
Extreme order statistics of logarithmically
correlated processes: Part II

Marek Biskup (UCLA)

Stochastics Meeting Lunteren

November 14, 2023



Plan of the lecture 2

Some technical proofs: tightness of maximum
Extremal process of 2D GFF
Invariant point process via Liggett & Choquet-Deny
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Tightness of the maximum



Setting to be used 4

We focus on Branching Random Walk indexed by b-ary tree Tn. Recall:
Λn :“ leaves of Tn at depth n
For x P Λn, the family history is the root-to-x path px0, . . . , xnq

Given i.i.d. copies tYx : x P Tnu of Y, we have

ξn “
ÿ

xPΛn

δϕx for ϕx :“
n
ÿ

i“1

Yxi

Denote Mn :“ maxxPΛn ϕx

Note: Additivity/scaling allows us to reduce to the case

EpYq “ 0 and EpY2q “ 1

We will also assume that Y is continuously distributed with exponential tails.



Tightness of maximum, statement 5

Theorem
Assuming above setting with b ě 2 and Y continuously distributed with exponential
tails and subject to EpYq “ 0 and EpY2q “ 1, let

mn :“
b

2 log b n´
3
2

1
a

2 log b
log n

Then
 

Mn ´mn : n ě 1u is tight



A bad upper bound 6

A natural instinct is to try to prove an upper by way of union bound:

PpMn ą mnq “ P
`

Dx P Λn : ϕx ą mn
˘

ď
ÿ

xPΛn

Ppϕx ą mnq

Since ϕx is a random walk with Varpϕxq “ n, the Local CLT gives

Ppϕx ą mnq À
c
?

n
e´

1
2

1
n m2

n

But
1
n

m2
n “ p2 log bqn´ 3 log n` op1q

and so

Ppϕx ą mnq ď
c1
?

n
e´

1
2 p2 log bqn` 3

2 log n “ c1nb´n

As |Λn| “ bn, this will NOT be small when summed over x P Λn!!!



Representation via random walk 7

A better idea:
Condition on the position of the maximum, say x. This x is unique by
continuity of the law of Y.
Tn then partitions into the path px0, . . . , xnq and a collection of mutilated
subtrees T10, . . . , T1n´1 with T1k rooted at xk.
Introduce the abbreviations

Sk :“ ϕxk and M1
k :“ max

yPΛnXT1k

ϕy

The uniqueness of the maximum then requires

Sk `M1
n´k ă Sn, k “ 0, . . . , n´ 1

Note that S is a random walk.



Representation via random walk 8

Relying on the symmetries of Tn, we have proved:

Lemma
Let tSku

n
k“0 be a random walk with step distribution Y and let M1

0, . . . , M1
n´1 be

independent with above laws. Then for all Borel A Ď R,

PpMn P Aq “ bn P

ˆ

tSn P Au X
n´1
č

k“0

tSk `M1
n´k ă Snu

˙

Note: We know that
bnPpSn ą mnq “ Opnq

so we need to extract additional 1{n term from the large intersection.



The new idea continued 9

Want to prove that

P

ˆ

tSn ą mnu X

n´1
č

k“0

tSk `M1
n´k ă Snu

˙

is order 1{n. On the event in question, we will have Sn « mn. Without the
giant intersection, Sk wants to be « k

n Sn ˘
?

n

Assuming M1
n´k ´mn´k tight, the positive fluctuation is out:

Sk ´
k
n

Sn " logpn´ kq ñ mn´k ´M1
n´k " 1

We thus have to show that, on the event in question,

Sk ´
k
n

Sn À logpn´ kq

As tails of M1
n´k needed, we need to proceed inductively.



Lower bound from upper bound 10

To demonstrate this, we will show:

Lemma
For each c, α P p0,8q there exists C P p0,8q such that the following holds for
all n ě 1: Suppose that

PpMk ą mk ` uq ď ce´αu

hold for all k “ 1, . . . , n´ 1 and all u ě 0. Then

PpMn ą mnq ě C

Note that
PpM1

k ą uq ď PpMk ą uq ď 2PpM1
k ą uq

so we may assume the same about M1
k.

