# Extremal points of random walks on planar and tree graphs

Marek Biskup (UCLA)

based on joint papers with

Yoshihiro Abe, Sangchul Lee Oren Louidor

## Most favorite point

Erdős and Taylor (1960): How much time does the simple random walk on  $\mathbb{Z}^d$  of time-length *n* spend at its most favorite point?

Let  $X = \{X_n : n \ge 0\}$  := simple random walk on  $\mathbb{Z}^d$ , initial value  $X_0 := 0$ Time spent at *x* (a.k.a. local time):

$$\ell_n(x) := \sum_{j=0}^n \mathbb{1}_{\{X_j = x\}}$$

Question: Asymptotic behavior (as  $n \to \infty$ ) of

$$M_n := \max_{x \in \mathbb{Z}^d} \ell_n(x)$$

In  $d \ge 3$  [ET60]:  $\frac{1}{\log n}M_n \rightarrow c_d \in (0, \infty)$ In d = 2 [ET60]: With high probability,

$$\frac{1}{\pi}(\log n)^2 \lesssim M_n \lesssim \frac{4}{\pi}(\log n)^2$$

In d = 1:  $M_n / \sqrt{n}$  admits weak limit. At most 3 maximizers! (Tóth 2001)

Dembo, Peres, Rosen and Zeitouni (2001): In d = 2,

$$\frac{1}{(\log n)^2} \max_{x \in \mathbb{Z}^2} \ell_n(x) \xrightarrow{P} \frac{4}{\pi}$$

Q: Beyond leading order? Limit law?

#### Cover time

Wilf's (1989) "white screen problem": How long does it take for a random walk on a finite graph to visit every vertex?

Confine the SRW to finite  $\Lambda \subseteq \mathbb{Z}^d$ , e.g., torus  $\Lambda_n := [0, n)^d \cap \mathbb{Z}^d$ 

Cover time:

$$\tau_{\rm cov}^{(n)} := \inf \left\{ k \ge 0 \colon \min_{x \in \Lambda_n} \ell_k(x) > 0 \right\}$$

Question: Asymptotic behavior of  $\tau_{cov}^{(n)}$  as  $n \to \infty$ ?

In  $d \ge 3$  Aldous and Fill book:  $\frac{1}{n^2(\log n)^2} \tau_{\text{cov}}^{(n)} \to \tilde{c}_d \in (0, \infty)$ 

In d = 2 Aldous-Fill and Zuckerman (1992):

$$\frac{1}{\pi}n^2(\log n)^2 \lesssim \tau_{\text{cov}}^{(n)} \lesssim \frac{4}{\pi}n^2(\log n)^2$$
  
Lawler (1992):  $\frac{1}{\pi} \to \frac{2}{\pi}$   
In  $d = 1$ :  $\frac{1}{n^2}\tau_{\text{cov}}^{(n)}$  tight but no deterministic limit

4

Dembo, Peres, Rosen and Zeitouni (2004): In d = 2,

$$\frac{1}{n^2(\log n)^2} \tau_{\rm cov}^{(n)} \xrightarrow{P} \frac{4}{\pi}$$

Q: Beyond leading order? Limit law?



### Set of visited sites Local time profile

Note: Fractal support, local time fractal structure on the support

#### Points avoided by SRW run up to $\theta$ -multiple of the cover time:



 $n := 2000, \theta := 0.1$  (left) and  $\theta := 0.3$  (right)

Dembo, Peres, Rosen and Zeitouni (2006): What does the set of unvisited points look like for random walk on torus?

The set of  $\theta$ , *n*-late (to be called "avoided") points:

$$\mathcal{L}_n(\theta) := \left\{ x \in \Lambda_n \colon \ell_{k(n)}(x) = 0 \text{ for } k(n) := \theta \frac{4}{\pi} n^2 (\log n)^2 \right\}$$

Then w.h.p.  $\mathcal{L}_n(\theta) = \emptyset$  for  $\theta > 1$  and, for  $\theta \in (0, 1)$ ,

$$\left|\mathcal{L}_{n}(\theta)\right| = n^{2(1-\theta)+o(1)}$$

where  $o(1) \rightarrow 0$  in probability

Q: Beyond leading order? Limit law?

