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Most favorite point 2

Erdős and Taylor (1960): How much time does the simple random walk on Zd

of time-length n spend at its most favorite point?

Let X “ tXn : n ě 0u :“ simple random walk on Zd, initial value X0 :“ 0
Time spent at x (a.k.a. local time):

`npxq :“
n
ÿ

j“0

1tXj“xu

Question: Asymptotic behavior (as n Ñ8) of

Mn :“ max
xPZd

`npxq

In d ě 3 [ET60]: 1
log n Mn Ñ cd P p0,8q

In d “ 2 [ET60]: With high probability,

1
π
plog nq2 À Mn À

4
π
plog nq2

In d “ 1: Mn{
?

n admits weak limit. At most 3 maximizers! (Tóth 2001)



Erdős-Taylor problem resolved 3

Dembo, Peres, Rosen and Zeitouni (2001): In d “ 2,

1
plog nq2

max
xPZ2

`npxq
P
ÝÑ
nÑ8

4
π

Q: Beyond leading order? Limit law?



Cover time 4

Wilf’s (1989) “white screen problem”: How long does it take for a random
walk on a finite graph to visit every vertex?

Confine the SRW to finite Λ Ď Zd, e.g., torus Λn :“ r0, nqd XZd

Cover time:
τ
pnq
cov :“ inf

!

k ě 0 : min
xPΛn

`kpxq ą 0
)

Question: Asymptotic behavior of τ
pnq
cov as n Ñ8?

In d ě 3 Aldous and Fill book: 1
n2plog nq2 τ

pnq
cov Ñ c̃d P p0,8q

In d “ 2 Aldous-Fill and Zuckerman (1992):
1
π

n2plog nq2 À τ
pnq
cov À

4
π

n2plog nq2

Lawler (1992): 1
π Ñ

2
π

In d “ 1: 1
n2 τ

pnq
cov tight but no deterministic limit



2D cover time leading asymptotic 5

Dembo, Peres, Rosen and Zeitouni (2004): In d “ 2,

1
n2plog nq2

τ
pnq
cov

P
ÝÑ
nÑ8

4
π

Q: Beyond leading order? Limit law?



What makes d “ 2 special? 6

Set of visited sites Local time profile

Note: Fractal support, local time fractal structure on the support



Avoided/late points at multiples of cover time 7

Points avoided by SRW run up to θ-multiple of the cover time:

n :“ 2000, θ :“ 0.1 (left) and θ :“ 0.3 (right)



Avoided/late points 8

Dembo, Peres, Rosen and Zeitouni (2006): What does the set of unvisited
points look like for random walk on torus?

The set of θ, n-late (to be called “avoided”) points:

Lnpθq :“
!

x P Λn : `kpnqpxq “ 0 for kpnq :“ θ
4
π

n2plog nq2
)

Then w.h.p. Lnpθq “ H for θ ą 1 and, for θ P p0, 1q,
ˇ

ˇLnpθq
ˇ

ˇ “ n2p1´θq`op1q

where op1q Ñ 0 in probability

Q: Beyond leading order? Limit law?

In d ě 3: strong coupling of Lnpθq to Bernoulli(n´θd) (Miller and Souzi 2017)



Random walk in “planar” domains 9

Planar domain: D Ď R2 bounded, open, “nice”

Discretization:
DN :“

!

x P Z2 : d8
` x

N , Dc˘ ą 1
N

)

Return mechanism: “boundary vertex” $

Px :“ law of SRW on DN Y t$u started from x

Reparametrized local time:

@t ě 0 : Ltpxq :“
1

degpxq
`

tt degpDNqu
pxq

where degpDNq :“
ř

xPDNYt$u
degpxq.

Note: Random walk is run for actual time tN degpDNq — N2plog Nq2



Scaling limit of late/avoided points 10

Theorem (Abe-B.-Lee 2019)

There exist random a.s.-finite diffuse Borel measures tZD
λ : λ P p0, 1qu on D charging

all non-empty open sets a.s. such that for all θ P p0, 1q and any ttNuNě1 with

tN „ 2gθplog Nq2

we have
1
pWN

ÿ

xPDN

1tLtN pxq“0u δx{N
law
ÝÑ

NÑ8
ZD?

θ

where pWN :“ N2e´
tN

g log N . Here g :“ 2
π .

Note: Similar statements true for thick and thin points (with same ZD
λ ’s!)



Connection to Gaussian Free Field 11

Q: What are the ZD
λ ’s?

A: Versions of LQG measures.

