Extreme order statistics of logarithmically correlated processes: Part I

Marek Biskup (UCLA)

Stochastics Meeting Lunteren

November 13, 2023

Part I:

- Extreme value theory: a primer
- Logarithmically correlated processes, examples
- Extremal behavior randomly shifted Gumbel PPP

Part II:

- Some technical proofs: tightness of maximum
- Invariant point process via Liggett & Choquet-Deny
- Local time of random walks

Extreme value theory: a primer

3

Let $X_1, X_2, ..., X_n$ be i.i.d., $M_n := \max_{i=1,...,n} X_i$.

Q: Is there a limit law for appropriately centered and scaled M_n ? Alternatively, let F = CDF of X. Then

$$\mathbb{P}(M_n \leqslant t) = F(t)^n$$

Q: For what *F* are there $\{a_n\}_{n \ge 1}$ and $\{b_n\}_{n \ge 1}$ such that $x \mapsto F^n(a_n x + b_n)$ converges to a non-constant limit as $n \to \infty$?

Q: What functions *G* are limits of $x \mapsto F(a_n x + b_n)^n$ as $n \to \infty$?

Theorem (Fisher-Tippet 1928, Gnedenko 1943)

The set of non-constant limits of $x \mapsto F(a_n x + b_n)^n$ as $n \to \infty$ for some CDF F and real-valued $\{a_n\}_{n \ge 1}$ and general $\{b_n\}_{n \ge 1}$ takes the form

$$\left\{x\mapsto G_{\gamma}(ax+b)\colon\gamma\in\mathbb{R},\,a\in\mathbb{R\smallsetminus\{0\}},\,b\in\mathbb{R}
ight\}$$

where

$$G_{\gamma}(x) := \begin{cases} \exp\{-(1+\gamma x)^{-\gamma}\} & \text{if } 1+\gamma x > 0, \\ 0 & \text{else,} \end{cases}$$

with the interpretation

$$G_{\gamma}(x) := \exp\{-e^{-x}\}, \quad x \in \mathbb{R},$$

if $\gamma = 0$.

We call γ the **extreme value index**.

• **Fréchet** $\gamma < 0$. After a shift/scaling:

$$G(x) = \exp\{-(-x)^{-\gamma}\}, \quad x < 0 \quad (:= 0 \text{ else})$$

Domain of attraction includes e.g., Cauchy.

• Weibull $\gamma > 0$. After a shift/scaling:

$$G(x) = \exp\{-x^{-\alpha}\}, \quad x > 0 \quad (:= 0 \text{ else})$$

Domain of attraction includes e.g., uniform or lower tail exponential.

• Gumbel $\gamma = 0$: $G(x) = \exp\{-e^{-x}\}, \quad x \in \mathbb{R}$

Domain of attraction includes e.g., Gaussian and upper tail exponential.

Unified form Jenkinson 1955, von Mises 1936.

Let X_1, \ldots, X_n and let

$$\widehat{X}_n \geqslant \widehat{X}_{n-1} \geqslant \cdots \geqslant \widehat{X}_1$$

be its decreasing reordering. We already explored $M_n = \hat{X}_n$.

Q: Given $k \ge 0$, is there a joint limit law of appropriately scaled and centered random vector

$$(\widehat{X}_n,\ldots,\widehat{X}_{n-k+1})$$

as $n \to \infty$?

Theorem (Order statistics)

For F := CDF of X_1 , assume $F(a_n \cdot + b_n)^n \to G_\gamma$ for some $\gamma \in \mathbb{R}$. Then for all $k \ge 0$,

$$\left(\frac{\widehat{X}_n - b_n}{a_n}, \dots, \frac{\widehat{X}_{n-k+1} - b_n}{a_n}\right)$$
$$\xrightarrow{\lim_{n \to \infty}} \left(\frac{Y_1^{\gamma} - 1}{\gamma}, \frac{(Y_1 + Y_2)^{\gamma} - 1}{\gamma}, \dots, \frac{(Y_1 + \dots, Y_k)^{\gamma} - 1}{\gamma}\right)$$

where Y_1, \ldots, Y_k are i.i.d. Exponential(1). (For $\gamma = 0$ replace $u \mapsto \frac{u^{\gamma}-1}{\gamma}$ by $\log(u)$.)

Renyi ($\gamma := 1$): X_1, \ldots, X_n = Exponential(1)

General case: Analysis of inverse CDFs (see book by de Haan and Ferreira).

