:

$$
f(t, x)=\left\langle\delta_{x}, \mathrm{e}^{\left.t H_{\tilde{\zeta}} f(0, \cdot)\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}}\right.
$$

$f(t, x)=$ density profile in landscape of sources \& sinks
Diffusive case "easier:" Only top of $\operatorname{spec}\left(H_{\xi}\right)$ matters

Anderson localization

Nobel prize for physics 1977: Anderson, van Vleck, Mott
A. Lagendijk, B. van Tiggelen, D.S. Wiersma (2009): Fifty years of Anderson localization, Physics Today 62, no. 8

- Conductor \Leftrightarrow continuous spectrum a.k.a. metal or extended state
- Insulator \Leftrightarrow discrete spectrum a.k.a. localized state
- Mott transition = line in-between also called mobility edge

Rigorous work on localization: Fröhlich-Spencer, Martinelli-Scoppola, Simon-Wulff, Aizenman-Molchanov, ...
Delocalization on Cayley tree: AbouChacra-Anderson-Thouless, Klein, Aizenman-Sims-Warzel, Aizenman-Warzel, ...

Main result

Assumptions on potential law

Gärtner \& Molchanov (1998), Gärtner \& den Hollander (1999)

$$
\operatorname{Prob}(\xi(0)>r)=\exp \left\{-\mathrm{e}^{r / \rho}\right\}
$$

Definition: We say that ξ is in doubly-exponential class if

$$
F(r):=\log \log \left[\mathbb{P}(\xi(0)>r)^{-1}\right]
$$

is C^{1} on its domain $(r>\operatorname{essinf} \xi(0))$ and the limit

$$
\frac{1}{\rho}:=\lim _{r \rightarrow \infty} F^{\prime}(r) \quad \text { exists in }(0, \infty)
$$

One out of 4 universality classes in PAM

Main result

Localization centers of eigenfunctions

$$
\begin{aligned}
& \psi_{D, \xi}^{(k)}:=k \text {-th eigenfunction (real-valued) } \\
& \qquad H_{\zeta} \psi_{D, \xi}^{(k)}=\lambda_{D}^{(k)}(\xi) \psi_{D, \xi}^{(k)}
\end{aligned}
$$

Localization center:

$$
X_{k}:=\operatorname{argmax}_{x \in D}\left|\psi_{D, \xi}^{(k)}(x)\right|
$$

Ties resolved using lexicographic order

$$
\text { Ball: } B_{R}(x):=\left\{z \in \mathbb{Z}^{d}:|x-z| \leq R\right\}
$$

Main theorem

Eigenvalue order statistics
Suppose ξ is in doubly-exponential class with parameter ρ. There are $\chi>0$ and a_{L} with $a_{L}=\max _{x \in B_{L}} \xi(x)-\chi+o(1)$ as $L \rightarrow \infty$ such that for any bounded open $D \subset \mathbb{R}^{d}$:
(1) for any $R_{L} \rightarrow \infty$ and each $k \geq 1$,

$$
\sum_{z:\left|z-X_{k}\right| \leq R_{L}}\left|\psi_{D_{L, \xi}}^{(k)}(z)\right|^{2} \xrightarrow[L \rightarrow \infty]{P} 1
$$

(2) The law of

$$
\left\{\left(\frac{X_{k}}{L}, \frac{\log \left|D_{L}\right|}{\rho}\left(\lambda_{D_{L}}^{(k)}(\xi)-a_{L}\right)\right): k=1, \ldots,\left|D_{L}\right|\right\}
$$

converges weakly to the ranking of a Poisson point process on $D \times \mathbb{R}$ with intensity measure $\mathrm{d} x \otimes \mathrm{e}^{-\lambda} \mathrm{d} \lambda$.

Uniformized version

Unfolded eigenvalues

Corollary

For each $k \in \mathbb{N}$,

$$
\begin{aligned}
\left(\mathrm{e}^{-\frac{1}{\rho}\left(\lambda_{D_{L}}^{(1)}(\xi)-a_{L}\right) \log \left|D_{L}\right|}\right. & \left.\ldots, \mathrm{e}^{-\frac{1}{\rho}\left(\lambda_{D_{L}}^{(k)}(\xi)-a_{L}\right) \log \left|D_{L}\right|}\right) \\
& \xrightarrow[L \rightarrow \infty]{\text { law }}\left(Z_{1}, Z_{1}+Z_{2}, \ldots, Z_{1}+\cdots+Z_{k}\right),
\end{aligned}
$$

where Z_{1}, Z_{2}, \ldots are i.i.d. exponential with parameter one.