In  $d \ge 3$ : strong coupling of  $\mathcal{L}_n(\theta)$  to Bernoulli $(n^{-\theta d})$  (Miller and Souzi 2017)

Planar domain:  $D \subseteq \mathbb{R}^2$  bounded, open, "nice"

Discretization:

$$D_N := \left\{ x \in \mathbb{Z}^2 \colon d_\infty\left(\frac{x}{N}, D^c\right) > \frac{1}{N} \right\}$$

Return mechanism: "boundary vertex"  $\varrho$ 

 $P^x := \text{law of SRW on } D_N \cup \{\varrho\} \text{ started from } x$ 

Reparametrized local time:

$$\forall t \ge 0$$
:  $L_t(x) := \frac{1}{\deg(x)} \ell_{\lfloor t \deg(\overline{D}_N) \rfloor}(x)$ 

where  $deg(\overline{D}_N) := \sum_{x \in D_N \cup \{\varrho\}} deg(x)$ .

Note: Random walk is run for actual time  $t_N \deg(\overline{D}_N) \simeq N^2 (\log N)^2$ 



10

### Theorem (Abe-B.-Lee 2019)

*There exist random a.s.-finite diffuse Borel measures*  $\{\mathcal{Z}_{\lambda}^{D} : \lambda \in (0,1)\}$  *on D charging all non-empty open sets a.s. such that for all*  $\theta \in (0,1)$  *and any*  $\{t_{N}\}_{N \ge 1}$  *with* 

 $t_N \sim 2g\theta (\log N)^2$ 

we have

$$\frac{1}{\widehat{W}_N} \sum_{x \in D_N} \mathbf{1}_{\{L_{t_N}(x)=0\}} \, \delta_{x/N} \; \underset{N \to \infty}{\overset{\text{law}}{\longrightarrow}} \; \mathcal{Z}_{\sqrt{\theta}}^D$$

where  $\widehat{W}_N := N^2 e^{-\frac{t_N}{g \log N}}$ . Here  $g := \frac{2}{\pi}$ .

Note: Similar statements true for thick and thin points (with same  $\mathcal{Z}_{\lambda}^{D'}$ s!)

- Q: What are the  $\mathcal{Z}_{\lambda}^{D}$ 's?
- A: Versions of LQG measures.
- Let h = GFF on D with Dirichlet boundary conditions, i.e., mean-zero generalized Gaussian process on D with covariance kernel

$$C(x,y) = -g \log ||x - y|| + g \int_D \log ||z - y|| \Pi^D(x, dz)$$

where  $\Pi^D(x, \cdot)$  is harmonic measure on D and  $\|\cdot\| =$  Euclidean norm Need to approximate h by continuous fields: Let  $C_n \colon D \times D \to \mathbb{R}$  be s.t.

- *C<sub>n</sub>* symmetric and positive definite
- $\forall x, y \in D \colon C_n(x, y) \ge 0$
- $x, y \mapsto C_n(x, y)$  continuous
- $\forall x, y \in D$ :  $C(x, y) = \sum_{n \ge 0} C_n(x, y)$

Such  $C_n$ 's exist because *C* is the Green function.

12

Let  $h_n :=$  mean zero Gaussian process with covariance  $\sum_{k=0}^{n} C_k$  and set

$$Z_{\lambda}^{D,(n)}(\mathrm{d}x) := \mathrm{e}^{\lambda \alpha h_n(x) - \frac{1}{2}(\lambda \alpha)^2 \mathrm{Var}(h_n(x))} \mathrm{d}x$$

where  $\alpha := 2/\sqrt{g}$ . WLOG: All  $h_n$ 's are realized on same probability space.