Note: Since Y has exponential tails, the assumption holds of n :“ 1.



Lower bound 11

Abbreviate
θnpkq :“ mintk1{3, pn´ kq1{3

(

Then

P

ˆ

tSn ą mnu X

n´1
č

k“0

tSk `M1
n´k ă Snu

˙

ě P

ˆ

tSn ą mnu X

n´1
č

k“0

tSk `M1
n´k ă Snu X

n´1
č

k“1

 

Sk ď
k
n Sn ´ 2θnpkq

(

˙

Now Sk ď
k
n Sn ´ 2θnpkq gives Sn ´ Sk ě

k
n mn ` 2θnpkq ě mn´k ` θnpkq. So

M1
n´k ď mn´k ` θnpkq ñ Sk `M1

n´k ă Sn

whenever k “ 1, . . . , n´ 1. (The case k “ 0 must be treated separately.)



Lower bound continued 12

Using the independence of S and M1
ks, this bounds the probability by

P

ˆ

tSn ą mnu X

n´1
č

k“1

 

Sk ď
k
n Sn ´ 2θnpkq

(

˙

times

PpM1
n ă mnq

n´1
ź

k“1

P
`

M1
n´k ď mn´k ` θnpkq

˘

from below. Induction assumption (upper bound) tells us that the product is
positive uniformly in n ě 1. In conjunction with Lemma, this shows

PpMn ą mnq

PpMn ă mnq
ě cbn P

ˆ

tSn ą mnu X

n´1
č

k“1

 

Sk ď
k
n Sn ´ 2θnpkq

(

˙

We have reduced the problem to a question about the random walk!



Ballot theorem 13

Lemma (Bolthausen)

Let X1, . . . , Xn be i.i.d. with positive continuous density. Then

P

ˆ n´1
č

k“1

tX1 ` ¨ ¨ ¨ `Xk ă 0u
ˇ

ˇ

ˇ

ˇ

X1 ` ¨ ¨ ¨ `Xn “ 0
˙

“
1
n

Proof idea: Interpret this as the even that the cyclic path has maximum at
“time” zero. Note that the law of Xi does not matter. A more elaborate
argument shows

P

ˆ

tSn ą mnu X

n´1
č

k“1

 

Sk ď
k
n Sn ´ 2θnpkq

(

˙

ě
c
n

PpSn ą mnq

E.g., for Gaussian random walk lower bound by Brownian motion and
calculate (Bramson). Since PpSn ą mnq ě c1b´nn, we are done.



Upper bound etc 14

The proof proceeds by the following steps:
Bootstrap PpMn ą mnq to exponential lower tail (percolation argument).
Use another “ballot theorem” argument to treat the upper tail.

One can actually prove a lower bound PpMn ą mnqwithout induction.

For GFF the proof is more complicated due to non-hierarchical structure of
covariances. The above representation via path-&-subtrees representation still
exist, called concentric decomposition.

Further details: M.Biskup. Extrema of the two-dimensional Discrete Gaussian
Free Field. 2017 PIMS summer school lecture notes. Springer volume (edited
by M. Barlow, G. Slade).
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Extrema of GFF



GFF setting recalled 16

Recall that GFF in UN is a Gaussian process tϕx : x P UNuwith

Epϕxq “ 0 and Covpϕx, ϕyq “ GUNpx, yq{degpyq

Here UN is a “good” discretization of U, e.g.,

UN :“
 

x P Z2 : dist8px{N, Ucq ą 1{N
(

This is needed so that harmonic functions on UN converge to those in U.

Change of labeling: N is the linear scale of UN



Some known facts 17

Tightness of maximum (Bramson & Zeitouni): Denote

mN :“ 2
?

g log N´
3
4
?

g log log N

where g :“ 1
2π . Then tmaxxPUN ϕx ´mNuNě1 is tight.

