Extreme order statistics of logarithmically correlated processes: Part II

Marek Biskup (UCLA)

Stochastics Meeting Lunteren

November 14, 2023

- Some technical proofs: tightness of maximum
- Extremal process of 2D GFF
- Invariant point process via Liggett & Choquet-Deny

Tightness of the maximum

We focus on Branching Random Walk indexed by *b*-ary tree \mathbb{T}_n . Recall:

- $\Lambda_n :=$ leaves of \mathbb{T}_n at depth n
- For $x \in \Lambda_n$, the family history is the root-to-*x* path (x_0, \ldots, x_n)
- Given i.i.d. copies $\{Y_x : x \in \mathbb{T}_n\}$ of *Y*, we have

$$\xi_n = \sum_{x \in \Lambda_n} \delta_{\varphi_x}$$
 for $\varphi_x := \sum_{i=1}^n Y_x$

10

• Denote $M_n := \max_{x \in \Lambda_n} \varphi_x$

Note: Additivity/scaling allows us to reduce to the case

$$\mathbb{E}(Y) = 0$$
 and $\mathbb{E}(Y^2) = 1$

Theorem

Assuming above setting with $b \ge 2$ and Y continuously distributed with exponential tails and subject to $\mathbb{E}(Y) = 0$ and $\mathbb{E}(Y^2) = 1$, let

$$m_n := \sqrt{2\log b} \, n - \frac{3}{2} \frac{1}{\sqrt{2\log b}} \log n$$

Then

 $\{M_n - m_n \colon n \ge 1\}$ is tight

A bad upper bound

A natural instinct is to try to prove an upper by way of union bound:

$$\mathbb{P}(M_n > m_n) = \mathbb{P}\big(\exists x \in \Lambda_n \colon \varphi_x > m_n\big) \leqslant \sum_{x \in \Lambda_n} \mathbb{P}(\varphi_x > m_n)$$

Since φ_x is a random walk with $Var(\varphi_x) = n$, the Local CLT gives

$$\mathbb{P}(\varphi_x > m_n) \lesssim \frac{c}{\sqrt{n}} \mathrm{e}^{-\frac{1}{2}\frac{1}{n}m_n^2}$$

But

$$\frac{1}{n}m_n^2 = (2\log b)n - 3\log n + o(1)$$

and so

$$\mathbb{P}(\varphi_x > m_n) \leqslant \frac{c'}{\sqrt{n}} e^{-\frac{1}{2}(2\log b)n + \frac{3}{2}\log n} = c'nb^{-n}$$

As $|\Lambda_n| = b^n$, this will NOT be small when summed over $x \in \Lambda_n$!!!

A better idea:

- Condition on the position of the maximum, say *x*. This *x* is unique by continuity of the law of *Y*.
- \mathbb{T}_n then partitions into the path (x_0, \ldots, x_n) and a collection of mutilated subtrees $\mathbb{T}'_0, \ldots, \mathbb{T}'_{n-1}$ with \mathbb{T}'_k rooted at x_k .
- Introduce the abbreviations

$$S_k := \varphi_{x_k}$$
 and $M'_k := \max_{y \in \Lambda_n \cap \mathbb{T}'_k} \varphi_y$

The uniqueness of the maximum then requires

$$S_k + M'_{n-k} < S_n, \quad k = 0, \ldots, n-1$$

Note that *S* is a random walk.

Relying on the symmetries of \mathbb{T}_n , we have proved:

Lemma

Let $\{S_k\}_{k=0}^n$ be a random walk with step distribution Y and let M'_0, \ldots, M'_{n-1} be independent with above laws. Then for all Borel $A \subseteq \mathbb{R}$,

$$\mathbb{P}(M_n \in A) = b^n \mathbb{P}\left(\{S_n \in A\} \cap \bigcap_{k=0}^{n-1} \{S_k + M'_{n-k} < S_n\}\right)$$

Note: We know that

$$b^n \mathbb{P}(S_n > m_n) = O(n)$$

so we need to extract **additional** 1/n **term** from the large intersection.

Want to prove that

$$\mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=0}^{n-1} \{S_k + M'_{n-k} < S_n\}\right)$$

is order 1/n. On the event in question, we will have $S_n \approx m_n$. Without the giant intersection, S_k wants to be $\approx \frac{k}{n}S_n \pm \sqrt{n}$

Assuming $M'_{n-k} - m_{n-k}$ tight, the positive fluctuation is out: $S_k - \frac{k}{n}S_n \gg \log(n-k) \implies m_{n-k} - M'_{n-k} \gg 1$

We thus have to show that, on the event in question,

$$S_k - \frac{k}{n}S_n \lesssim \log(n-k)$$

As tails of M'_{n-k} needed, we need to proceed inductively.

