# Extreme order statistics of logarithmically correlated processes: Part II 

Marek Biskup (UCLA)

Stochastics Meeting Lunteren
November 14, 2023

- Some technical proofs: tightness of maximum
- Extremal process of 2D GFF
- Invariant point process via Liggett \& Choquet-Deny

Tightness of the maximum

We focus on Branching Random Walk indexed by $b$-ary tree $\mathbb{T}_{n}$. Recall:

- $\Lambda_{n}:=$ leaves of $\mathbb{T}_{n}$ at depth $n$
- For $x \in \Lambda_{n}$, the family history is the root-to- $x$ path $\left(x_{0}, \ldots, x_{n}\right)$
- Given i.i.d. copies $\left\{Y_{x}: x \in \mathbb{T}_{n}\right\}$ of $Y$, we have

$$
\xi_{n}=\sum_{x \in \Lambda_{n}} \delta_{\varphi_{x}} \text { for } \quad \varphi_{x}:=\sum_{i=1}^{n} Y_{x_{i}}
$$

- Denote $M_{n}:=\max _{x \in \Lambda_{n}} \varphi_{x}$

Note: Additivity/scaling allows us to reduce to the case

$$
\mathbb{E}(Y)=0 \quad \text { and } \quad \mathbb{E}\left(Y^{2}\right)=1
$$



We will also assume that $Y$ is continuously distributed with exponential tails.

## Theorem

Assuming above setting with $b \geqslant 2$ and $Y$ continuously distributed with exponential tails and subject to $\mathbb{E}(Y)=0$ and $\mathbb{E}\left(Y^{2}\right)=1$, let

$$
m_{n}:=\sqrt{2 \log b} n-\frac{3}{2} \frac{1}{\sqrt{2 \log b}} \log n
$$

Then

$$
\left\{M_{n}-m_{n}: n \geqslant 1\right\} \text { is tight }
$$

A natural instinct is to try to prove an upper by way of union bound:

$$
\mathbb{P}\left(M_{n}>m_{n}\right)=\mathbb{P}\left(\exists x \in \Lambda_{n}: \varphi_{x}>m_{n}\right) \leqslant \sum_{x \in \Lambda_{n}} \mathbb{P}\left(\varphi_{x}>m_{n}\right)
$$

Since $\varphi_{x}$ is a random walk with $\operatorname{Var}\left(\varphi_{x}\right)=n$, the Local CLT gives

$$
\mathbb{P}\left(\varphi_{x}>m_{n}\right) \lesssim \frac{c}{\sqrt{n}} \mathrm{e}^{-\frac{1}{2} \frac{1}{n} m_{n}^{2}}
$$

But

$$
\frac{1}{n} m_{n}^{2}=(2 \log b) n-3 \log n+o(1)
$$

and so

$$
\mathbb{P}\left(\varphi_{x}>m_{n}\right) \leqslant \frac{c^{\prime}}{\sqrt{n}} \mathrm{e}^{-\frac{1}{2}(2 \log b) n+\frac{3}{2} \log n}=c^{\prime} n b^{-n}
$$

As $\left|\Lambda_{n}\right|=b^{n}$, this will NOT be small when summed over $x \in \Lambda_{n}!!!$

A better idea:

- Condition on the position of the maximum, say $x$. This $x$ is unique by continuity of the law of $Y$.
- $\mathbb{T}_{n}$ then partitions into the path $\left(x_{0}, \ldots, x_{n}\right)$ and a collection of mutilated subtrees $\mathbb{T}_{0}^{\prime}, \ldots, \mathbb{T}_{n-1}^{\prime}$ with $\mathbb{T}_{k}^{\prime}$ rooted at $x_{k}$.
- Introduce the abbreviations

$$
S_{k}:=\varphi_{x_{k}} \quad \text { and } \quad M_{k}^{\prime}:=\max _{y \in \Lambda_{n} \cap \mathbb{T}_{k}^{\prime}} \varphi_{y}
$$

The uniqueness of the maximum then requires

$$
S_{k}+M_{n-k}^{\prime}<S_{n}, \quad k=0, \ldots, n-1
$$

Note that $S$ is a random walk.


