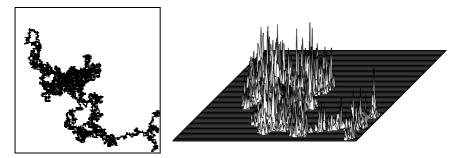
A limit law for the favorite points of random walks on regular trees

Marek Biskup (UCLA)

based on joint work with

Oren Louidor

A **favorite** point of a walk of finite time-length is that visited most frequently. Erdős and Taylor (1960) asked: How much time does the simple random walk on \mathbb{Z}^d of time-length *n* spend at its favorite point(s)?



Early answers

Let $X = \{X_n : n \ge 0\}$:= simple random walk on \mathbb{Z}^d , initial value $X_0 := 0$ Time spent at x (a.k.a. local time):

$$\ell_n(x) := \sum_{j=0}^n \mathbb{1}_{\{X_j = x\}}$$

Erdős and Taylor's question: Find asymptotic behavior (as $n \rightarrow \infty$) of

$$M_n := \max_{x \in \mathbb{Z}^d} \ell_n(x)$$

In $d \ge 3$ [ET60]: $\frac{1}{\log n}M_n \to c_d \in (0, \infty)$ Maximum of *n* i.i.d. Geometric(c_d) In d = 1: M_n/\sqrt{n} admits a weak limit. Lévy's theory of Brownian local time In d = 2 [ET60]: With high probability,

$$rac{1}{\pi} (\log n)^2 \lesssim M_n \lesssim rac{4}{\pi} (\log n)^2$$
 Maximum of *n* i.i.d. Geometric($c \log n$)

Theorem (Dembo, Peres, Rosen and Zeitouni (2001))

In
$$d = 2$$
: $\frac{1}{(\log n)^2} \max_{x \in \mathbb{Z}^2} \ell_n(x) \xrightarrow{P} \frac{4}{\pi}$

Q: Beyond leading order? Limit law? Other local maxima?

Q: What makes d = 2 special? Excursions reach points at scale of domain A: Local time is **logarithmically correlated**

Setting:

- $G = (V \cup \{\varrho\}, E)$ finite connected graph with $\varrho :=$ **distinguished vertex**
- $X = \{X_t : t \ge 0\}$:= **continuous-time** simple random walk on $V \cup \{\varrho\}$ with unit jump rate across each edge. P^x := law of *X* started from *x*.
- Local time (parametrized by actual time)

$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s=x\}} \mathrm{d}s$$

• The **first hitting time** of ϱ defined as

$$\tau_{\varrho} := \inf\{t \ge 0 \colon X_t \in \varrho\}$$

gives rise to the Green function via

$$G^V(x,y) := E^x\big(\ell_{\tau_\varrho}(y)\big)$$

Fact: G^V is symmetric & positive definite, so it is the covariance of a centered Gaussian process called **Gaussian Free Field** (zero b.c. at ϱ).

Key idea: Parametrize local time by the time spent at *q*. Indeed, set

$$T_{\varrho}(t) := \inf\{s \ge 0 \colon \ell_s(\varrho) \ge t\} \text{ and } L_t(x) := \ell_{T_{\varrho}(t)}(x)$$

Then for all $t \ge 0$ and $x, y \in V \cup \{\varrho\}$:

$$E^{\varrho}(L_t(x)) = t$$

and

$$\operatorname{Cov}_{P^{\varrho}}(L_t(x), L_t(y)) = 2t \, G^V(x, y)$$

As $t \mapsto L_t(x)$ has **independent increments**, we get:

Corollary (of multivariate CLT)

Let h = GFF (zero b.c. at ϱ). Then

$$\frac{L_t(\cdot) - t}{\sqrt{2t}} \xrightarrow[t \to \infty]{\text{law}} h(\cdot)$$

Theorem (Bramson, Ding, Zeitouni (2016), B.-Louidor (2016)) Let $V_N := (0, N)^2 \cap \mathbb{Z}^2$, $\rho := \partial V_N$ (wired boundary), h = GFF (zero b.c. at ρ). Set $m_N := 2\sqrt{g} \log N - \frac{3}{4}\sqrt{g} \log \log N$ where $g := \frac{2}{\pi}$. Then for all $u \in \mathbb{R}$, $P(\max_{x \in V_N} h_x \leq m_N + u) \xrightarrow[N \to \infty]{} E(e^{-\mathcal{Z}e^{-\alpha u}})$ In short, $\max_{x \in V_N} h_x - m_N$ tend in law to $\alpha^{-1}(\log \mathcal{Z} + G)$ where G := Gumbelindependent of \mathcal{Z} .