Kahane (1985): For each  $\lambda \in (0, 1)$  there is an a.s. non-vanishing finite diffuse random Borel measure  $Z_{\lambda}^{D}$  on D such that for all Borel  $A \subseteq D$ ,

$$Z^{D,(n)}_{\lambda}(A) \xrightarrow[n \to \infty]{} Z^D_{\lambda}(A)$$
 a.s.

Moreover, the law of  $Z^D_{\lambda}$  does not depend on approximation scheme and

$$EZ^D_{\lambda}(A) = \int_A r^D(x)^{2\lambda^2} \mathrm{d}x$$

for  $r^D(x) :=$  conformal radius of *D* from *x*.

Duplantier-Sheffield (2011):  $Z_{\lambda}^{D} = LQG$  measure. Uniqueness: Shamov (2016) B.-Louidor (2019):  $Z_{\lambda}^{D}$  spatial "distribution" of GFF  $\lambda$ -thick points

## Zero-average process

#### 13

#### Denote

$$Z_{\lambda}^{D,0}(\cdot) \stackrel{\text{law}}{=} \left( Z_{\lambda}^{D}(\cdot) \middle| \int_{D} h(x) dx = 0 \right)$$
$$\sigma_{D}^{2} := \int_{D \times D} dx dy C(x, y)$$

and

$$\mathfrak{d}(x) := \operatorname{Leb}(D) \frac{\int_D \mathrm{d} y \, C(x, y)}{\int_{D \times D} \mathrm{d} z \, \mathrm{d} y \, C(z, y)}$$



#### Theorem

*For each*  $\lambda \in (0, 1)$  *there is*  $\mathfrak{c}(\lambda) \in (0, \infty)$  *such that* 

$$\mathcal{Z}^{D}_{\lambda}(\mathrm{d}x) \stackrel{\mathrm{law}}{=} \mathfrak{c}(\lambda) \mathrm{e}^{\lambda \alpha (\mathfrak{d}(x)-1)Y} Z^{D,0}_{\lambda}(\mathrm{d}x)$$

where  $Y \perp Z_{\lambda}^{D,0}$  with  $Y = \mathcal{N}(0, \sigma_D^2)$ 

Jego (2019) proved an analogous result for random walk thick points. Let  $D \subseteq \mathbb{R}^2$  be "nice" bounded domain,  $D_N$  its discretization. Assume  $0 \in D_N$ .

$$\mu_{\theta}^{D,(N)} := \frac{\log N}{N^{2(1-\theta)}} \sum_{x \in \mathbb{Z}^d} \mathbb{1}_{\{\ell_{\tau^{D_N}}(x) \ge 2\theta g(\log N)^2\}} \,\delta_{x/N}$$

where  $\tau^{D_N} := \inf\{k \ge 0 \colon X_k \notin D_N\}$ . Then, under  $P^0$ , for all  $\theta \in (0, 1)$ ,

$$\mu_{\theta}^{D,(N)} \xrightarrow[N \to \infty]{\text{law}} \mu_{\theta}^{D}$$

where  $\mu_{\theta}^{D}$  is constructed similarly as  $Z_{\lambda}^{D}$  albeit with GFF replaced by square-root of Brownian local time. Called: Brownian multiplicative chaos.

Earlier/concurrent constructions of  $\mu_{\theta}^{D}$ : Bass, Burdzy and Khoshnevisan (1994), Aïdekon, Hu and Shi (2020)

Key idea of Jego: Characterization of  $\mu_{\theta}^{D}$  by a list of natural properties.



Fix  $b \ge 2$  and let  $\mathbb{T}_n :=$  regular rooted tree of depth *n* with forward degree *b*. Denote  $\mathbb{L}_n :=$  leaf vertices.

Let  $\{X_t: t \ge 0\}$  be continuous-time SRW on  $\mathbb{T}_n$  and set

$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s=x\}} \mathrm{d}s$$

For  $\varrho := \text{root of } \mathbb{T}_n$ , let

$$\tau_{\varrho} := \inf\{t \ge 0 \colon X_t = \varrho\}$$

Then: random walk started from  $x \in \mathbb{L}_n$  and run until  $\tau_q$  is similar to random walk started at 0 and run until first exit from  $D_N$ .

