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@ Some technical proofs: tightness of maximum
@ Extremal process of 2D GFF
@ Invariant point process via Liggett & Choquet-Deny



Tightness of the maximum



Setting to be used

We focus on Branching Random Walk indexed by b-ary tree T,,. Recall:
@ A, :=leavesof T, at depth n
@ For x € A, the family history is the root-to-x path (xo, ..., x,)

e Given i.i.d. copies {Y,: x € T,} of Y, we have

n
En= D, 0p for gp:=> Yy
xeA, i=1 N
@ Denote M, := maxyep, ¢x ke ) »
Note: Additivity/scaling allows us to reduce to the case w v: o o

db dbdb b

E(Y)=0 and E(Y?) =1

We will also assume that Y is continuously distributed with exponential tails.



Assuming above setting with b > 2 and Y continuously distributed with exponential
tails and subject to E(Y) = 0 and E(Y?) = 1, let

Then
{My —my:n=>1} istight




A bad upper bound

A natural instinct is to try to prove an upper by way of union bound:

P(My, > my) =P (3x € Ay: ¢x > my) < Z P(pyx > my)

xeN,

Since ¢y is a random walk with Var(¢,) = n, the Local CLT gives

_11,2
n''n

m

N—=

c
P(py > my) < ﬁe

But
m2 = (2logb)n —3logn +o(1)

S|

and so .
¢ _1 3 —
IP((PX = mn) < e 53 (2logb)n+5logn _ nb"

NG

As |A,| = 1", this will NOT be small when summed over x € A,!!!



Representation via random walk

A better idea:

@ Condition on the position of the maximum, say x. This x is unique by
continuity of the law of Y.

@ T, then partitions into the path (xo, ..., x,) and a collection of mutilated
subtrees Ty, ..., T, _, with T} rooted at x;.

@ Introduce the abbreviations

Ski=¢y, and M;:= max ¢,
yeA,n T,

The uniqueness of the maximum then requires

Sx+M,_, <S, k=0,...,n-1

/

Note that S is a random walk. { i;



Representation via random walk

Relying on the symmetries of T,, we have proved:

Lemma

Let {S};_, be a random walk with step distribution Y and let My, ..., M;,_, be
independent with above laws. Then for all Borel A < R,

n—1
P(M, e A) =b" IP({Sn €A} n ﬂ {Sk+M,_; < Sn}>
k=0

Note: We know that
b"P(S, > my,) = O(n)

so we need to extract additional 1/ term from the large intersection.



The new idea continued

Want to prove that

]P({Sn > 1y} N nﬁl{sk + M, < sn}>

k=0

is order 1/n. On the event in question, we will have S, ~ m,. Without the
giant intersection, Sy wants to be ~ %Sn +4/n

Assuming M) _, — m,,_y tight, the positive fluctuation is out:

Sk — zSn »logn—k) = my_—M,  >1

We thus have to show that, on the event in question, ,

4

S — %Sn < log(n —k) ,
As tails of M, _, needed, we need to proceed inductively. { ?i



Lower bound from upper bound

To demonstrate this, we will show:

Lemma

For each c,a € (0, 00) there exists C € (0, o) such that the following holds for
all n = 1: Suppose that
P(My > my +u) < ce” ™

hold forallk =1,...,n —1and all u > 0. Then

P(M,, > my,) > C

Note that
P(M; > u) < P(My > u) < 2P(Mj, > u)

so we may assume the same about M;.

Note: Since Y has exponential tails, the assumption holds of n := 1.



Lower bound

Abbreviate
0(k) := min{k'/?, (n — k)V/%}

Then

n—1
]P({Sn >} o [ {Sk + M,y < sn}>
k=0

n—1 n—1
> H’({Sn >} o [ Sk + M < Sub o [){Sk < 580 — 29n(k)}>
k=0 k=1

Now S, < %Sn — 20, (k) gives S, — Sy = K, + 20, (k) = my,_j +6,(k). So

n

!

ke S My_j + Ou(k) = S+ M;—k <S5,

whenever k = 1,...,n — 1. (The case k = 0 must be treated separately.)



Lower bound continued

Using the independence of S and M;s, this bounds the probability by

n—1
113({5,1 > ma} o [){Sk < S, —29n(k)}>
k=1

times
n—1

P(M,, < my) [ [PP(M),_y < my_x + 6a(k))
k=1

from below. Induction assumption (upper bound) tells us that the product is
positive uniformly in n > 1. In conjunction with Lemma, this shows

DMy > 1) cb”ll’({S -m }mnﬂl{sk < ks, 26 (k)})
]P<Mn < mn) = n n 1 = pen n

We have reduced the problem to a question about the random walk!