Extreme level set tightness (Ding & Zeitouni): Denote

ΓNptq :“ tx P UN : ϕx ě mN ´ tu
Then

Dc, C P p0,8q : lim
λÑ8

lim inf
NÑ8

P
`

ecλ ď |ΓNpλq| ď eCλ
˘

“ 1

and Dc ą 0 s.t.

lim
rÑ8

lim sup
NÑ8

P
´

Dx, y P ΓNpc log log rq : r ď |x´ y| ď N{r
¯

“ 0

Upshot: ΓNptq consists of islands of Op1q vertices separated by distance OpNq.



Extreme point process 18

Full process: Measure ηN on UˆR

ηN :“
ÿ

xPUN

δx{N b δϕx´mN

Problem: Values in one peak strongly correlated

Local maxima only: Set Brpxq :“ tz P Z2 : |z´ x| ď ru and let

ηN,r :“
ÿ

xPUN

1tϕx“maxzPBrpxq ϕzu δx{N b δϕx´mN

Note: We record both position and value of the field.



Local-extrema process convergence 19

Theorem (Convergence to Cox process)

There exists a random Borel measure ZU on U with 0 ă ZUpUq ă 8 a.s. such that
for any rN Ñ8 and N{rN Ñ8,

ηN,rN
law
ÝÑ

NÑ8
PPP

´

ZUpdxq b e´αhdh
¯

where α :“ 2{?g for g :“ 1
2π .



Corollaries 20

Asymptotic law of maximum: Setting Z :“ ZUpUq,

P
`

MN ď mN ` t
˘

ÝÑ
NÑ8

E
`

e´α´1Ze´αt˘

Joint law position/value: A Ď U open, pZpAq “ ZUpAq{ZUpUq

P
´

MN ď mN ` t, N´1argmax pϕq P A
¯

ÝÑ
NÑ8

E
`

pZpAqe´α´1Ze´αt˘



Characterizing subsequential limits 21

Recall that xη, f y :“
ş

ηpdx, dhqf px, hq

Thanks to tightness, tηN,rN : N ě 1u tight as sequence of Radon measures. This
means that we can extract converging subsequences.

Proposition (Distributional invariance)

Suppose η :“ a weak-limit point of some tηNk,rNk
u. Then for any f : UˆR Ñ r0,8q

continuous, compact support,

E
`

e´xη,f y˘ “ E
`

e´xη,fty
˘

, t ą 0,

where
ftpx, hq :“ ´ log E

`

e´f px,h`Bt´
α
2 tq˘

with Bt :“ standard Brownian motion.



Proposition explained 22

We may write
η “

ÿ

iě1

δxi,hi

Letting tBpiqt u be independent standard Brownian motions, set

ηt :“
ÿ

iě1

δxi,hi`Bpiqt ´
α
2 t

Well defined as t ÞÑ |ΓNptq| grows only exponentially. Then

E
`

e´xηt,f y
˘

“ E
`

e´xη,fty
˘

and so Proposition says

ηt
law
“ η, t ą 0

Note: x-values do not “move”!



Proof of Proposition I 23

Gaussian interpolation: ϕ1, ϕ2
law
“ h, independent

ϕ
law
“

´

1´
t

g log N

¯1{2
ϕ1 `

´ t
g log N

¯1{2
ϕ2

Now let x be such that ϕ1x ě mN ´ λ. Then

´

1´
t

g log N

¯1{2
ϕ1x “ ϕ1x ´

1
2

t
g log N

ϕ1x ` op1q

“ ϕ1x ´
t
2

mN

g log N
` op1q

“ ϕ1x ´
α

2
t` op1q



Proof of Proposition II 24

Concerning ϕ2, denote

rϕ2x :“
´ t

g log N

¯1{2
ϕ2x

By properties of GUN we have

Covprϕ2x, rϕ2yq “

#

t` op1q, if |x´ y| ď r
op1q, if |x´ y| ě N{r

So we conclude:
!

rϕ2x : x P UN, ϕ1x ě mN ´ λ, ϕ1x “ max
zPBrpxq

ϕ1z

)

has asymptotically the law of tBpiqt u.
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Dysonization-invariant point processes



Proof of Theorem 26

Key question: Characterize the point processes that are invariant under
independent evolution via

x ÞÑ x` Bt ´
α

2
t

of its points? (We may think of this as Dysonization.)