Caution(!): Approximation by GFF only good for times $t \gg \text{cover time of } V$.

8

In transient dimensions ($d \ge 3$): power-law decay

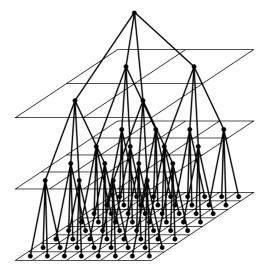
$$G^V(x,y) \propto |x-y|^{-a}$$

In d = 2, we get **logarithmic correlations**

$$G^{V}(x,y) = g \log \frac{N}{|x-y|+1} + O(1)$$

where $N := \operatorname{diam}(V)$ and $g := \frac{2}{\pi}$

Logarithmic correlations appear for the Green function on **regular trees** where, it turns out, we can answer the above questions.



$\mathbb{T}_n :=$ **regular rooted tree** of depth *n* with forward degree $b \ge 2$ $\mathbb{L}_n :=$ **leaf vertices** at depth *n*

As before: $\{X_t: t \ge 0\}$:= continuous-time SRW on \mathbb{T}_n ,

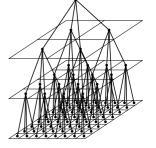
$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s=x\}} \mathrm{d}s$$

and, for $\varrho := \mathbf{root}$ of \mathbb{T}_n ,

$$\tau_{\varrho} := \inf\{t \ge 0 \colon X_t = \varrho\}$$

"Connection" with \mathbb{Z}^2 :

The random walk started from $x \in \mathbb{L}_n$ and run until τ_{ϱ} is similar to random walk started at 0 and run until first exit from $(-\frac{1}{2}4^n, \frac{1}{2}4^n) \cap \mathbb{Z}^2$.



Theorem (B.-Louidor 2021)

For any $x_n \in \mathbb{L}_n$ and all $u \in \mathbb{R}$,

$$P^{x_n}\left(\max_{x\in\mathbb{L}_n}\sqrt{\ell_{\tau_{\varrho}}(x)}\leqslant n\sqrt{\log b}-\frac{1}{\sqrt{\log b}}\log n+u\right) \xrightarrow[n\to\infty]{} \mathbb{E}\left(\mathrm{e}^{-\mathcal{Z}\mathrm{e}^{-2u}\sqrt{\log b}}\right)$$

where \mathcal{Z} is an a.s.-positive and finite random variable. Thus

$$\frac{1}{n} \left(\max_{x \in \mathbb{L}_n} \ell_{\tau_{\varrho}}(x) - \left(n^2 \log b - 2n \log n \right) \right) \xrightarrow[n \to \infty]{\text{law}} \log \mathcal{Z} + G$$

where G is a normalized Gumbel random variable independent of \mathcal{Z} .

Note: $|\mathbb{L}_n| = b^n$ and so $n^2 \log b = \frac{1}{\log b} (\log |\mathbb{L}_n|)^2$ in accord with [ET60]

Theorem (B.-Louidor (2021))

There is $c_{\star} \in (0, \infty)$ *such that* \mathcal{Z} *from previous theorem obeys*

$$c_{\star} b^{-2n} \sum_{x \in \mathbb{L}_n} \left(n \sqrt{\log b} - \sqrt{\ell_{\tau_{\varrho}}(x)} \right)^+ \ell_{\tau_{\varrho}}(x)^{1/4} e^{2\sqrt{\log b}} \sqrt{\ell_{\tau_{\varrho}}(x)} \xrightarrow[n \to \infty]{\text{law}} \mathcal{Z}$$

Take-home message:

- $\max_{x \in \mathbb{L}_n} \sqrt{\ell_{\tau_{\varrho}}(x)}$ centered & scaled tends to a **randomly shifted Gumbel**
- The shift takes a "derivative martingale" form

Confirms emergent universality among log-correlated fields.

