Eigenvalue order statistics for random Schrödinger operators

Marek Biskup

(UCLA)

Joint work with **Wolfgang König** (WIAS & TU Berlin)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Random Schrödinger operator

Transport theory in disordered quantum systems

(Anderson tight-binding) **Hamiltonian** on lattice $(x \in \mathbb{Z}^d)$:

$$(H_{\xi}f)(x) := \sum_{y: |y-x|=1} [f(y) - f(x)] + \xi(x)f(x)$$

In short $H_{\xi} := \Delta + \xi$.

Objects:

f(x) = wave function at site x $\xi(x) =$ potential energy at x

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Disordered system: $\xi(x)$ random, i.i.d.

NOTE: Sign convention different from physics.

Main question Eigenvalue order statistics

Dirichlet eigenvalues: For $D \subset \mathbb{Z}^d$ finite,

$$\lambda_D^{(1)}(\xi) \ge \lambda_D^{(2)}(\xi) \ge \cdots \ge \lambda_D^{(|D|)}(\xi)$$

eigenvalues of H_{ξ} on functions $f: \mathbb{Z}^d \to \mathbb{C}$ with f:=0 on D^c

Scaled volume: $D_L := (LD) \cap \mathbb{Z}^d$ where $D \subset \mathbb{R}^d$ open

Question: Are there a_L and b_L such that

$$\Xi_L := \Big\{ rac{1}{b_L} ig(\lambda_{D_L}^{\scriptscriptstyle (k)}(\xi) - \mathsf{a}_L ig) \colon k = 1, \ldots, |D_L| \Big\}$$

scales, as $L \rightarrow \infty$, to a non-degenerate point process?

くして 前 ふかく ボット きょうくしゃ

Some answers known

 $\operatorname{spec}(H_{\xi}) = [-2d, 0] + \operatorname{supp} \xi$

Answer: In localization regime (a_L constant, $b_L := L^d$)

$$\Xi_L \underset{L \to \infty}{\Longrightarrow}$$
 homogeneous Poisson point process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Killip-Nakano, Germinet-Klopp ("localization" technology)

Some answers known

 $\operatorname{spec}(H_{\xi}) = [-2d, 0] + \operatorname{supp} \xi$

Answer: In localization regime (a_L constant, $b_L := L^d$)

$$\Xi_L \underset{L \to \infty}{\Longrightarrow}$$
 homogeneous Poisson point process

Killip-Nakano, Germinet-Klopp ("localization" technology)

Our interest: spectral edge

Some results there as well:

Germinet-Klopp (d = 1 or d > 1 with long-range Δ)

"Heavy-tailed" potentials: Grenkova-Molchanov-Sudarev, van der Hofstad-Mörters-Sidorova, König-Locoin-Mörters-Sidorova, Austrauskas

Note: Exponential, even Gaussian tails are heavy!

Motivation Diffusive dynamics

Parabolic Anderson model (PAM):

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) = \Delta u(t,x) + \xi(x)u(t,x) \\ u(0,x) = \delta_0(x). \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications:

- chemical kinetics (Zel'dovich et al)
- hydrodynamics (Carmona and Molchanov)
- magnetic phenomena (Molchanov and Ruzmaikin)

In probability:

- population dynamics w/ inhomogeneous rates
- Brownian motion among obstacles
- interacting random polymers

Quantum evolution:

$$f(t,x) = \langle \delta_x, \mathrm{e}^{\mathrm{i} t H_{\xi}} f(0,\cdot) \rangle_{\ell^2(\mathbb{Z}^d)}$$

f(t, x) = wave function of an electron in a disordered metal

Diffusive dynamics:

$$f(t,x) = \langle \delta_x, \mathrm{e}^{tH_{\xi}}f(0,\cdot) \rangle_{\ell^2(\mathbb{Z}^d)}$$

f(t,x) = density profile in landscape of sources & sinks Diffusive case "easier:" Only top of spec(H_{ξ}) matters

Anderson localization

Nobel prize for physics 1977: Anderson, van Vleck, Mott

A. Lagendijk, B. van Tiggelen, D.S. Wiersma (2009): Fifty years of Anderson localization, *Physics Today* **62**, no. 8

- ► Conductor ⇔ continuous spectrum a.k.a. metal or extended state
- ► Insulator ⇔ discrete spectrum a.k.a. localized state
- Mott transition = line in-between also called mobility edge

Rigorous work on localization: Fröhlich-Spencer, Martinelli-Scoppola, Simon-Wulff, Aizenman-Molchanov, ...