To demonstrate this, we will show:

Lemma

For each $c, \alpha \in (0, \infty)$ there exists $C \in (0, \infty)$ such that the following holds for all $n \ge 1$: Suppose that

 $\mathbb{P}(M_k > m_k + u) \leq c \mathrm{e}^{-\alpha u}$

hold for all k = 1, ..., n - 1 and all $u \ge 0$. Then

 $\mathbb{P}(M_n > m_n) \ge C$

Note that

$$\mathbb{P}(M'_k > u) \leqslant \mathbb{P}(M_k > u) \leqslant 2\mathbb{P}(M'_k > u)$$

so we may assume the same about M'_k .

Note: Since *Y* has exponential tails, the assumption holds of n := 1.

Lower bound

Abbreviate

$$\theta_n(k) := \min\{k^{1/3}, (n-k)^{1/3}\}$$

Then

$$\mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=0}^{n-1} \{S_k + M'_{n-k} < S_n\}\right)$$

$$\geq \mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=0}^{n-1} \{S_k + M'_{n-k} < S_n\} \cap \bigcap_{k=1}^{n-1} \{S_k \leqslant \frac{k}{n} S_n - 2\theta_n(k)\}\right)$$

Now $S_k \leqslant \frac{k}{n} S_n - 2\theta_n(k)$ gives $S_n - S_k \geq \frac{k}{n} m_n + 2\theta_n(k) \geq m_{n-k} + \theta_n(k)$. So

$$M'_{n-k} \leq m_{n-k} + \theta_n(k) \quad \Rightarrow \quad S_k + M'_{n-k} < S_n$$

whenever k = 1, ..., n - 1. (The case k = 0 must be treated separately.)

Lower bound continued

Using the independence of *S* and M'_k s, this bounds the probability by

$$\mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=1}^{n-1} \{S_k \leqslant \frac{k}{n} S_n - 2\theta_n(k)\}\right)$$

times

$$\mathbb{P}(M'_n < m_n) \prod_{k=1}^{n-1} \mathbb{P}(M'_{n-k} \leq m_{n-k} + \theta_n(k))$$

from below. Induction assumption (upper bound) tells us that the product is positive uniformly in $n \ge 1$. In conjunction with Lemma, this shows

$$\frac{\mathbb{P}(M_n > m_n)}{\mathbb{P}(M_n < m_n)} \ge cb^n \mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=1}^{n-1} \{S_k \le \frac{k}{n}S_n - 2\theta_n(k)\}\right)$$

We have reduced the problem to a question about the random walk!

Lemma (Bolthausen)

Let X_1, \ldots, X_n be *i.i.d.* with positive continuous density. Then

$$\mathbb{P}\left(\bigcap_{k=1}^{n-1} \{X_1 + \dots + X_k < 0\} \,\middle| \, X_1 + \dots + X_n = 0\right) = \frac{1}{n}$$

Proof idea: Interpret this as the even that the cyclic path has maximum at "time" zero. Note that the law of X_i does not matter. A more elaborate argument shows

$$\mathbb{P}\left(\{S_n > m_n\} \cap \bigcap_{k=1}^{n-1} \{S_k \leqslant \frac{k}{n} S_n - 2\theta_n(k)\}\right) \ge \frac{c}{n} \mathbb{P}(S_n > m_n)$$

E.g., for Gaussian random walk lower bound by Brownian motion and calculate (Bramson). Since $\mathbb{P}(S_n > m_n) \ge c'b^{-n}n$, we are done.

The proof proceeds by the following steps:

- Bootstrap $\mathbb{P}(M_n > m_n)$ to exponential lower tail (percolation argument).
- Use another "ballot theorem" argument to treat the upper tail.

One can actually prove a lower bound $\mathbb{P}(M_n > m_n)$ without induction.

For GFF the proof is more complicated due to non-hierarchical structure of covariances. The above representation via path-&-subtrees representation still exist, called **concentric decomposition**.

Further details: M.Biskup. Extrema of the two-dimensional Discrete Gaussian Free Field. 2017 PIMS summer school lecture notes. Springer volume (edited by M. Barlow, G. Slade).