Relying on the symmetries of $\mathbb{T}_{n}$, we have proved:

## Lemma

Let $\left\{S_{k}\right\}_{k=0}^{n}$ be a random walk with step distribution $Y$ and let $M_{0}^{\prime}, \ldots, M_{n-1}^{\prime}$ be independent with above laws. Then for all Borel $A \subseteq \mathbb{R}$,

$$
\mathbb{P}\left(M_{n} \in A\right)=b^{n} \mathbb{P}\left(\left\{S_{n} \in A\right\} \cap \bigcap_{k=0}^{n-1}\left\{S_{k}+M_{n-k}^{\prime}<S_{n}\right\}\right)
$$

Note: We know that

$$
b^{n} \mathbb{P}\left(S_{n}>m_{n}\right)=O(n)
$$

so we need to extract additional $1 / n$ term from the large intersection.

Want to prove that

$$
\mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=0}^{n-1}\left\{S_{k}+M_{n-k}^{\prime}<S_{n}\right\}\right)
$$

is order $1 / n$. On the event in question, we will have $S_{n} \approx m_{n}$. Without the giant intersection, $S_{k}$ wants to be $\approx \frac{k}{n} S_{n} \pm \sqrt{n}$
Assuming $M_{n-k}^{\prime}-m_{n-k}$ tight, the positive fluctuation is out:

$$
S_{k}-\frac{k}{n} S_{n} \gg \log (n-k) \quad \Rightarrow \quad m_{n-k}-M_{n-k}^{\prime} \gg 1
$$

We thus have to show that, on the event in question,

$$
S_{k}-\frac{k}{n} S_{n} \lesssim \log (n-k)
$$

As tails of $M_{n-k}^{\prime}$ needed, we need to proceed inductively.

To demonstrate this, we will show:

## Lemma

For each $c, \alpha \in(0, \infty)$ there exists $C \in(0, \infty)$ such that the following holds for all $n \geqslant 1$ : Suppose that

$$
\mathbb{P}\left(M_{k}>m_{k}+u\right) \leqslant c \mathrm{e}^{-\alpha u}
$$

hold for all $k=1, \ldots, n-1$ and all $u \geqslant 0$. Then

$$
\mathbb{P}\left(M_{n}>m_{n}\right) \geqslant C
$$

Note that

$$
\mathbb{P}\left(M_{k}^{\prime}>u\right) \leqslant \mathbb{P}\left(M_{k}>u\right) \leqslant 2 \mathbb{P}\left(M_{k}^{\prime}>u\right)
$$

so we may assume the same about $M_{k}^{\prime}$.
Note: Since $Y$ has exponential tails, the assumption holds of $n:=1$.

Abbreviate

$$
\theta_{n}(k):=\min \left\{k^{1 / 3},(n-k)^{1 / 3}\right\}
$$

Then

$$
\begin{aligned}
& \mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=0}^{n-1}\left\{S_{k}+M_{n-k}^{\prime}<S_{n}\right\}\right) \\
& \quad \geqslant \mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=0}^{n-1}\left\{S_{k}+M_{n-k}^{\prime}<S_{n}\right\} \cap \bigcap_{k=1}^{n-1}\left\{S_{k} \leqslant \frac{k}{n} S_{n}-2 \theta_{n}(k)\right\}\right)
\end{aligned}
$$

Now $S_{k} \leqslant \frac{k}{n} S_{n}-2 \theta_{n}(k)$ gives $S_{n}-S_{k} \geqslant \frac{k}{n} m_{n}+2 \theta_{n}(k) \geqslant m_{n-k}+\theta_{n}(k)$. So

$$
M_{n-k}^{\prime} \leqslant m_{n-k}+\theta_{n}(k) \quad \Rightarrow \quad S_{k}+M_{n-k}^{\prime}<S_{n}
$$

whenever $k=1, \ldots, n-1$. (The case $k=0$ must be treated separately.)

Using the independence of $S$ and $M_{k}^{\prime} \mathrm{s}$, this bounds the probability by

$$
\mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=1}^{n-1}\left\{S_{k} \leqslant \frac{k}{n} S_{n}-2 \theta_{n}(k)\right\}\right)
$$

times

$$
\mathbb{P}\left(M_{n}^{\prime}<m_{n}\right) \prod_{k=1}^{n-1} \mathbb{P}\left(M_{n-k}^{\prime} \leqslant m_{n-k}+\theta_{n}(k)\right)
$$

from below. Induction assumption (upper bound) tells us that the product is positive uniformly in $n \geqslant 1$. In conjunction with Lemma, this shows

$$
\frac{\mathbb{P}\left(M_{n}>m_{n}\right)}{\mathbb{P}\left(M_{n}<m_{n}\right)} \geqslant c b^{n} \mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=1}^{n-1}\left\{S_{k} \leqslant \frac{k}{n} S_{n}-2 \theta_{n}(k)\right\}\right)
$$

We have reduced the problem to a question about the random walk!