Delocalization on Cayley tree: AbouChacra-Anderson-Thouless, Klein, Aizenman-Sims-Warzel, Aizenman-Warzel, ...

Main result Assumptions on potential law

Gärtner & Molchanov (1998), Gärtner & den Hollander (1999)

$$\operatorname{Prob}(\xi(0) > r) = \exp\{-e^{r/\rho}\}\$$

Definition: We say that ξ is in **doubly-exponential class** if

$$F(r) := \log \log[\mathbb{P}(\xi(0) > r)^{-1}]$$

is \mathcal{C}^1 on its domain $(r> ext{essinf}\xi(0))$ and the limit

$$rac{1}{
ho}:=\lim_{r
ightarrow\infty} F'(r) \quad ext{exists in } (0,\infty)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One out of 4 universality classes in PAM

Main result Localization centers of eigenfunctions

$$\psi_{D,\xi}^{(k)} := k$$
-th eigenfunction (real-valued)
 $H_{\xi}\psi_{D,\xi}^{(k)} = \lambda_D^{(k)}(\xi)\psi_{D,\xi}^{(k)}$

Localization center:

$$X_k := \operatorname{argmax}_{x \in D} \left| \psi_{D, \zeta}^{\scriptscriptstyle (k)}(x)
ight|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ties resolved using lexicographic order

Ball: $B_R(x) := \{z \in \mathbb{Z}^d : |x - z| \le R\}$

Main theorem

Eigenvalue order statistics

Suppose ξ is in doubly-exponential class with parameter ρ . There are $\chi > 0$ and a_L with $a_L = \max_{x \in B_L} \xi(x) - \chi + o(1)$ as $L \to \infty$ such that for any bounded open $D \subset \mathbb{R}^d$:

(1) for any $R_L \to \infty$ and each $k \ge 1$,

$$\sum_{z: |z-X_k| \le R_L} \left| \psi_{D_L,\xi}^{(k)}(z) \right|^2 \xrightarrow{P} 1$$

(2) The law of

$$\left\{\left(\frac{X_k}{L}, \frac{\log|D_L|}{\rho}\left(\lambda_{D_L}^{(k)}(\xi) - a_L\right)\right) \colon k = 1, \dots, |D_L|\right\}$$

converges weakly to the ranking of a Poisson point process on $D \times \mathbb{R}$ with intensity measure $dx \otimes e^{-\lambda} d\lambda$.

Uniformized version

Unfolded eigenvalues

Corollary

For each $k \in \mathbb{N}$,

$$(\mathrm{e}^{-\frac{1}{\rho}(\lambda_{D_{L}}^{(1)}(\xi)-a_{L})\log|D_{L}|}, \dots, \mathrm{e}^{-\frac{1}{\rho}(\lambda_{D_{L}}^{(k)}(\xi)-a_{L})\log|D_{L}|})$$

$$\xrightarrow{\mathrm{law}}_{L\to\infty} (Z_{1}, Z_{1}+Z_{2}, \dots, Z_{1}+\dots+Z_{k}),$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where Z_1, Z_2, \ldots are *i.i.d.* exponential with parameter one.