Extrema of GFF

GFF setting recalled

Recall that GFF in U_N is a Gaussian process $\{\varphi_x : x \in U_N\}$ with

$$\mathbb{E}(\varphi_x) = 0$$
 and $\operatorname{Cov}(\varphi_x, \varphi_y) = G^{U_N}(x, y)/\operatorname{deg}(y)$

Here U_N is a "good" discretization of U, e.g.,

$$U_N := \left\{ x \in \mathbb{Z}^2 \colon \operatorname{dist}_{\infty}(x/N, U^c) > 1/N \right\}$$

This is needed so that harmonic functions on U_N converge to those in U.

Change of labeling: *N* is the linear scale of U_N

Tightness of maximum (Bramson & Zeitouni): Denote

$$m_N := 2\sqrt{g}\log N - \frac{3}{4}\sqrt{g}\log\log N$$

where $g := \frac{1}{2\pi}$. Then $\{\max_{x \in U_N} \varphi_x - m_N\}_{N \ge 1}$ is tight.

Extreme level set tightness (Ding & Zeitouni): Denote

$$\Gamma_N(t) := \{ x \in U_N \colon \varphi_x \ge m_N - t \}$$

Then

$$\exists c, C \in (0, \infty): \qquad \lim_{\lambda \to \infty} \liminf_{N \to \infty} \mathbb{P} \left(e^{c\lambda} \leq |\Gamma_N(\lambda)| \leq e^{C\lambda} \right) = 1$$

and $\exists c > 0$ s.t.

$$\lim_{r \to \infty} \limsup_{N \to \infty} \mathbb{P}\Big(\exists x, y \in \Gamma_N(c \log \log r) \colon r \leq |x - y| \leq N/r\Big) = 0$$

Upshot: $\Gamma_N(t)$ consists of islands of O(1) vertices separated by distance O(N).

Full process: Measure η_N on $\overline{U} \times \mathbb{R}$

$$\eta_N := \sum_{x \in U_N} \delta_{x/N} \otimes \delta_{\varphi_x - m_N}$$

Problem: Values in one peak strongly correlated

Local maxima only: Set $B_r(x) := \{z \in \mathbb{Z}^2 : |z - x| \leq r\}$ and let

$$\eta_{N,r} := \sum_{x \in U_N} \mathbf{1}_{\{\varphi_x = \max_{z \in B_r(x)} \varphi_z\}} \delta_{x/N} \otimes \delta_{\varphi_x - m_N}$$

Note: We record both position and value of the field.

Theorem (Convergence to Cox process)

There exists a random Borel measure Z^U on \overline{U} with $0 < Z^U(\overline{U}) < \infty$ a.s. such that for any $r_N \to \infty$ and $N/r_N \to \infty$,

$$\eta_{N,r_N} \xrightarrow[N \to \infty]{\text{law}} \operatorname{PPP}\left(Z^U(\mathrm{d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{d} h\right)$$

where $\alpha := 2/\sqrt{g}$ for $g := \frac{1}{2\pi}$.

Asymptotic law of maximum: Setting $Z := Z^{U}(\overline{U})$,

$$\mathbb{P}(M_N \leq m_N + t) \xrightarrow[N \to \infty]{} E(e^{-\alpha^{-1}Ze^{-\alpha t}})$$

Joint law position/value: $A \subseteq U$ open, $\hat{Z}(A) = Z^U(A)/Z^U(\overline{U})$

$$\mathbb{P}\Big(M_N \leqslant m_N + t, \, N^{-1} \operatorname{argmax}(\varphi) \in A\Big) \xrightarrow[N \to \infty]{} E\Big(\widehat{Z}(A) e^{-\alpha^{-1} Z e^{-\alpha t}}\Big)$$

Recall that $\langle \eta, f \rangle := \int \eta(dx, dh) f(x, h)$

Thanks to tightness, $\{\eta_{N,r_N} : N \ge 1\}$ tight as sequence of Radon measures. This means that we can extract converging subsequences.

Proposition (Distributional invariance)

Suppose $\eta := a$ weak-limit point of some $\{\eta_{N_k,r_{N_k}}\}$. Then for any $f: U \times \mathbb{R} \to [0,\infty)$ continuous, compact support,

$$E(\mathrm{e}^{-\langle \eta,f
angle})=E(\mathrm{e}^{-\langle \eta,f_t
angle}),\qquad t>0,$$

where

$$f_t(x,h) := -\log E\left(e^{-f(x,h+B_t-\frac{\alpha}{2}t)}\right)$$

with $B_t := standard$ Brownian motion.