An equivalent formulation looks at convergence of empirical counts

$$\left(\sum_{i=1}^{n} 1_{\{X_i > a_n t_1 + b_n\}}, \dots, \sum_{i=1}^{n} 1_{\{X_i > a_n t_k + b_n\}}\right)$$

for all possible and $t_1 > t_2 > \cdots > t_k$. These are encoded via the **empirical** (extremal) point process

$$\eta_n := \sum_{i=1}^n \delta_{\frac{\mathbf{X}_i - \mathbf{b}_n}{a_n}}$$

resp., its integrals

$$\langle \eta_n, f \rangle := \int f \, \mathrm{d}\eta_n = \sum_{i=1}^n f \left(\frac{X_i - b_n}{a_n} \right)$$

Key advantage of linearity: multivariate questions handled by

$$(\lambda_1,\ldots,\lambda_k)\cdot\left(\sum_{i=1}^n \mathbb{1}_{\{X_i>a_nt_1+b_n\}},\ldots,\sum_{i=1}^n \mathbb{1}_{\{X_i>a_nt_k+b_n\}}\right)=\left\langle \eta_n,\sum_{j=1}^k \lambda_j \mathbb{1}_{(t_j,\infty)}\right\rangle$$

and the Cramér-Wold device. (Upshot: Law of $\langle \eta_n, f \rangle$ for each *f* suffices.)

Point process limit

Need to show that $\langle \eta_n, f \rangle$ admits a weak limit for a sufficiently large class of *f*'s. Non-negative continuous *f*'s with compact support suffice.

Theorem (Poisson convergence)

Suppose *F* is a CDF such that $F(a_n \cdot +b_n) \rightarrow G$ for some $\{a_n\}_{n \ge 1}$ and $\{b_n\}_{n \ge 1}$ and some non-constant *G*. Given *i.i.d*. *r.v.'s* X_1, X_2, \ldots with CDF *F*, let

$$\eta_n := \sum_{i=1}^n \delta_{\frac{X_i - b_n}{a_n}}$$

Then for all $f : \mathbb{R} \to [0, \infty)$ *continuous with* supp(f) *bounded from below,*

$$\mathbb{E}\left(\mathrm{e}^{-\langle \eta_n,f\rangle}\right) \xrightarrow[n\to\infty]{} \exp\left\{-\int (1-\mathrm{e}^{-f})\,\mathrm{d}(\log G)\right\}$$

Suppose supp $(f) \subseteq [t, \infty)$. By i.i.d. property of X_1, \ldots, X_n ,

$$\mathbb{E}\left(\mathrm{e}^{-\langle\eta_n,f\rangle}\right) = \mathbb{E}\prod_{i=1}^{n} \mathrm{e}^{-f\left((X_i-b_n)/a_n\right)} = \left[\mathbb{E}\left(\mathrm{e}^{-f\left((X_1-b_n)/a_n\right)}\right)\right]^n$$
$$= \left[1 - \mathbb{E}\left(\underbrace{1 - \mathrm{e}^{-f\left((X_1-b_n)/a_n\right)}}_{= 0 \text{ unless } X_1 \ge a_n t + b_n}\right)\right)^n$$
$$= \exp\left\{-\left(1 + o(1)\right) n\mathbb{E}\left(1 - \mathrm{e}^{-f\left((X_1-b_n)/a_n\right)}\right)\right\}$$

By a similar argument,

 $\mathbb{P}(X_1 \leq a_n t + b_n)^n \xrightarrow[n \to \infty]{} G(t) \quad \Leftrightarrow \quad n \mathbb{P}(X_1 > a_n t + b_n) \xrightarrow[n \to \infty]{} -\log G(t)$

Using continuity of *f*, hence we get

$$n\mathbb{E}\left(1-\mathrm{e}^{-f((X_1-b_n)/a_n)}\right) \xrightarrow[n\to\infty]{} \int (1-\mathrm{e}^{-f})\,\mathrm{d}(\log G) \quad \Box$$

Consider independent random variables $\{N_j\}_{j \ge 1}$ and $\{Y_{j,i}\}_{j,i \ge 1}$ with

- $N_j = \text{Poisson}(\lambda_j)$
- $Y_{j,i}$ having distribution μ_j

A naturally associated point process $\xi := \sum_{j \ge 1} \sum_{i=1}^{j} \delta_{Y_{j,i}}$