## Lemma (Bolthausen)

Let $X_{1}, \ldots, X_{n}$ be i.i.d. with positive continuous density. Then

$$
\mathbb{P}\left(\bigcap_{k=1}^{n-1}\left\{X_{1}+\cdots+X_{k}<0\right\} \mid X_{1}+\cdots+X_{n}=0\right)=\frac{1}{n}
$$

Proof idea: Interpret this as the even that the cyclic path has maximum at "time" zero. Note that the law of $X_{i}$ does not matter. A more elaborate argument shows

$$
\mathbb{P}\left(\left\{S_{n}>m_{n}\right\} \cap \bigcap_{k=1}^{n-1}\left\{S_{k} \leqslant \frac{k}{n} S_{n}-2 \theta_{n}(k)\right\}\right) \geqslant \frac{c}{n} \mathbb{P}\left(S_{n}>m_{n}\right)
$$

E.g., for Gaussian random walk lower bound by Brownian motion and calculate (Bramson). Since $\mathbb{P}\left(S_{n}>m_{n}\right) \geqslant c^{\prime} b^{-n} n$, we are done.

The proof proceeds by the following steps:

- Bootstrap $\mathbb{P}\left(M_{n}>m_{n}\right)$ to exponential lower tail (percolation argument).
- Use another "ballot theorem" argument to treat the upper tail.

One can actually prove a lower bound $\mathbb{P}\left(M_{n}>m_{n}\right)$ without induction.
For GFF the proof is more complicated due to non-hierarchical structure of covariances. The above representation via path-\&-subtrees representation still exist, called concentric decomposition.

Further details: M.Biskup. Extrema of the two-dimensional Discrete Gaussian Free Field. 2017 PIMS summer school lecture notes. Springer volume (edited by M. Barlow, G. Slade).

## Extrema of GFF

Recall that GFF in $U_{N}$ is a Gaussian process $\left\{\varphi_{x}: x \in U_{N}\right\}$ with

$$
\mathbb{E}\left(\varphi_{x}\right)=0 \quad \text { and } \quad \operatorname{Cov}\left(\varphi_{x}, \varphi_{y}\right)=G^{U_{N}}(x, y) / \operatorname{deg}(y)
$$

Here $U_{N}$ is a "good" discretization of $U$, e.g.,

$$
U_{N}:=\left\{x \in \mathbb{Z}^{2}: \operatorname{dist}_{\infty}\left(x / N, U^{\mathrm{c}}\right)>1 / N\right\}
$$

This is needed so that harmonic functions on $U_{N}$ converge to those in $U$.
Change of labeling: $N$ is the linear scale of $U_{N}$


Tightness of maximum (Bramson \& Zeitouni): Denote

$$
m_{N}:=2 \sqrt{g} \log N-\frac{3}{4} \sqrt{g} \log \log N
$$

where $g:=\frac{1}{2 \pi}$. Then $\left\{\max _{x \in U_{N}} \varphi_{x}-m_{N}\right\}_{N \geqslant 1}$ is tight.
Extreme level set tightness (Ding \& Zeitouni): Denote

$$
\Gamma_{N}(t):=\left\{x \in U_{N}: \varphi_{x} \geqslant m_{N}-t\right\}
$$

Then

$$
\exists c, C \in(0, \infty): \quad \lim _{\lambda \rightarrow \infty} \liminf _{N \rightarrow \infty} \mathbb{P}\left(\mathrm{e}^{c \lambda} \leqslant\left|\Gamma_{N}(\lambda)\right| \leqslant \mathrm{e}^{C \lambda}\right)=1
$$

and $\exists c>0$ s.t.

$$
\lim _{r \rightarrow \infty} \limsup _{N \rightarrow \infty} \mathbb{P}\left(\exists x, y \in \Gamma_{N}(c \log \log r): r \leqslant|x-y| \leqslant N / r\right)=0
$$

Upshot: $\Gamma_{N}(t)$ consists of islands of $O(1)$ vertices separated by distance $O(N)$.