We may write

$$\eta = \sum_{i \ge 1} \delta_{x_i, h_i}$$

Letting $\{B_t^{(i)}\}$ be independent standard Brownian motions, set

$$\eta_t := \sum_{i \ge 1} \delta_{x_i, h_i + B_t^{(i)} - \frac{\alpha}{2}t}$$

Well defined as $t \mapsto |\Gamma_N(t)|$ grows only exponentially. Then

$$E(\mathbf{e}^{-\langle \eta_t, f \rangle}) = E(\mathbf{e}^{-\langle \eta, f_t \rangle})$$

and so Proposition says

$$\eta_t \stackrel{\text{law}}{=} \eta, \qquad t > 0$$

Note: *x*-values do not "move"!

Gaussian interpolation: $\varphi', \varphi'' \stackrel{\text{law}}{=} h$, independent

$$\varphi \stackrel{\text{law}}{=} \left(1 - \frac{t}{g \log N}\right)^{1/2} \varphi' + \left(\frac{t}{g \log N}\right)^{1/2} \varphi''$$

Now let *x* be such that $\varphi'_x \ge m_N - \lambda$. Then

$$\left(1 - \frac{t}{g \log N}\right)^{1/2} \varphi'_{x} = \varphi'_{x} - \frac{1}{2} \frac{t}{g \log N} \varphi'_{x} + o(1)$$
$$= \varphi'_{x} - \frac{t}{2} \frac{m_{N}}{g \log N} + o(1)$$
$$= \varphi'_{x} - \frac{\alpha}{2} t + o(1)$$

24

Concerning φ'' , denote

$$\widetilde{\varphi}_x'' := \left(\frac{t}{g \log N}\right)^{1/2} \varphi_x''$$

By properties of G^{U_N} we have

$$\operatorname{Cov}(\widetilde{\varphi}_{x}'',\widetilde{\varphi}_{y}'') = \begin{cases} t + o(1), & \text{if } |x - y| \leq r \\ o(1), & \text{if } |x - y| \geq N/r \end{cases}$$

So we conclude:

$$\left\{ \widetilde{\varphi}''_{x} \colon x \in U_{N}, \ \varphi'_{x} \ge m_{N} - \lambda, \ \varphi'_{x} = \max_{z \in B_{r}(x)} \varphi'_{z} \right\}$$

has asymptotically the law of $\{B_t^{(i)}\}$.

Dysonization-invariant point processes

Key question: Characterize the point processes that are invariant under independent evolution via

$$x \mapsto x + B_t - \frac{\alpha}{2}t$$

of its points? (We may think of this as Dysonization.)

Easy to check: PPP($\nu(dx) \otimes e^{-\alpha h} dh$) okay for any ν (even random)

Any other solutions?

For t > 0 define Markov kernel

$$(\mathsf{P}g)(x,h) := E^0 g \left(x, h + B_t - \frac{\alpha}{2} t \right)$$

Set $g(x,h) := e^{-f(x,h)}$ for $f \in C_c^+(U \times \mathbb{R})$. Proposition implies

$$E(\mathrm{e}^{-\langle\eta,f\rangle}) = E(\mathrm{e}^{-\langle\eta,f^{(n)}\rangle})$$

where

$$f^{(n)}(x,h) = -\log(\mathsf{P}^n \mathrm{e}^{-f})(x,h)$$

Kernel P has **uniform dispersivity property:** For $C \subset \overline{U} \times \mathbb{R}$ compact

$$\sup_{x,h} \mathsf{P}^n\bigl((x,h),C\bigr) \xrightarrow[n\to\infty]{} 0$$

and thus $P^n e^{-f} \rightarrow 1$ uniformly. Expanding the log,

$$f^{(n)} \sim 1 - \mathsf{P}^n \mathrm{e}^{-f} \qquad \text{as } n \to \infty$$

Hence

$$E(e^{-\langle \eta f \rangle}) = \lim_{n \to \infty} E(e^{-\langle \eta, 1 - \mathsf{P}^n e^{-f} \rangle}) \tag{(*)}$$