Let h “ GFF on D with Dirichlet boundary conditions, i.e., mean-zero
generalized Gaussian process on D with covariance kernel

Cpx, yq “ ´g log }x´ y} ` g
ż

D
log }z´ y}ΠDpx, dzq

where ΠDpx, ¨q is harmonic measure on D and } ¨ } “ Euclidean norm
Need to approximate h by continuous fields: Let Cn : DˆD Ñ R be s.t.

Cn symmetric and positive definite
@x, y P D : Cnpx, yq ě 0
x, y ÞÑ Cnpx, yq continuous
@x, y P D : Cpx, yq “

ř

ně0 Cnpx, yq
Such Cn’s exist because C is the Green function.



LQG measure 12

Let hn :“mean zero Gaussian process with covariance
řn

k“0 Ck and set

ZD,pnq
λ pdxq :“ eλαhnpxq´ 1

2 pλαq2Varphnpxqqdx

where α :“ 2{?g. WLOG: All hn’s are realized on same probability space.

Kahane (1985): For each λ P p0, 1q there is an a.s. non-vanishing finite diffuse
random Borel measure ZD

λ on D such that for all Borel A Ď D,

ZD,pnq
λ pAq ÝÑ

nÑ8
ZD

λ pAq a.s.

Moreover, the law of ZD
λ does not depend on approximation scheme and

EZD
λ pAq “

ż

A
rDpxq2λ2

dx

for rDpxq :“ conformal radius of D from x.

Duplantier-Sheffield (2011): ZD
λ “ LQG measure. Uniqueness: Shamov (2016)

B.-Louidor (2019): ZD
λ spatial “distribution” of GFF λ-thick points



Zero-average process 13

Denote
ZD,0

λ p¨q
law
“

´

ZD
λ p¨q

ˇ

ˇ

ˇ

ż

D
hpxqdx “ 0

¯

σ2
D :“

ż

DˆD
dxdy Cpx, yq

and

dpxq :“ LebpDq
ş

D dy Cpx, yq
ş

DˆD dz dy Cpz, yq

Theorem
For each λ P p0, 1q there is cpλq P p0,8q such that

ZD
λ pdxq law

“ cpλqeλαpdpxq´1qY ZD,0
λ pdxq

where Y KK ZD,0
λ with Y “ N p0, σ2

Dq



Related work: random walk thick points 14

Jego (2019) proved an analogous result for random walk thick points.
Let D Ď R2 be “nice” bounded domain, DN its discretization. Assume 0 P DN.

µ
D,pNq
θ :“

log N
N2p1´θq

ÿ

xPZd

1t`
τDN pxqě2θgplog Nq2u δx{N

where τDN :“ inftk ě 0 : Xk R DNu. Then, under P0, for all θ P p0, 1q,

µ
D,pNq
θ

law
ÝÑ

NÑ8
µD

θ

where µD
θ is constructed similarly as ZD

λ albeit with GFF replaced by
square-root of Brownian local time. Called: Brownian multiplicative chaos.

Earlier/concurrent constructions of µD
θ : Bass, Burdzy and Khoshnevisan

(1994), Aı̈dekon, Hu and Shi (2020)

Key idea of Jego: Characterization of µD
θ by a list of natural properties.



Random walk on a tree a.k.a. hierarchical lattice 15



Erdős-Taylor problem for SRW on a tree 16

Fix b ě 2 and let Tn :“ regular rooted tree of depth n with forward degree b.
Denote Ln :“ leaf vertices.

Let tXt : t ě 0u be continuous-time SRW on Tn and set

`tpxq :“
ż t

0
1tXs“xuds

For $ :“ root of Tn, let
τ$ :“ inftt ě 0 : Xt “ $u

Then: random walk started from x P Ln and run until τ$ is similar to random
walk started at 0 and run until first exit from DN.

Cortines, Louidor and Saglietti (2019) and Dembo, Rosen and Zeitouni (2019):
scaling limit of cover time of Tn.



Most favorite leaf vertex 17

Theorem (B.-Louidor 2021)

For any xn P Ln and all u P R,

Pxn

ˆ

max
xPLn

b

`τ$pxq ď
b

log b n´
1

a

log b
log n` u

˙

ÝÑ
nÑ8

E
`

e´Ze´2u
?

log b˘

where Z is an a.s.-positive and finite random variable. Thus

1
n

ˆ

max
xPLn

`τ$pxq ´
`

n2 log b´ 2n log n
˘

˙

law
ÝÑ
nÑ8

logZ `G

where G is a normalized Gumbel random variable independent of Z .