Branching Brownian motion (Bramson 1978, Lalley and Selke 1987, ...), Branching random walk (Aïdekon 2013, ...), discrete GFF in d = 2 (Bramson, Ding, Zeitouni 2015, ...), membrane model in d = 4 (Schweiger 2020), ...

Note for experts: 2nd order term in centering sequence different from BRW

Recall that
$$L_t(x) := \ell_{T_{\varrho}(t)}(x)$$
 where $T_{\varrho}(t) := \inf\{s \ge 0 \colon \ell_s(\varrho) \ge t\}$

Tree geometry implies:

Lemma
Set
$\mathcal{H}_{n,t} := \left\{ \max_{x \in \mathbb{L}_n} L_t(x) > 0 \right\} \stackrel{\text{a.s.}}{=} \left\{ \mathbb{L}_n \text{ hit before } T_{\varrho}(t) \right\}$
<i>Then for any</i> $x_n \in \mathbb{L}_n$ <i>,</i>
$\max_{x \in \mathbb{L}_n} L_t(x) \text{ under } P^{\varrho}(\cdot \mid \mathcal{H}_{n,t}) \xrightarrow{\text{law}}_{t \downarrow 0} \max_{x \in \mathbb{L}_n} \ell_{\tau_{\varrho}}(x) \text{ under } P^{x_n}$

So we first control $\max_{x \in \mathbb{L}_n} L_t(x)$ under $P^{\varrho}(\cdot | \mathcal{H}_{n,t})$ Note: Need a version of Lemma that is uniform in *n*. For any $t \ge 0$ set

$$Z_n(t) := b^{-2n} \sum_{x \in \mathbb{L}_n} \left(n \sqrt{\log b} - \sqrt{L_t(x)} \right)^+ L_t(x)^{1/4} e^{2\sqrt{\log b} \sqrt{L_t(x)}},$$

Note: if leaves not hit by $T_{\varrho}(t)$, then $Z_n(t) = 0$.

Theorem

For all t > 0, we have $Z_n(t) \xrightarrow[n \to \infty]{\text{law}} Z(t)$ where Z(t) is a.s.-finite and non-negative. Moreover, $\lim_{n \to \infty} P^{\varrho} \Big(\max_{x \in \mathbb{L}_n} L_t(x) > 0 \Big) = \mathbb{P} \big(Z(t) > 0 \big) \in (0, 1)$

and there is $c_{\star} \in (0, \infty)$ such that for all $u \in \mathbb{R}$,

$$P^{\varrho}\left(\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)} \leq n\sqrt{\log b} - \frac{1}{\sqrt{\log b}}\log n + u\right) \xrightarrow[n\to\infty]{} \mathbb{E}\left(e^{-c_\star Z(t)e^{-2u\sqrt{\log b}}}\right)$$

Key technical tool

The local time field { $L_t(x)$: $x \in \mathbb{T}_n$ } enjoys a **spatial Markov property**. Notation: Given $x \in \mathbb{L}_k$, let $\mathbb{T}_{n-k}(x) :=$ **subtree** rooted at x.

Lemma (Spatial Markov property)

For any
$$k = 1, ..., n - 1$$
, $x \in \mathbb{L}_k$ and $u \colon \mathbb{T}_n \to \mathbb{R}$,

$$\{L_t(z): z \in \mathbb{T}_{n-k}(x)\}$$
 under $P^{\varrho}\left(\cdot \mid L_t(\cdot) = u(\cdot) \text{ on } \mathbb{T}_n \setminus \mathbb{T}_{n-k}(x)\right)$

is equidistributed to

$$\left\{L_{u(x)}(z) \colon z \in \mathbb{T}_{n-k}\right\}$$
 under P^{ϱ}

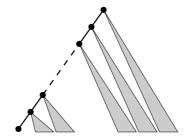
This makes local time L_t similar to **Branching random walk** albeit with a Markovian (rather than i.i.d.) step distribution.