Full process: Measure $\eta_{N}$ on $\bar{U} \times \mathbb{R}$

$$
\eta_{N}:=\sum_{x \in U_{N}} \delta_{x / N} \otimes \delta_{\varphi_{x}-m_{N}}
$$

Problem: Values in one peak strongly correlated
Local maxima only: Set $B_{r}(x):=\left\{z \in \mathbb{Z}^{2}:|z-x| \leqslant r\right\}$ and let

$$
\eta_{N, r}:=\sum_{x \in U_{N}} 1_{\left\{\varphi_{x}=\max _{z \in B_{r}(x)} \varphi_{z}\right\}} \delta_{x / N} \otimes \delta_{\varphi_{x}-m_{N}}
$$

Note: We record both position and value of the field.

## Theorem (Convergence to Cox process)

There exists a random Borel measure $Z^{U}$ on $\bar{U}$ with $0<Z^{U}(\bar{U})<\infty$ a.s. such that for any $r_{N} \rightarrow \infty$ and $N / r_{N} \rightarrow \infty$,

$$
\eta_{N, r_{N}} \xrightarrow[N \rightarrow \infty]{\text { law }} \operatorname{PPP}\left(Z^{U}(\mathrm{~d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{~d} h\right)
$$

where $\alpha:=2 / \sqrt{g}$ for $g:=\frac{1}{2 \pi}$.

Asymptotic law of maximum: Setting $Z:=Z^{U}(\bar{U})$,

$$
\mathbb{P}\left(M_{N} \leqslant m_{N}+t\right) \underset{N \rightarrow \infty}{\longrightarrow} E\left(\mathrm{e}^{-\alpha^{-1} Z \mathrm{e}^{-\alpha t}}\right)
$$

Joint law position/value: $A \subseteq U$ open, $\hat{Z}(A)=Z^{U}(A) / Z^{U}(\bar{U})$

$$
\mathbb{P}\left(M_{N} \leqslant m_{N}+t, N^{-1} \operatorname{argmax}(\varphi) \in A\right) \underset{N \rightarrow \infty}{\longrightarrow} E\left(\hat{Z}(A) \mathrm{e}^{-\alpha^{-1} \mathrm{Ze}^{-\alpha t}}\right)
$$

Recall that $\langle\eta, f\rangle:=\int \eta(\mathrm{d} x, \mathrm{~d} h) f(x, h)$
Thanks to tightness, $\left\{\eta_{N, r_{N}}: N \geqslant 1\right\}$ tight as sequence of Radon measures. This means that we can extract converging subsequences.

## Proposition (Distributional invariance)

Suppose $\eta:=$ a weak-limit point of some $\left\{\eta_{N_{k}, r_{N_{k}}}\right\}$. Then for any $f: U \times \mathbb{R} \rightarrow[0, \infty)$ continuous, compact support,

$$
E\left(\mathrm{e}^{-\langle\eta, f\rangle}\right)=E\left(\mathrm{e}^{-\left\langle\eta, f_{t}\right\rangle}\right), \quad t>0
$$

where

$$
f_{t}(x, h):=-\log E\left(\mathrm{e}^{-f\left(x, h+B_{t}-\frac{\alpha}{2} t\right)}\right)
$$

with $B_{t}:=$ standard Brownian motion.

We may write

$$
\eta=\sum_{i \geqslant 1} \delta_{x_{i}, h_{i}}
$$

Letting $\left\{B_{t}^{(i)}\right\}$ be independent standard Brownian motions, set

$$
\eta_{t}:=\sum_{i \geqslant 1} \delta_{x_{i}, h_{i}+B_{t}^{(i)}-\frac{\alpha}{2} t}
$$

Well defined as $t \mapsto\left|\Gamma_{N}(t)\right|$ grows only exponentially. Then

$$
E\left(\mathrm{e}^{-\left\langle\eta_{t}, f\right\rangle}\right)=E\left(\mathrm{e}^{-\left\langle\eta, f_{t}\right\rangle}\right)
$$

and so Proposition says

$$
\eta_{t} \stackrel{\text { law }}{=} \eta, \quad t>0
$$

Note: $x$-values do not "move"!