Ballot theorem

Lemma (Bolthausen)

Let Xy,...,X, bei.i.d. with positive continuous density. Then

n—1
1
IP(ﬂ{XlerJer<0}‘X1+---+Xn=0) ==
k=1 n

Proof idea: Interpret this as the even that the cyclic path has maximum at
“time” zero. Note that the law of X; does not matter. A more elaborate
argument shows

n—1
]P<{Sn > 1My} 0 ﬂ{Sk < ks, - 26n(k)}> > %]P(Sn > my)
k=1

E.g., for Gaussian random walk lower bound by Brownian motion and
calculate (Bramson). Since IP(S,, > my,) = ¢’b~"n, we are done.



Upper bound etc

The proof proceeds by the following steps:
@ Bootstrap IP(M,, > m,) to exponential lower tail (percolation argument).
@ Use another “ballot theorem” argument to treat the upper tail.

One can actually prove a lower bound IP(M,, > m,,) without induction.

For GFF the proof is more complicated due to non-hierarchical structure of
covariances. The above representation via path-&-subtrees representation still
exist, called concentric decomposition.

Further details: M.Biskup. Extrema of the two-dimensional Discrete Gaussian
Free Field. 2017 PIMS summer school lecture notes. Springer volume (edited
by M. Barlow, G. Slade).



Extrema of GFF



GFF setting recalled

Recall that GFF in Uy is a Gaussian process {¢y: x € Uy} with

E(¢:) =0 and Cov(gx, @) = G'N(x,y)/deg(y)

Here Uy is a “good” discretization of U, e.g.,
Uy := {x € Z*: dist,(x/N, U°) > 1/N}

This is needed so that harmonic functions on Uy converge to those in U.

HJ;‘—HH\HW

Change of labeling: N is the linear scale of Uy

RSN

T




Some known facts

Tightness of maximum (Bramson & Zeitouni): Denote
my := 2,/¢log N — Z\/gloglogN

where ¢ := % Then {maxyey, ¢x — Mn}n>1 is tight.

Extreme level set tightness (Ding & Zeitouni): Denote

FN(t) = {x e Uy: Qx = MN — t}
Then

3c,C e (0,0): lim Tim inf P(e™ < |Ty(A)| <et) =1
— 00 —00

and Jc > 0 s.t.

lim limsup]P(Hx,y e I'n(cloglogr): r < |x —y| < N/r) =0

r—00 N—oo

Upshot: I'y(t) consists of islands of O(1) vertices separated by distance O(N).



Extreme point process

Full process: Measure 77y on U x R

1IN = Z 5X/N®5(Px_mN

XGUN

Problem: Values in one peak strongly correlated

Local maxima only: Set B,(x) := {z € Z?: |z — x| < r} and let

T]N,i’ = Z 1{(Px:maXZ€By(X) (Pz} 6x/N®5(/)X_mN

xXe UN

Note: We record both position and value of the field.



There exists a random Borel measure ZY on U with 0 < ZY(U) < oo a.s. such that
for any ry — o0 and N/ry — o,

e o PPP(ZU(dx)@)e_"‘hdh)

where o 1= 2/,/3 for g == -




Asymptotic law of maximum: Setting Z := ZY(U),

P(My < my+t) — E(e™® 7"

N—oo

Joint law position/value: A = U open, Z(A) = ZU(A)/ZY (W)

]P(MN < my +t, N"largmax (¢) € A) — E(z(A)e—“_lze_‘“)

N—ow



Characterizing subsequential limits

Recall that (1,f) := {5(dx, dh)f (x, h)

Thanks to tightness, {#n, : N > 1} tight as sequence of Radon measures. This
means that we can extract converging subsequences.

Proposition (Distributional invariance)

Suppose 1) := a weak-limit point of some {1, r, }- Then for any f: U x R — [0, c0)
continuous, compact support,

E(e="H) = E(e=h),  t>0,

where |
fi(x,h) := —logE (e—f(x,h+Bt—%t))

with By := standard Brownian motion.




Proposition explained

We may write

n= Z 5xirhi

i1

Letting {Bgi)} be independent standard Brownian motions, set

M= Z 5xi,hi+B§i)—%t
i>1
Well defined as t — |I['y(t)| grows only exponentially. Then
E (e—<77tf>) —E (e—<'7fr>)

and so Proposition says
law

m =1, t>0

Note: x-values do not “move”!