Falls under Gumbel Extreme-Order Class

Ideas from proof

Setting scales

Note: For purely doubly exponential case:

$$
\max _{x \in B_{L}} \xi(x)=\rho \log \log L^{d}+o(1), \quad L \rightarrow \infty
$$

Gärtner and Molchanov:

$$
\lambda_{D}^{(1)}(\xi)=\rho \log \log L^{d}-\chi+o(1)
$$

where

$$
\chi:=-\sup \left\{\lambda_{\mathbb{Z}^{d}}^{(1)}(\varphi): \sum_{z \in \mathbb{Z}^{d}} \mathrm{e}^{\varphi(z) / \rho} \leq 1\right\}
$$

Minimizer(s) "spread" all over \mathbb{Z}^{d} — doubly-exponential class!
In general, $\rho \log \log L^{d}$ term gets lower-order corrections.

Ideas from proof

Percolation arguments

Standard ideology:

- Top of spectrum "carried" by spatial regions where ξ large and properly shaped (maximizer of χ)
- Eigenfunctions decay exponentially away from these regions

These ideas underly all proofs of localization at spectral edges, but Green-function/averaging techniques obscure this

Our contribution: We use these ideas throughout all proofs.

Extreme islands

Percolation in action

Fix $D \subset \mathbb{Z}^{d}$ and for $A>0$ set

$$
U:=\bigcup_{\substack{z \in D \\ \xi(z) \geq \lambda_{D}^{(1)}(\xi)-2 A}} B_{R}(z) \cap D
$$

Proposition

For all $k=1,2, \ldots,|U|$ such that

$$
\lambda_{D}^{(k)}(\xi) \geq \lambda_{D}^{(1)}(\xi)-\frac{A}{2}
$$

we have

$$
\left|\lambda_{D}^{(k)}(\xi)-\lambda_{U}^{(k)}(\xi)\right| \leq 2 d\left(1+\frac{A}{2 d}\right)^{1-2 R}
$$

Proof of Proposition

Martingale approximation argument

Lemma

Let (λ, ψ) be eigenvalue pair in $D \subset \mathbb{Z}^{d}$ and $Y=\left(Y_{0}, Y_{1}, \ldots\right)$ a path of a (discrete-time) SRW. Set

$$
\tau:=\inf \left\{k \geq 0: \xi\left(Y_{k}\right) \geq \lambda \text { or } Y_{k} \notin D\right\} .
$$

Then $M_{\tau \wedge n}$, where $M_{0}:=\psi\left(Y_{0}\right)$ and

$$
M_{n}:=\psi\left(Y_{n}\right) \prod_{k=0}^{n-1} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)}, \quad n \geq 1
$$

is a martingale for the filtration $\mathscr{F}_{n}:=\sigma\left(Y_{0}, \ldots, Y_{n}\right)$.

Proof of Lemma

Key calculation

On $\{\tau>n\}$,

$$
E\left(\psi\left(Y_{n+1}\right) \mid Y_{1}, \ldots, Y_{n}\right)=\psi\left(Y_{n}\right)+\frac{1}{2 d}(\Delta \psi)\left(Y_{n}\right)
$$

But $(\Delta+\xi) \psi=\lambda \psi$ and so
$E\left(M_{n+1} \mid Y_{1}, \ldots, Y_{n}\right)$

$$
\begin{aligned}
& =\left[\psi\left(Y_{n}\right)+\frac{1}{2 d}(\Delta \psi)\left(Y_{n}\right)\right] \prod_{k=0}^{n} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)} \\
& =\psi\left(Y_{n}\right)\left[1+\frac{1}{2 d}\left(\lambda-\xi\left(Y_{n}\right)\right)\right] \prod_{k=0}^{n} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)}=M_{n}
\end{aligned}
$$

Hence, $M_{\tau \wedge n}$ is a martingale.