Falls under Gumbel Extreme-Order Class

Ideas from proof Setting scales

Note: For purely doubly exponential case:

$$\max_{x\in \mathcal{B}_L}\xi(x)=\rho\log\log L^d+o(1),\qquad L\to\infty.$$

Gärtner and Molchanov:

$$\lambda_D^{\scriptscriptstyle(1)}(\xi) = \rho \log \log L^d - \chi + o(1)$$

where

$$\chi:=-\sup\Bigl\{\lambda^{\scriptscriptstyle(1)}_{\mathbb{Z}^d}(arphi)\colon \sum_{z\in\mathbb{Z}^d}\mathrm{e}^{arphi(z)/
ho}\leq 1\Bigr\}$$

Minimizer(s) "spread" all over \mathbb{Z}^d — doubly-exponential class!

In general, $\rho \log \log L^d$ term gets lower-order corrections.

Standard ideology:

- Top of spectrum "carried" by spatial regions where ξ large and properly shaped (maximizer of χ)
- Eigenfunctions decay exponentially away from these regions

These ideas underly all proofs of localization at spectral edges, but Green-function/averaging techniques obscure this

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our contribution: We use these ideas throughout all proofs.

Extreme islands

Percolation in action

Fix $D \subset \mathbb{Z}^d$ and for A > 0 set $U := igcup_{\substack{z \in D \\ \xi(z) \geq \lambda_D^{(1)}(\xi) - 2A}} B_R(z) \cap D$

Proposition

For all $k = 1, 2, \ldots, |U|$ such that

$$\lambda_D^{(k)}(\xi) \geq \lambda_D^{(1)}(\xi) - \frac{A}{2},$$

we have

$$\left|\lambda_D^{(k)}(\xi) - \lambda_U^{(k)}(\xi)\right| \le 2d\left(1 + \frac{A}{2d}\right)^{1 - 2R}$$

Proof of Proposition

Martingale approximation argument

Lemma

Let (λ, ψ) be eigenvalue pair in $D \subset \mathbb{Z}^d$ and $Y = (Y_0, Y_1, ...)$ a path of a (discrete-time) SRW. Set

$$\tau := \inf \{ k \ge 0 \colon \xi(Y_k) \ge \lambda \text{ or } Y_k \notin D \}.$$

Then $M_{\tau \wedge n}$, where $M_0 := \psi(Y_0)$ and

$$M_n := \psi(Y_n) \prod_{k=0}^{n-1} \frac{2d}{2d + \lambda - \xi(Y_k)}, \qquad n \ge 1,$$

is a martingale for the filtration $\mathscr{F}_n := \sigma(Y_0, \ldots, Y_n)$.

Proof of Lemma Key calculation

On
$$\{\tau > n\}$$
,
 $E(\psi(Y_{n+1})|Y_1, \dots, Y_n) = \psi(Y_n) + \frac{1}{2d}(\Delta\psi)(Y_n)$.
But $(\Delta + \xi)\psi = \lambda\psi$ and so
 $E(M_{n+1}|Y_1, \dots, Y_n)$
 $= \left[\psi(Y_n) + \frac{1}{2d}(\Delta\psi)(Y_n)\right]\prod_{k=0}^n \frac{2d}{2d + \lambda - \xi(Y_k)}$
 $= \psi(Y_n)\left[1 + \frac{1}{2d}(\lambda - \xi(Y_n))\right]\prod_{k=0}^n \frac{2d}{2d + \lambda - \xi(Y_k)} = M_n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Hence, $M_{\tau \wedge n}$ is a martingale.

Proof of Proposition

 $U := igcup_{\substack{z \in D \ \xi(z) \geq \lambda_D^{(1)}(\xi) - 2A}} B_R(z) \cap D$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mass outside islands

Corollary

$$\sum_{x \notin U} \left| \psi(x) \right|^2 \leq \left(1 + \frac{A}{2d} \right)^{-2R} \|\psi\|_2^2.$$

Proof: $|M_{\tau \wedge n}|^2$ is submartingale and so

$$\left|\psi(x)\right|^2 = E^x |M_0|^2 \le E^x |M_{\tau \wedge n}|^2$$

But $|M_{\tau \wedge R}| \leq (1 + \frac{A}{2d})^{-R} |\psi(X_{\tau \wedge R})|$ pointwise and $\sum_{x \notin U} E^x |\psi(X_{\tau \wedge R})|^2 \leq \|\psi\|_2^2$

by reversibility of the SRW.