Proof of Proposition I

Gaussian interpolation: ¢/, 9" ' 1, independent

¢ = (1 B gloth)l/zq)/Jr (gloth)l/2 ¢

Now let x be such that ¢/, > my — A. Then

N2, 1,
(1 glogN) Px=9¢x73 gloquox +o()
_ g, bomN
BRI glogN o)
= ¢\~ St+o(1)

2



Proof of Proposition II

Concerning ¢”, denote

glogN
By properties of GUN we have
. t+o(1), if [x —y| <
Cov(gl, gy =1 oW sy
o(1), if x —y| > N/r

So we conclude:

{(ﬁ;’ xe Uy, ¢, =my— A, ¢ = max q);}

has asymptotically the law of {Bfi) 3



Dysonization-invariant point processes



Proof of Theorem

Key question: Characterize the point processes that are invariant under
independent evolution via

14
x'—>x+Bt—§t

of its points? (We may think of this as Dysonization.)

Easy to check: PPP(v(dx) ® e~*"dh) okay for any v (even random)

Any other solutions?



Liggett’s 1977 derivation

For t > 0 define Markov kernel
(Pg)(x,h) := E°%(x,h + By — &t)
Set ¢(x, h) := e F(M for f e CF(U x R). Proposition implies
E(e=) = E(e—<n,f<">>)

where
£, 1) = ~log(P"e ) (x,h)

Kernel P has uniform dispersivity property: For C = U x R compact

n
5;129 P"((x,h),C) — 0

and thus P"e — 1 uniformly. Expanding the log,

M~ 1—pref asn — o



Liggett’s 1977 derivation (continued)

Hence
E(e 1) = lim E(e~@1=P"e™) (+)

n—oo

But, as P is Markov,
(1,1 =Py =P 1—e)
(*) shows that {#P": n > 1} is tight. Along a subsequence

nP(dx,dh) 2% M(dx, dh)

k—o0

and so
E(e=) = E(e7<M,lfe*f>)

i.e., 1 = PPP(M(dx,dh)). Clearly,



Proof of Theorem

Question: What M can we get?
Theorem (Liggett 1977)

MP ' M implies MP = M a.s. when P is a kernel of
(1) an irreducible, recurrent Markov chain
(2) a random walk on a closed abelian group w/o proper closed invariant subset

(2) applies in our case.

Note: MP = M means M invariant for the chain. Choquet-Deny’s Theorem
says all positive harmonic functions are exponentials. By reversibility this
gives invariant measures:

M(dx, dh) = ZY(dx) ® e *"dh + ZY(dx) ® dh

Tightness of maximum implies ZY = 0as.



Proof of Theorem
Finishing touches

We thus know 77n;.r, law, n implies
1 = PPP(ZY(dx) ® e “"dh)
for some random ZY. But for Z := ZY(U), this reads

P(My, < my, +1) — E(e™® 7"

k—o0

Hence, the law of ZY(U) is unique if limit law of maximum unique. This we
know thanks to Bramson, Ding and Zeitouni 2016.

An enhanced version implies uniqueness of law of ZU(dx).



Properties of Z-measure

Theorem (B-Louidor 2020)

The measure ZY satisfies:
(1) ZY(A) = 0 a.s. for any Borel A = U with Leb(A) = 0
(2) supp(ZY) = U and Z4(0D) = 0 a.s.
(3) ZY is non-atomic a.s.

Property (3) is only barely true:
Theorem (B.-Gufler-Louidor 2023?)

ZY is supported on a set of zero Hausdorff dimension a.s.

Theorem (B-Louidor 2020)

Under a conformal map f: U — U, the measure transforms as

Z%of(dx) "2 |f'(x)[*Z¥ (dx)




Full extreme process

Recall we were interested in 7n 1= Xy, 6x/N ® S, —my

A better representation by cluster process on U x R x RZ:

ﬁN,l’ = Z 1{47X=maxzeBy(x) 4)2} 5x/N ® 5(PX7mN ® (5{q7x*q’x+zi ZEZZ}

xely

Theorem (B-Louidor 2018)

There is a measure y on Z? such that (for ry — o0, N/ry — o)
finny 2% PPP(ZU(dx)® e dh @ pu(dg))
N—oo

where & = 2/,/3.

Capable of capturing universality w.r.t. short-range perturbations



THE END