Cortines, Louidor and Saglietti (2019) and Dembo, Rosen and Zeitouni (2019): scaling limit of cover time of  $\mathbb{T}_n$ .

Theorem (B.-Louidor 2021) For any  $x_n \in \mathbb{L}_n$  and all  $u \in \mathbb{R}$ ,

$$P^{x_n}\left(\max_{x\in\mathbb{L}_n}\sqrt{\ell_{\tau_\varrho}(x)}\leqslant\sqrt{\log b}\,n-\frac{1}{\sqrt{\log b}}\log n+u\right)\ \underset{n\to\infty}{\longrightarrow}\ \mathbb{E}\left(\mathrm{e}^{-\mathcal{Z}\mathrm{e}^{-2u}\sqrt{\log b}}\right)$$

where Z is an a.s.-positive and finite random variable. Thus

$$\frac{1}{n} \left( \max_{x \in \mathbb{L}_n} \ell_{\tau_{\varrho}}(x) - \left( n^2 \log b - 2n \log n \right) \right) \xrightarrow[n \to \infty]{\text{law}} \log \mathcal{Z} + G$$

where G is a normalized Gumbel random variable independent of  $\mathcal{Z}$ .

Note:  $|\mathbb{L}_n| = b^n$  and so  $n^2 \log b = \frac{1}{\log b} (\log |\mathbb{L}_n|)^2$  in accord with [ET60]

Theorem (B.-Louidor (2021)) There is  $c_{\star} \in (0, \infty)$  such that  $\mathcal{Z}$  from previous theorem obeys

$$c_{\star} b^{-2n} \sum_{x \in \mathbb{L}_n} \left( n \sqrt{\log b} - \sqrt{\ell_{\tau_{\varrho}}(x)} \right)^+ \ell_{\tau_{\varrho}}(x)^{1/4} e^{2\sqrt{\log b} \sqrt{\ell_{\tau_{\varrho}}(x)}} \xrightarrow[n \to \infty]{\text{law}} \mathcal{Z}$$

For random walk started from the root, let

$$\widetilde{\tau}_{\varrho}(t) := \inf \{ s \ge 0 \colon \ell_s(\varrho) > t \}.$$

and

$$L_t(x) := \ell_{\widetilde{\tau}_\varrho(t)}(x)$$

Key facts:

- $\{L_t(x)\}_{x \in \mathbb{T}_n}$  has a Markovian structure
- Law of  $L_t$  on a path from leaf to a root explicit

So we first control the scaling limit of  $\max_{x \in \mathbb{L}_n} L_t(x)$ 

20

#### For any $t \ge 0$ set

$$Z_n(t) := b^{-2n} \sum_{x \in \mathbb{L}_n} \left( n \sqrt{\log b} - \sqrt{L_t(x)} \right)^+ L_t(x)^{1/4} e^{2\sqrt{\log b} \sqrt{L_t(x)}},$$

Note: if leaves not hit by  $\tilde{\tau}_{\varrho}(t)$ , then  $Z_n(t) = 0$ .

#### Theorem

For all t > 0, we have  $Z_n(t) \xrightarrow[n \to \infty]{\text{law}} Z(t)$  where Z(t) is a.s.-finite and non-negative. Moreover,  $\lim_{n \to \infty} P^{\varrho} \Big( \max_{x \in \mathbb{L}_n} L_t(x) > 0 \Big) = \mathbb{P} \big( Z(t) > 0 \big) \in (0, 1)$ 

and there is  $c_{\star} \in (0, \infty)$  such that for all  $u \in \mathbb{R}$ ,

$$P^{\varrho}\left(\max_{x\in\mathbb{L}_{n}}\sqrt{L_{t}(x)}\leqslant n\sqrt{\log b}-\frac{1}{\sqrt{\log b}}\log n+u\right) \xrightarrow[n\to\infty]{} \mathbb{E}\left(e^{-c_{\star}Z(t)e^{-2u\sqrt{\log b}}}\right)$$

Main idea — drawn from work on maximum of GFF: Aïdekon 2013, B.-Louidor (2016, 2018), Bramson, Ding and Zeitouni (2016), etc:

- Condition on most favorite leaf to be  $x \in \mathbb{L}_n$  and the local time along the path from  $\varrho$  to x.
- Local time in subtrees "hanging off" the path are bounded from above.
- This results in entropic repulsion for local time trajectory along the path.