Proof of Proposition Deforming potential landscape

$$U := igcup_{\substack{z \in D \ \xi(z) \geq \lambda_D^{(1)}(\xi) - 2A}} B_R(z) \cap D$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Set
$$\xi_s(x) := \xi(x) - s \mathbf{1}_{\{x \notin U\}}$$
. Then
 $\lambda_D^{(k)}(\xi_\infty) = \lambda_U^{(k)}(\xi), \qquad k = 1, \dots, |U|$

Now, for a.e. s,

$$\frac{\mathrm{d}}{\mathrm{d}s}\lambda_D^{(k)}(\xi_s) = \sum_{x \notin U} \left| \psi_{D,\xi_s}^{(k)}(x) \right|^2$$

From Corollary:

$$\mathsf{R.H.S.} \le \left(1 + \frac{A+s}{2d}\right)^{-2R} \|\psi\|_2^2$$

Integrate over s from 0 to ∞ to get the result.

Coupling to i.i.d. process

Theorem

For each $L \ge 1$ there are random variables $\lambda_1(\xi), \ldots, \lambda_{m_L}(\xi)$, with $m_L \to \infty$, and a number A > 0 such that (1) $\lambda_1(\xi), \ldots, \lambda_{m_L}(\xi)$ are i.i.d. (2) If $\hat{\lambda}_1(\xi), \ldots, \hat{\lambda}_{m_L}(\xi)$ is a decreasing re-ordering of $\lambda_1(\xi), \ldots, \lambda_{m_L}(\xi)$, then for all $k = 1, \ldots, m_L$, $\hat{\lambda}_1(\xi) - \hat{\lambda}_k(\xi) < A \implies |\lambda_{D_L}^{(k)}(\xi) - \hat{\lambda}_k(\xi)| < 2d(1 + \frac{A}{2d})^{1-2R_L}$

In fact, $\lambda_1(\xi), \ldots, \lambda_{m_L}(\xi)$ are principal Dirichlet eigenvalues in (disjoint) boxes of intermediate scale

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why principal eigenvalues enough? Enforced spectral gap

- To get large λ⁽¹⁾_D(ξ), the shape of the potential needs to be close to that of a maximizer of χ
- But then $\lambda_D^{(2)}(\xi)$ is smaller than $\lambda_D^{(1)}(\xi)$ by (essentially) $\rho \log 2$.

Precise version links gap size to **large-deviation** rate function for potential profiles

Bottom line: Only principal (local) eigenvalues can contribute to top of spectrum

Consequences of coupling

Coupling to i.i.d. variables implies:

- order statistics can only be one of three max-order classes
- it remains to find a_L and b_L such that, roughly,

$$\mathbb{P}\big(\lambda_{\mathcal{B}_{\mathcal{R}}}^{\scriptscriptstyle (1)} \geq \mathsf{a}_{\mathcal{L}} + \mathsf{s}\mathsf{b}_{\mathcal{L}}\big) = \mathcal{L}^{-\mathsf{d}}\mathrm{e}^{-\mathsf{s}}\big(1 + o(1)\big)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here s = 0 is definition of a_L . For $s \neq 0$, this is a Lemma.

Proof of this Lemma is the only point where double-exp needed

Eigenvector localization Exponential decay

Deterministic claim: Whenever $|\lambda^{(k)} - \lambda^{(k\pm 1)}| > \epsilon_R$

$$\left|\psi^{(k)}(z)\right| \leq c_1 \mathrm{e}^{-c_2 a_L |z - X_k|}$$

Gap ensured a posteriori by scaling limit

Proof based on controlling deformation $\xi \mapsto \xi_s$ outside U.

Bottom line: Minami estimate replaced by existential argument.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

THE END