Easy to check: PPPpνpdxq b e´αhdhq okay for any ν (even random)

Any other solutions?



Liggett’s 1977 derivation 27

For t ą 0 define Markov kernel

pPgqpx, hq :“ E0g
`

x, h` Bt ´
α
2 t
˘

Set gpx, hq :“ e´f px,hq for f P C`c pUˆRq. Proposition implies

E
`

e´xη,f y˘ “ E
`

e´xη,f pnqy˘

where
f pnqpx, hq “ ´ logpPne´f qpx, hq

Kernel P has uniform dispersivity property: For C Ă UˆR compact

sup
x,h

Pn`px, hq, C
˘

ÝÑ
nÑ8

0

and thus Pne´f Ñ 1 uniformly. Expanding the log,

f pnq „ 1´ Pne´f as n Ñ8



Liggett’s 1977 derivation (continued) 28

Hence
E
`

e´xη,f y˘ “ lim
nÑ8

E
`

e´xη,1´Pne´f y
˘

(˚)

But, as P is Markov,

xη, 1´ Pne´f y “ xηPn, 1´ e´f y

(˚) shows that tηPn : n ě 1u is tight. Along a subsequence

ηPnkpdx, dhq law
ÝÑ
kÑ8

Mpdx, dhq

and so
E
`

e´xη,f y˘ “ E
`

e´xM,1´e´f y
˘

i.e., η “ PPPpMpdx, dhqq. Clearly,

MP
law
“ M



Proof of Theorem 29

Question: What M can we get?

Theorem (Liggett 1977)

MP
law
“ M implies MP “ M a.s. when P is a kernel of

(1) an irreducible, recurrent Markov chain
(2) a random walk on a closed abelian group w/o proper closed invariant subset

(2) applies in our case.

Note: MP “ M means M invariant for the chain. Choquet-Deny’s Theorem
says all positive harmonic functions are exponentials. By reversibility this
gives invariant measures:

Mpdx, dhq “ ZUpdxq b e´αhdh` rZUpdxq b dh

Tightness of maximum implies rZU “ 0 a.s.



Proof of Theorem 30

Finishing touches

We thus know ηNk,rNk

law
ÝÑ η implies

η “ PPP
`

ZUpdxq b e´αhdh
˘

for some random ZU. But for Z :“ ZUpUq, this reads

P
`

MNk ď mNk ` t
˘

ÝÑ
kÑ8

E
`

e´α´1Ze´αt˘

Hence, the law of ZUpUq is unique if limit law of maximum unique. This we
know thanks to Bramson, Ding and Zeitouni 2016.

An enhanced version implies uniqueness of law of ZUpdxq.



Properties of Z-measure 31

Theorem (B-Louidor 2020)

The measure ZU satisfies:
(1) ZUpAq “ 0 a.s. for any Borel A Ă U with LebpAq “ 0
(2) supppZUq “ U and ZUpBDq “ 0 a.s.
(3) ZU is non-atomic a.s.

Property (3) is only barely true:

Theorem (B.-Gufler-Louidor 2023?)

ZU is supported on a set of zero Hausdorff dimension a.s.

Theorem (B-Louidor 2020)

Under a conformal map f : U Ñ rU, the measure transforms as

ZrU ˝ f pdxq law
“ |f 1pxq|4ZUpdxq



Full extreme process 32

Recall we were interested in ηN :“
ř

xPUN
δx{N b δϕx´mN

A better representation by cluster process on UˆRˆRZ2
:

pηN,r :“
ÿ

xPUN

1tϕx“maxzPBrpxq ϕzu δx{N b δϕx´mN b δtϕx´ϕx`z : zPZ2u

Theorem (B-Louidor 2018)

There is a measure µ on Z2 such that (for rN Ñ8, N{rN Ñ8)

pηN,rN
law
ÝÑ

NÑ8
PPP

´

ZUpdxq b e´αhdh b µpdφq
¯

where α :“ 2{?g.

Capable of capturing universality w.r.t. short-range perturbations



THE END


