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Most favorite point

Erd6s and Taylor (1960): How much time does the simple random walk on z°
of time-length n spend at its most favorite point?

Let X = {X,: n > 0} := simple random walk on Z¢, initial value X := 0

Time spent at x (a.k.a. local time):

@) = 2, 1)
j=0

Question: Asymptotic behavior (as n — o0) of

M,, := max ¢, (x)

xeZ4
Ind > 3 [ET60]: @MH — ¢y € (0,00)
In d = 2 [ET60]: With high probability,
l(lo n? <M, < é(log n)?
T & S~ g
Ind = 1: M,,;/+/n admits weak limit. At most 3 maximizers! (T6th 2001)



Erd6s-Taylor problem resolved

Dembo, Peres, Rosen and Zeitouni (2001): Ind = 2,

1 , p 4
(logny ax bt 2 7

Q: Beyond leading order? Limit law?



Cover time

Wilf’s (1989) “white screen problem”: How long does it take for a random
walk on a finite graph to visit every vertex?

Confine the SRW to finite A < Z¢, e.g., torus A, := [0, n)d nZ°
Cover time:

(m) ._ . i
Toow mf{k =>0: ig}\rlfk(x) > O}
(n)

Question: Asymptotic behavior of Tcoy as n — c0?
In d > 3 Aldous and Fill book: m'rc(g‘), — ¢z € (0,00)
In d = 2 Aldous-Fill and Zuckerman (1992):

n*(logn)® < ) < %nz(log n)?
Lawler (1992): % 2

T

Ind=1: ; TC(OV tight but no deterministic limit



2D cover time leading asymptotic

Dembo, Peres, Rosen and Zeitouni (2004): Ind = 2,

1 (n) P 4
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Q: Beyond leading order? Limit law?



What makes d = 2 special?

Set of visited sites Local time profile

Note: Fractal support, local time fractal structure on the support



Avoided/late points at multiples of cover time

Points avoided by SRW run up to §-multiple of the cover time:

n := 2000, 6 := 0.1 (left) and 6 := 0.3 (right)



Avoided/late points

Dembo, Peres, Rosen and Zeitouni (2006): What does the set of unvisited
points look like for random walk on torus?

The set of 6, n-late (to be called “avoided”) points:
._ . _ gt 2
Ly(0) := {x € An: Ly (x) = 0 for k(n) := 97_[71 (logn) }
Then wh.p. £,(0) = & for 6 > 1 and, for 6 € (0,1),
’En(g)’ _ n2(179)+0(1)

where 0(1) — 0 in probability
Q: Beyond leading order? Limit law?

In d > 3: strong coupling of £,,(6) to Bernoulli(n %) (Miller and Souzi 2017)



Random walk in “planar” domains

Planar domain: D < R? bounded, open, “nice”

Discretization:
Dy i= {x€ Z% du (§,D°) > §}

Return mechanism: “boundary vertex” o

P* :=law of SRW on Dy u {¢} started from x

Reparametrized local time:

Vi=0: Li(x):= ——

where deg(Dn) 1= Y .cp,. o} deg(x)-
Note: Random walk is run for actual time ty deg(Dy) = N?(log N)?



Scaling limit of late/avoided points

Theorem (Abe-B.-Lee 2019)
There exist random a.s.-finite diffuse Borel measures {ZP: A € (0,1)} on D charging
all non-empty open sets a.s. such that for all 6 € (0,1) and any {ty}n>1 with
ty ~ 2¢0(log N)?
we have

1
Z Liw,,, (x)=0} /N ﬂ Zf

XEDN

~ N
where Wy = N2e 3lgN Hereg = %

Note: Similar statements true for thick and thin points (with same Z E ’s!)



Connection to Gaussian Free Field

Q: What are the Z)’?’s?

A: Versions of LQG measures.

Let h = GFF on D with Dirichlet boundary conditions, i.e., mean-zero
generalized Gaussian process on D with covariance kernel

Clx,y) = —gloglx—yl +¢ fD log |z — y| TT°(x,dz)

where ITP(x, ) is harmonic measure on D and | - | = Euclidean norm

Need to approximate & by continuous fields: Let C,: D x D — R be s.t.

o C, symmetric and positive definite
o Vx,ye D: Cy(x,y) =0
o x,y — Cy(x,y) continuous

o Vx,yeD: C(x,y) = >0 Cu(x,y)
Such C,;’s exist because C is the Green function.



LQG measure

Let h;, := mean zero Gaussian process with covariance ZZ:O Cy and set
Zg,(n) (dx) — e/\ahn(x)—%(Aa)z\/ar(hn(x))dx
where a := 2/,/g. WLOG: All 11,/’s are realized on same probability space.

Kahane (1985): For each A € (0, 1) there is an a.s. non-vanishing finite diffuse
random Borel measure Z? on D such that for all Borel A < D,

D,
zD (4) — ZR(A) as.
Moreover, the law of Z does not depend on approximation scheme and
EZP(A) = f rD(x)“de
A
for P (x) := conformal radius of D from x.

Duplantier-Sheffield (2011): ZP = LQG measure. Uniqueness: Shamov (2016)
B.-Louidor (2019): Z? spatial “distribution” of GFF A-thick points



Zero-average process

Denote

7200 ' (280)] | newax -0

03 1= f dxdy C(x,y)
DxD

and S dyCluy)

o(x) := Leb(D p &Y% Y

) ( )SDdezdyC(z,y)
Theorem

For each A € (0,1) there is ¢(A) € (0, 00) such that
ZD(dx) ' (1) CO-DY ZDO(qy)

where Y 1L 70 with Y = N(0,03)




Related work: random walk thick points

Jego (2019) proved an analogous result for random walk thick points.