But, as P is Markov,

$$\langle \eta, 1 - \mathsf{P}^n \mathrm{e}^{-f} \rangle = \langle \eta \mathsf{P}^n, 1 - \mathrm{e}^{-f} \rangle$$

(*) shows that $\{\eta P^n : n \ge 1\}$ is tight. Along a subsequence

$$\eta \mathsf{P}^{n_k}(\mathrm{d} x, \mathrm{d} h) \xrightarrow[k \to \infty]{} M(\mathrm{d} x, \mathrm{d} h)$$

and so

$$E(\mathrm{e}^{-\langle\eta,f\rangle})=E(\mathrm{e}^{-\langle M,1-\mathrm{e}^{-f}\rangle})$$

i.e., $\eta = PPP(M(dx, dh))$. Clearly,

$$MP \stackrel{\text{law}}{=} M$$

Question: What *M* can we get?

Theorem (Liggett 1977)

 $MP \stackrel{\text{law}}{=} M \text{ implies } MP = M \text{ a.s. when } P \text{ is a kernel of}$

(1) an irreducible, recurrent Markov chain

(2) a random walk on a closed abelian group w/o proper closed invariant subset

(2) applies in our case.

Note: MP = M means M invariant for the chain. Choquet-Deny's Theorem says all positive harmonic functions are exponentials. By reversibility this gives invariant measures:

$$M(\mathrm{d}x,\mathrm{d}h) = Z^{U}(\mathrm{d}x) \otimes \mathrm{e}^{-\alpha h} \mathrm{d}h + \widetilde{Z}^{U}(\mathrm{d}x) \otimes \mathrm{d}h$$

Tightness of maximum implies $\widetilde{Z}^U = 0$ a.s.

We thus know
$$\eta_{N_k, r_{N_k}} \xrightarrow{\text{law}} \eta$$
 implies
$$\eta = \text{PPP}(Z^U(dx) \otimes e^{-\alpha h} dh)$$

for some random Z^U . But for $Z := Z^U(\overline{U})$, this reads

$$P(M_{N_k} \leq m_{N_k} + t) \xrightarrow[k \to \infty]{} E(e^{-\alpha^{-1}Ze^{-\alpha t}})$$

Hence, the law of $Z^{U}(\overline{U})$ is unique if limit law of maximum unique. This we know thanks to Bramson, Ding and Zeitouni 2016.

An enhanced version implies uniqueness of law of $Z^{U}(dx)$.

Theorem (B-Louidor 2020)

The measure Z^{U} satisfies: (1) $Z^{U}(A) = 0$ a.s. for any Borel $A \subset \overline{U}$ with Leb(A) = 0(2) $supp(Z^{U}) = \overline{U}$ and $Z^{U}(\partial D) = 0$ a.s. (3) Z^{U} is non-atomic a.s.

Property (3) is only barely true:

Theorem (B.-Gufler-Louidor 2023?)

 Z^{U} is supported on a set of zero Hausdorff dimension a.s.

Theorem (B-Louidor 2020)

Under a conformal map $f: U \rightarrow \tilde{U}$ *, the measure transforms as*

$$Z^{\widetilde{U}} \circ f(\mathrm{d}x) \stackrel{\mathrm{law}}{=} |f'(x)|^4 Z^U(\mathrm{d}x)$$

Recall we were interested in $\eta_N := \sum_{x \in U_N} \delta_{x/N} \otimes \delta_{\varphi_x - m_N}$ A better representation by **cluster process** on $\overline{U} \times \mathbb{R} \times \mathbb{R}^{\mathbb{Z}^2}$:

$$\widehat{\eta}_{N,r} := \sum_{x \in U_N} \mathbf{1}_{\{\varphi_x = \max_{z \in B_r(x)} \varphi_z\}} \, \delta_{x/N} \otimes \delta_{\varphi_x - m_N} \otimes \delta_{\{\varphi_x - \varphi_{x+z} \colon z \in \mathbb{Z}^2\}}$$

Theorem (B-Louidor 2018)

There is a measure μ *on* \mathbb{Z}^2 *such that (for* $r_N \to \infty$ *,* $N/r_N \to \infty$ *)*

$$\widehat{\eta}_{N,r_N} \xrightarrow[N \to \infty]{\text{law}} \operatorname{PPP}\left(Z^U(\mathrm{d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{d} h \otimes \mu(\mathrm{d} \phi)\right)$$

where $\alpha := 2/\sqrt{g}$.

Capable of capturing universality w.r.t. short-range perturbations

THE END