Note: |Ln| “ bn and so n2 log b “ 1
log bplog |Ln|q

2 in accord with [ET60]



18

Theorem (B.-Louidor (2021))

There is c‹ P p0,8q such that Z from previous theorem obeys

c‹ b´2n
ÿ

xPLn

´

n
b

log b´
b

`τ$pxq
¯`

`τ$pxq
1{4 e2

?
log b

?
`τ$ pxq law

ÝÑ
nÑ8

Z



Proof ideas: different parametrization of local time 19

For random walk started from the root, let

rτ$ptq :“ inf
 

s ě 0 : `sp$q ą t
(

.

and
Ltpxq :“ `

rτ$ptqpxq

Key facts:
tLtpxquxPTn has a Markovian structure
Law of Lt on a path from leaf to a root explicit

So we first control the scaling limit of maxxPLn Ltpxq



Most favorite leaf again 20

For any t ě 0 set

Znptq :“ b´2n
ÿ

xPLn

´

n
b

log b´
a

Ltpxq
¯`

Ltpxq1{4 e2
?

log b
?

Ltpxq,

Note: if leaves not hit by rτ$ptq, then Znptq “ 0.

Theorem

For all t ą 0, we have Znptq
law
ÝÑ
nÑ8

Zptq where Zptq is a.s.-finite and non-negative.
Moreover,

lim
nÑ8

P$
´

max
xPLn

Ltpxq ą 0
¯

“ P
`

Zptq ą 0
˘

P p0, 1q

and there is c‹ P p0,8q such that for all u P R,

P$

ˆ

max
xPLn

a

Ltpxq ď n
b

log b´
1

a

log b
log n` u

˙

ÝÑ
nÑ8

E
`

e´c‹Zptqe´2u
?

log b ˘



Proof idea: condition on the favorite leaf 21

Main idea — drawn from work on maximum of GFF: Aı̈dekon 2013,
B.-Louidor (2016, 2018), Bramson, Ding and Zeitouni (2016), etc:

Condition on most favorite leaf to be x P Ln and the local time along the
path from $ to x.
Local time in subtrees “hanging off” the path are bounded from above.
This results in entropic repulsion for local time trajectory along the path.



Towards tightness 22

In principle, we can use this as a bootstrap method: Assume decay of the upper
tail of the maximum to get decay of lower tail and vice versa.
The argument is easier when the upper tail is known:

Lemma (Abe 2018)

For t ą 0 and n ě 1 let

anptq :“ n
b

log b´
3

4
a

log b
log n´

1
4
a

log b
log

´n`
?

t
?

t

¯

Then
P$
´

max
xPLn

a

Ltpxq ´
?

t´ anptq ě u
¯

ď cp1` uqe´2u
?

log b

Proof: Calculations using “barrier estimate” and explicit law of Lt.



Uniform tightness 23

A “barrier calculation” then yields

inf
tě1

inf
ně1

P$
´

max
xPLn

a

Ltpxq ě
?

t` anptq
¯

ą 0

This gives tightness: Denote Hn,t :“ tmaxxPLn Ltpxq ą 0u. Then

Theorem (Uniform tightness)

There are c1, c2 ą 0 such that for all n ě 1, all t ą 0 and all u P r0, ns,

P$

ˆ

ˇ

ˇ

ˇ
max
xPLn

a

Ltpxq ´
?

t´ anpt_ 1q
ˇ

ˇ

ˇ
ą u

ˇ

ˇ

ˇ

ˇ

Hn,t

˙

ď c1e´c2u

In particular, for each t ą 0, the family

"

law of max
xPLn

a

Ltpxq ´
´
b

log b n´
1

a

log b
log n

¯

under P$p ¨ |Hn,tq

*

ně1

of probability measures on R is tight.



From tightness to weak limit 24

Condition on Ltpxq for x P Lk and show that only x with Ltpxq large can
support a near-maximal leaf vertex. So it suffices:

Proposition (Sharp upper tail)

There is c‹ P p0,8q such that op1q “ on,t,up1q defined for integer n ě 1 and real t ą 0
and u ą 0 by

P$
´

max
xPLn

a

Ltpxq ´
?

t´ anptq ą u
¯

“ c‹ue´2u
?

log b`1` op1q
˘

obeys
lim

mÑ8
sup

t,uěm
lim sup

nÑ8

ˇ

ˇ on,t,up1q
ˇ

ˇ “ 0.

Note: Uniformity allows to study crossover to GFF asymptotic as t Ñ8



Open questions 25

Limit for the time spent at most favorite point by SRW on Z2. (Jego
already constructed the limit random variable Z .)
Scaling limit of the cover time in “planar” domains and torus.

It appears that we are finally closing in on these . . .



26

THANK YOU!