Proof of Proposition

Mass outside islands

$$
U:=\bigcup_{\substack{z \in D \\ \xi(z) \geq \lambda_{D}^{(1)}(\xi)-2 A}} B_{R}(z) \cap D
$$

Corollary

$$
\sum_{x \notin U}|\psi(x)|^{2} \leq\left(1+\frac{A}{2 d}\right)^{-2 R}\|\psi\|_{2}^{2}
$$

Proof: $\left|M_{\tau \wedge n}\right|^{2}$ is submartingale and so

$$
|\psi(x)|^{2}=E^{x}\left|M_{0}\right|^{2} \leq E^{x}\left|M_{\tau \wedge n}\right|^{2}
$$

But $\left|M_{\tau \wedge R}\right| \leq\left(1+\frac{A}{2 d}\right)^{-R}\left|\psi\left(X_{\tau \wedge R}\right)\right|$ pointwise and

$$
\sum_{x \notin U} E^{x}\left|\psi\left(X_{\tau \wedge R}\right)\right|^{2} \leq\|\psi\|_{2}^{2}
$$

by reversibility of the SRW.

Proof of Proposition

Deforming potential landscape

$$
U:=\bigcup_{\substack{z \in D \\ \xi(z) \geq \lambda_{D}^{(1)}(\xi)-2 A}} B_{R}(z) \cap D
$$

Set $\xi_{s}(x):=\xi(x)-s 1_{\{x \notin U\}}$. Then

$$
\lambda_{D}^{(k)}\left(\xi_{\infty}\right)=\lambda_{U}^{(k)}(\xi), \quad k=1, \ldots,|U|
$$

Now, for a.e. s,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \lambda_{D}^{(k)}\left(\xi_{s}\right)=\sum_{x \notin U}\left|\psi_{D, \xi_{s}}^{(k)}(x)\right|^{2}
$$

From Corollary:

$$
\text { R.H.S. } \leq\left(1+\frac{A+s}{2 d}\right)^{-2 R}\|\psi\|_{2}^{2}
$$

Integrate over s from 0 to ∞ to get the result.

Coupling to i.i.d. process

Theorem
For each $L \geq 1$ there are random variables $\lambda_{1}(\xi), \ldots, \lambda_{m_{L}}(\xi)$, with $m_{L} \rightarrow \infty$, and a number $A>0$ such that
(1) $\lambda_{1}(\xi), \ldots, \lambda_{m_{L}}(\xi)$ are i.i.d.
(2) If $\hat{\lambda}_{1}(\xi), \ldots, \hat{\lambda}_{m_{L}}(\xi)$ is a decreasing re-ordering of $\lambda_{1}(\xi), \ldots, \lambda_{m_{L}}(\xi)$, then for all $k=1, \ldots, m_{L}$,

$$
\hat{\lambda}_{1}(\xi)-\hat{\lambda}_{k}(\xi)<A \Rightarrow\left|\lambda_{D_{L}}^{(k)}(\xi)-\hat{\lambda}_{k}(\xi)\right|<2 d\left(1+\frac{A}{2 d}\right)^{1-2 R_{L}}
$$

In fact, $\lambda_{1}(\xi), \ldots, \lambda_{m_{L}}(\xi)$ are principal Dirichlet eigenvalues in (disjoint) boxes of intermediate scale

Why principal eigenvalues enough?

Enforced spectral gap

- To get large $\lambda_{D}^{(1)}(\xi)$, the shape of the potential needs to be close to that of a maximizer of χ
- But then $\lambda_{D}^{(2)}(\xi)$ is smaller than $\lambda_{D}^{(1)}(\xi)$ by (essentially) $\rho \log 2$.

Precise version links gap size to large-deviation rate function for potential profiles

Bottom line: Only principal (local) eigenvalues can contribute to top of spectrum

Consequences of coupling

Coupling to i.i.d. variables implies:

- order statistics can only be one of three max-order classes
- it remains to find a_{L} and b_{L} such that, roughly,

$$
\mathbb{P}\left(\lambda_{B_{R}}^{(1)} \geq a_{L}+s b_{L}\right)=L^{-d} \mathrm{e}^{-s}(1+o(1))
$$

Here $s=0$ is definition of a_{L}. For $s \neq 0$, this is a Lemma.
Proof of this Lemma is the only point where double-exp needed

Eigenvector localization

Exponential decay

Deterministic claim: Whenever $\left|\lambda^{(k)}-\lambda^{(k \pm 1)}\right|>\epsilon_{R}$

$$
\left|\psi^{(k)}(z)\right| \leq c_{1} \mathrm{e}^{-c_{2} a_{L}\left|z-X_{k}\right|}
$$

Gap ensured a posteriori by scaling limit
Proof based on controlling deformation $\xi \mapsto \xi_{s}$ outside U.
Bottom line: Minami estimate replaced by existential argument.

THE END