Let D < R? be “nice” bounded domain, Dy its discretization. Assume 0 € Dy;.

p),_ logN
Mo = ey 2o ey (9>205(00g N2} SN

xeZ4

where ™V := inf{k > 0: X} ¢ Dy}. Then, under P°, for all € (0, 1),

D,(N) law D
—
Ho Nooo 1o

where 15 is constructed similarly as ZE albeit with GFF replaced by
square-root of Brownian local time. Called: Brownian multiplicative chaos.

Earlier/concurrent constructions of y5: Bass, Burdzy and Khoshnevisan
(1994), Aidekon, Hu and Shi (2020)

Key idea of Jego: Characterization of y5 by a list of natural properties.



Random walk on a tree a.k.a. hierarchical lattice
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Erd6s-Taylor problem for SRW on a tree

Fix b > 2 and let T, := regular rooted tree of depth n with forward degree b.
Denote IL,, := leaf vertices.

Let {X;: t = 0} be continuous-time SRW on T, and set

t
&(x) = J 1{Xs:x}ds
0
For ¢ := root of T, let
To = inf{t > 0: X; = ¢}

Then: random walk started from x € IL,, and run until 7, is similar to random
walk started at 0 and run until first exit from Dy.

Cortines, Louidor and Saglietti (2019) and Dembo, Rosen and Zeitouni (2019):

scaling limit of cover time of T,.



Most favorite leaf vertex

Theorem (B.-Louidor 2021)
Forany x, e Lyandall u € R,

_ e—Zu\/m
Px"(gcrelaif\/érg \/logbn—F ( 2 ¢ )

n—o0

- logn + u) — [E(e
where Z is an a.s.-positive and finite random variable. Thus

1(maxﬁ (x) — (nzlogb—anogn)) h—vgo log Z+G

n \ xelL,

where G is a normalized Gumbel random variable independent of Z.

Note: |IL,| = b" and so n?logb = 101517 (log|IL,|)? in accord with [ET60]




Theorem (B.-Louidor (2021))
There is c. € (0,00) such that Z from previous theorem obeys

c b—2n < \/log b \/ ' >+ )4 o2V/logb /T, (x)

xell,

law
—

n—aoo

Z




Proof ideas: different parametrization of local time

For random walk started from the root, let

To(t) := inf{s > 0: £s(0) > t}.

and
Le(x) := Lz, (x)
Key facts:
o {L¢(x)}xer, has a Markovian structure
o Law of L; on a path from leaf to a root explicit

So we first control the scaling limit of maxyey,, L¢(x)



Most favorite leaf again

Forany t > 0 set

Zy(t) == b2 ) (nyflogh — v/Ii(x) ) L)' Vi8I VD),

xell,

Note: if leaves not hit by 7,(t), then Z,(t) = 0.

Theorem
Forall t > 0, we have Z,(t) h—vj;o Z(t) where Z(t) is a.s.-finite and non-negative.
n—
Moreover, ' .
Tim P (ag%th(x) > 0) — P(Z(t) > 0) € (0,1)

and there is c. € (0, 00) such that for all u € R,

—cy —Zu\/loi
PQ<§IE1%1< Li(x) < ny/loghb — FlognJru) - E(e Z(t)e g)




Proof idea: condition on the favorite leaf

Main idea — drawn from work on maximum of GFF: Aidekon 2013,
B.-Louidor (2016, 2018), Bramson, Ding and Zeitouni (2016), etc:

o Condition on most favorite leaf to be x € IL,, and the local time along the
path from o to x.

o Local time in subtrees “hanging off” the path are bounded from above.

o This results in entropic repulsion for local time trajectory along the path.



Towards tightness

In principle, we can use this as a bootstrap method: Assume decay of the upper
tail of the maximum to get decay of lower tail and vice versa.

The argument is easier when the upper tail is known:

Lemma (Abe 2018)
Fort>0andn > 1 let

3 n++/t
ay(t) := n\/log— W logn — 4\/@ ( >

Then
PQ<max\/IT ViE—a,(t) = ) < c(1+u)e 2uVlogh

xell,

Proof: Calculations using “barrier estimate” and explicit law of L;.



Uniform tightness

A “barrier calculation” then yields

inf inf PQ(max VLi(x) = \/f+an(t)) >0

t=1n=1 xell,
This gives tightness: Denote H,, s := {maxXyer,, L¢(x) > 0}. Then

Theorem (Uniform tightness)

There are c1,c2 > 0 such that foralln > 1, all t > 0 and all u € [0,n],

( max«/Lt \f—antvl)‘>u

xelL,
In particular, for each t > 0, the family

{law of {Créﬁi( /L (x) (1 /logbn — \/7 log n) under P¢( - |Hnt)}

of probability measures on R is tight.

Hor) < cre

n=1




From tightness to weak limit

Condition on L;(x) for x € IL; and show that only x with L;(x) large can
support a near-maximal leaf vertex. So it suffices:

Proposition (Sharp upper tail)

There is ¢, € (0,00) such that o(1) = o0y, (1) defined for integer n > 1 and real t > 0
and u > 0 by

Pg<rr€1%x VLi(x) =Vt —a,(t) > u) = c*ue’Z”\/@(l +0(1))
obeys

lim sup limsup ] On,t,u(l)’ =0.
M=>B0yy>m n—wo

Note: Uniformity allows to study crossover to GFF asymptotic as t — o



Open questions

o Limit for the time spent at most favorite point by SRW on Z2. (Jego
already constructed the limit random variable Z.)

o Scaling limit of the cover time in “planar” domains and torus.

It appears that we are finally closing in on these ...



THANK YOU!