Gaussian interpolation: $\varphi^{\prime}, \varphi^{\prime \prime} \stackrel{\text { law }}{=} h$, independent

$$
\varphi \stackrel{\text { law }}{=}\left(1-\frac{t}{g \log N}\right)^{1 / 2} \varphi^{\prime}+\left(\frac{t}{g \log N}\right)^{1 / 2} \varphi^{\prime \prime}
$$

Now let $x$ be such that $\varphi_{x}^{\prime} \geqslant m_{N}-\lambda$. Then

$$
\begin{aligned}
\left(1-\frac{t}{g \log N}\right)^{1 / 2} \varphi_{x}^{\prime} & =\varphi_{x}^{\prime}-\frac{1}{2} \frac{t}{g \log N} \varphi_{x}^{\prime}+o(1) \\
& =\varphi_{x}^{\prime}-\frac{t}{2} \frac{m_{N}}{g \log N}+o(1) \\
& =\varphi_{x}^{\prime}-\frac{\alpha}{2} t+o(1)
\end{aligned}
$$

Concerning $\varphi^{\prime \prime}$, denote

$$
\widetilde{\varphi}_{x}^{\prime \prime}:=\left(\frac{t}{g \log N}\right)^{1 / 2} \varphi_{x}^{\prime \prime}
$$

By properties of $G^{U_{N}}$ we have

$$
\operatorname{Cov}\left(\widetilde{\varphi}_{x}^{\prime \prime}, \widetilde{\varphi}_{y}^{\prime \prime}\right)= \begin{cases}t+o(1), & \text { if }|x-y| \leqslant r \\ o(1), & \text { if }|x-y| \geqslant N / r\end{cases}
$$

So we conclude:

$$
\left\{\widetilde{\varphi}_{x}^{\prime \prime}: x \in U_{N}, \varphi_{x}^{\prime} \geqslant m_{N}-\lambda, \varphi_{x}^{\prime}=\max _{z \in B_{r}(x)} \varphi_{z}^{\prime}\right\}
$$

has asymptotically the law of $\left\{B_{t}^{(i)}\right\}$.

## Dysonization-invariant point processes

Key question: Characterize the point processes that are invariant under independent evolution via

$$
x \mapsto x+B_{t}-\frac{\alpha}{2} t
$$

of its points? (We may think of this as Dysonization.)

Easy to check: $\operatorname{PPP}\left(v(\mathrm{~d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{~d} h\right)$ okay for any $v$ (even random) Any other solutions?

For $t>0$ define Markov kernel

$$
(\mathrm{P} g)(x, h):=E^{0} g\left(x, h+B_{t}-\frac{\alpha}{2} t\right)
$$

Set $g(x, h):=\mathrm{e}^{-f(x, h)}$ for $f \in C_{c}^{+}(U \times \mathbb{R})$. Proposition implies

$$
E\left(\mathrm{e}^{-\langle\eta, f\rangle}\right)=E\left(\mathrm{e}^{-\left\langle\eta, f^{(n)}\right\rangle}\right)
$$

where

$$
f^{(n)}(x, h)=-\log \left(\mathrm{P}^{n} \mathrm{e}^{-f}\right)(x, h)
$$

Kernel $P$ has uniform dispersivity property: For $C \subset \bar{U} \times \mathbb{R}$ compact

$$
\sup _{x, h} \mathrm{P}^{n}((x, h), C) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

and thus $\mathrm{P}^{n} \mathrm{e}^{-f} \rightarrow 1$ uniformly. Expanding the log,

$$
f^{(n)} \sim 1-\mathrm{P}^{n} \mathrm{e}^{-f} \quad \text { as } n \rightarrow \infty
$$

Hence

$$
\begin{equation*}
E\left(\mathrm{e}^{-\langle\eta, f\rangle}\right)=\lim _{n \rightarrow \infty} E\left(\mathrm{e}^{-\left\langle\eta, 1-\mathrm{P}^{n} \mathrm{e}^{-f}\right\rangle}\right) \tag{*}
\end{equation*}
$$

But, as P is Markov,

$$
\left\langle\eta, 1-\mathrm{P}^{n} \mathrm{e}^{-f}\right\rangle=\left\langle\eta \mathrm{P}^{n}, 1-\mathrm{e}^{-f}\right\rangle
$$

(*) shows that $\left\{\eta \mathrm{P}^{n}: n \geqslant 1\right\}$ is tight. Along a subsequence

$$
\eta \mathrm{P}^{n_{k}}(\mathrm{~d} x, \mathrm{~d} h) \underset{k \rightarrow \infty}{\text { law }} M(\mathrm{~d} x, \mathrm{~d} h)
$$

and so

$$
E\left(\mathrm{e}^{-\langle\eta, f\rangle}\right)=E\left(\mathrm{e}^{-\left\langle M, 1-\mathrm{e}^{-f\rangle}\right.}\right)
$$

i.e., $\eta=\operatorname{PPP}(M(\mathrm{~d} x, \mathrm{~d} h))$. Clearly,

$$
M P \stackrel{\text { law }}{=} M
$$

Question: What $M$ can we get?