Main idea of work on the maximum of BRW (Aïdekon 2013) and extremal process of GFF (B.-Louidor 2016, 2018, 2020):

• Condition on favorite leaf to be $x \in \mathbb{L}_n$ and the local time along the path from ϱ to x to grow roughly linearly.

16

- Local time in subtrees "hanging off" the path are curbed from above.
- This results in **entropic repulsion** for local time trajectory along the path.



In principle, we can use this as a **bootstrap method**: Assume decay of the upper tail of the maximum to control of lower tail and *vice versa*.

The argument is easier when the upper tail is known:

Lemma (Abe 2018)

For t > 0 *and* $n \ge 1$ *let*

$$a_n(t) := n\sqrt{\log b} - \frac{3}{4\sqrt{\log b}}\log n - \frac{1}{4\sqrt{\log b}}\log\left(\frac{n+\sqrt{t}}{\sqrt{t}}\right)$$

Then

$$P^{\varrho}\left(\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)}-\sqrt{t}-a_n(t)\ge u\right)\leqslant c(1+u)\mathrm{e}^{-2u\sqrt{\log b}}$$

Proof: Calculations using "barrier estimate" and known facts about law of L_t . Note: $a_n(t)$ captures the **crossover** between L_t and GFF/BRW

Uniform tightness

A "barrier calculation" then yields

$$\inf_{t \ge 1} \inf_{n \ge 1} P^{\varrho} \Big(\max_{x \in \mathbb{L}_n} \sqrt{L_t(x)} \ge \sqrt{t} + a_n(t) \Big) > 0$$

This gives **tightness:** Recall $\mathcal{H}_{n,t} := \{\max_{x \in \mathbb{L}_n} L_t(x) > 0\}$. Then

Theorem (Uniform tightness)

There are $c_1, c_2 > 0$ *such that for all* $n \ge 1$ *, all* t > 0 *and all* $u \in [0, n]$ *,*

$$P^{\varrho}\left(\left|\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)}-\sqrt{t}-a_n(t\vee 1)\right|>u\left|\mathcal{H}_{n,t}\right)\leqslant c_1\mathrm{e}^{-c_2u}$$

In particular, for each t > 0*, the family*

$$\left[\text{law of } \max_{x \in \mathbb{L}_n} \sqrt{L_t(x)} - \left(\sqrt{\log b} \, n - \frac{1}{\sqrt{\log b}} \log n \right) \text{ under } P^{\varrho}(\,\cdot \mid \mathcal{H}_{n,t}) \right\}_{n \ge 1}$$

of probability measures on ${\mathbb R}$ is tight.

19

Condition on $L_t(x)$ for $x \in \mathbb{L}_k$ and show that only x with $L_t(x)$ large can support a near-maximal leaf vertex. So it suffices:

Proposition (Sharp upper tail)

There is $c_* \in (0, \infty)$ *such that* $o(1) = o_{n,t,u}(1)$ *defined for integer* $n \ge 1$ *and real* t > 0 *and* u > 0 *by*

$$P^{\varrho}\left(\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)}-\sqrt{t}-a_n(t)>u\right)=c_{\star}ue^{-2u\sqrt{\log b}}(1+o(1))$$

obeys

$$\lim_{m\to\infty}\sup_{t,u\ge m}\limsup_{n\to\infty}|o_{n,t,u}(1)|=0.$$

Note: Uniformity allows to study **crossover to GFF asymptotic** as $t \rightarrow \infty$

- Location of maximum (for walk started on a leaf).
- Extremal process (governed by a measure $\mathcal{Z}(dx)$) and cluster distribution (identical to that of GFF/BRW).
- Limit for the time spent at favorite point by SRW on ℤ². (A. Jego already constructed a candidate for limit measure Z(d*x*).)
- Broader perspective of universality. Recent work of
 - Q Zeitouni and Schweiger on GFF in random environment
 - **2** Hofstetter et al on sine-Gordon model and $P(\phi)$ models
 - my work with a student on DG model
 - gradient fields by Belius and Wu
 - 5 etc
- Unified theory of extremal properties of log-correlated processes?