In principle, we can use this as a *bootstrap method*: Assume decay of the upper tail of the maximum to get decay of lower tail and *vice versa*. The argument is easier when the upper tail is known:

Lemma (Abe 2018)

Then

*For* t > 0 *and*  $n \ge 1$  *let* 

$$a_n(t) := n\sqrt{\log b} - \frac{3}{4\sqrt{\log b}}\log n - \frac{1}{4\sqrt{\log b}}\log\left(\frac{n+\sqrt{t}}{\sqrt{t}}\right)$$
$$P^{\varrho}\left(\max_{x \in \mathbb{L}_n} \sqrt{L_t(x)} - \sqrt{t} - a_n(t) \ge u\right) \le c(1+u)\mathrm{e}^{-2u\sqrt{\log b}}$$

Proof: Calculations using "barrier estimate" and explicit law of  $L_t$ .

## Uniform tightness

A "barrier calculation" then yields

$$\inf_{t \ge 1} \inf_{n \ge 1} P^{\varrho} \Big( \max_{x \in \mathbb{L}_n} \sqrt{L_t(x)} \ge \sqrt{t} + a_n(t) \Big) > 0$$

This gives tightness: Denote  $\mathcal{H}_{n,t} := \{\max_{x \in \mathbb{L}_n} L_t(x) > 0\}$ . Then

Theorem (Uniform tightness)

*There are*  $c_1, c_2 > 0$  *such that for all*  $n \ge 1$ *, all* t > 0 *and all*  $u \in [0, n]$ *,* 

$$P^{\varrho}\left(\left|\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)}-\sqrt{t}-a_n(t\vee 1)\right|>u\left|\mathcal{H}_{n,t}\right)\leqslant c_1\mathrm{e}^{-c_2u}$$

*In particular, for each* t > 0*, the family* 

$$\left( \text{law of } \max_{x \in \mathbb{L}_n} \sqrt{L_t(x)} - \left( \sqrt{\log b} \, n - \frac{1}{\sqrt{\log b}} \log n \right) \text{ under } P^{\varrho}(\,\cdot \mid \mathcal{H}_{n,t}) \right\}_{n \ge 1}$$

of probability measures on  $\mathbb{R}$  is tight.

Condition on  $L_t(x)$  for  $x \in \mathbb{L}_k$  and show that only x with  $L_t(x)$  large can support a near-maximal leaf vertex. So it suffices:

Proposition (Sharp upper tail)

*There is*  $c_* \in (0, \infty)$  *such that*  $o(1) = o_{n,t,u}(1)$  *defined for integer*  $n \ge 1$  *and real* t > 0 *and* u > 0 *by* 

$$P^{\varrho}\left(\max_{x\in\mathbb{L}_n}\sqrt{L_t(x)}-\sqrt{t}-a_n(t)>u\right)=c_{\star}ue^{-2u\sqrt{\log b}}(1+o(1))$$

obeys

$$\lim_{m\to\infty}\sup_{t,u\geq m}\limsup_{n\to\infty}|o_{n,t,u}(1)|=0.$$

Note: Uniformity allows to study crossover to GFF asymptotic as  $t \rightarrow \infty$ 

- Limit for the time spent at most favorite point by SRW on  $\mathbb{Z}^2$ . (Jego already constructed the limit random variable  $\mathcal{Z}$ .)
- Scaling limit of the cover time in "planar" domains and torus.

It appears that we are finally closing in on these ...



### THANK YOU!