## Theorem (Liggett 1977)

MP $\stackrel{\text { law }}{=}$ M implies $M P=M$ a.s. when P is a kernel of
(1) an irreducible, recurrent Markov chain
(2) a random walk on a closed abelian group w/o proper closed invariant subset
(2) applies in our case.

Note: $M P=M$ means $M$ invariant for the chain. Choquet-Deny's Theorem says all positive harmonic functions are exponentials. By reversibility this gives invariant measures:

$$
M(\mathrm{~d} x, \mathrm{~d} h)=Z^{U}(\mathrm{~d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{~d} h+\widetilde{Z}^{U}(\mathrm{~d} x) \otimes \mathrm{d} h
$$

Tightness of maximum implies $\widetilde{Z}^{U}=0$ a.s.

We thus know $\eta_{N_{k}, r_{N_{k}}} \xrightarrow{\text { law }} \eta$ implies

$$
\eta=\operatorname{PPP}\left(Z^{U}(\mathrm{~d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{~d} h\right)
$$

for some random $Z^{U}$. But for $Z:=Z^{U}(\bar{U})$, this reads

$$
P\left(M_{N_{k}} \leqslant m_{N_{k}}+t\right) \underset{k \rightarrow \infty}{\longrightarrow} E\left(\mathrm{e}^{-\alpha^{-1} \mathrm{Ze}^{-\alpha t}}\right)
$$

Hence, the law of $Z^{U}(\bar{U})$ is unique if limit law of maximum unique. This we know thanks to Bramson, Ding and Zeitouni 2016.
An enhanced version implies uniqueness of law of $Z^{U}(\mathrm{~d} x)$.

## Theorem (B-Louidor 2020)

The measure $Z^{U}$ satisfies:
(1) $Z^{U}(A)=0$ a.s. for any Borel $A \subset \bar{U}$ with $\operatorname{Leb}(A)=0$
(2) $\operatorname{supp}\left(Z^{U}\right)=\bar{U}$ and $Z^{U}(\partial D)=0$ a.s.
(3) $Z^{U}$ is non-atomic a.s.

Property (3) is only barely true:

## Theorem (B.-Gufler-Louidor 2023?)

$Z^{U}$ is supported on a set of zero Hausdorff dimension a.s.

## Theorem (B-Louidor 2020)

Under a conformal map $f: U \rightarrow \widetilde{U}$, the measure transforms as

$$
Z^{\widetilde{U}} \circ f(\mathrm{~d} x) \stackrel{\text { law }}{=}\left|f^{\prime}(x)\right|^{4} Z^{U}(\mathrm{~d} x)
$$

Recall we were interested in $\eta_{N}:=\sum_{x \in U_{N}} \delta_{x / N} \otimes \delta_{\varphi_{x}-m_{N}}$
A better representation by cluster process on $\bar{U} \times \mathbb{R} \times \mathbb{R}^{\mathbb{Z}^{2}}$ :

$$
\hat{\eta}_{N, r}:=\sum_{x \in U_{N}} 1_{\left\{\varphi_{x}=\max _{z \in B_{r}(x)} \varphi_{z}\right\}} \delta_{x / N} \otimes \delta_{\varphi_{x}-m_{N}} \otimes \delta_{\left\{\varphi_{x}-\varphi_{x+z}: z \in \mathbb{Z}^{2}\right\}}
$$

## Theorem (B-Louidor 2018)

There is a measure $\mu$ on $\mathbb{Z}^{2}$ such that (for $r_{N} \rightarrow \infty, N / r_{N} \rightarrow \infty$ )

$$
\hat{\eta}_{N, r_{N}} \xrightarrow[N \rightarrow \infty]{\text { law }} \operatorname{PPP}\left(Z^{U}(\mathrm{~d} x) \otimes \mathrm{e}^{-\alpha h} \mathrm{~d} h \otimes \mu(\mathrm{~d} \phi)\right)
$$

where $\alpha:=2 / \sqrt{g}$.

Capable of capturing universality w.r.t. short-range perturbations

## THE END