Then for $f \colon \mathbb{R} \to [0,\infty)$ continuous with compact support,

$$\mathbb{E}\left(\mathrm{e}^{-\langle\xi,f\rangle}\right) = \mathbb{E}\exp\left\{-\sum_{j\ge1}\sum_{i=1}^{N_j} f(Y_{j,i})\right\} = \prod_{j\ge1}\sum_{n\ge0}\frac{\lambda_j^n}{n!}\mathrm{e}^{-\lambda_j}\left[\mathbb{E}(\mathrm{e}^{-f(Y_{j,1})}\right]^n\right]$$
$$= \prod_{j\ge1}\exp\left\{-\lambda_j\int(1-\mathrm{e}^{-f})\mathrm{d}\mu_j\right\} = \exp\left\{-\int(1-\mathrm{e}^{-f})\mathrm{d}\mu\right\}$$

provided $\mu := \sum_{j \ge 1} \lambda_j \mu_j$ is a Radon measure. We call

- *µ* the **intensity measure**
- ζ a **Poisson point process** with intensity measure μ , or **PPP**(μ) for short.

Since integrals w.r.t. functions in $C_c^+(\mathbb{R})$ determine the random measure, the above Theorem reads

$$\eta_n \xrightarrow[n \to \infty]{\text{law}} \operatorname{PPP}(\operatorname{d}(\log G))$$

We have thus shown that, for many random variables *X*:

- A properly centered and scaled maximum $M_n := \max_{i \le n} X_i$ of *n* i.i.d. copies X_1, \ldots, X_n of *X* tends in law to a non-degenerate random variable with CDF *G*.
- If this happens, the empirical extremal point process Σⁿ_{i=1} δ_{Xi} tends in law to Poisson point process with intensity measure d(log G).

Q: How much does this generalize to dependent random variables?

14

Logarithmically correlated processes

We need:

- A metric space (\mathcal{X}, ϱ) of finite diam $(\mathcal{X}) := \sup_{x,y \in \mathcal{X}} \varrho(x, y)$
- A **random field** on \mathscr{X} ; i.e., a random function $\varphi \colon \mathscr{X} \to \mathbb{R}$

Definition

We say that φ is **logarithmically correlated** if (assuming $\varphi_x \in L^2$)

$$\operatorname{Cov}(\varphi_x, \varphi_y) = O(1) + g \log\left(\frac{\operatorname{diam}(\mathscr{X})}{1 + \varrho(x, y)}\right)$$

where *g* := constant and *O*(1) is bounded locally uniformly on $\mathscr{X} \times \mathscr{X}$

Key features:

- Non-trivial correlations up to the system size
- Differences are tight, $\mathbb{E}((\varphi_x \varphi_y)^2) = O(1) + g \log(1 + \varrho(x, y))$
- If ρ is norm-metric, then φ is approximately scale invariant

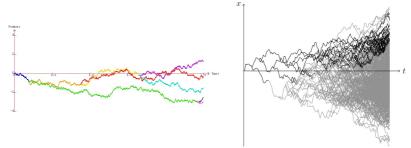
Examples to be discussed:

- Branching Brownian Motion
- Branching Random Walk
- Two-dimensional Gaussian Free Field
- Local time of two-dimensional simple random walk (maybe?)

Examples to be ignored:

- Other Gaussian processes (e.g., the membrane model)
- Non-Gaussian measures ("Integer-valued" Gaussian, $P(\phi)$ -field theory)
- Characteristic polynomial of a random matrix ensemble
- Riemann's zeta function on the critical line

The BBM is a process that "moves" as the standard Brownian motion while spawning a copy of itself at exponential rate 1.



Figs: courtesy of M. Roberts and M. Pain

Branching Random Walk

Given a law on (locally finite) point process η , the **BRW with step** η is a sequence $\{\xi_n\}_{n \ge 0}$ of random point measures on \mathbb{R} evolving as follows: At each time, we replace each existing point by an independent copy of η .

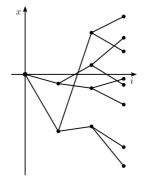


Fig: courtesy Wikipedia

Typically $\xi_0 := \delta_x$ (and typically x := 0).

Definition

A **BRW** with step η is a sequence $\{\xi_n\}_{n\geq 0}$ of random \mathbb{N} -valued Radon measures on \mathbb{R} such that for each $n \geq 0$ and each $f \in C_c^+(\mathbb{R})$,

$$\mathbb{E}\left(\mathrm{e}^{-\langle \xi_{n+1},f\rangle} \,\middle|\, \mathcal{F}_n\right) = \mathrm{e}^{-\langle \xi_{n},\tilde{f}\rangle} \quad \text{where} \quad \mathrm{e}^{-\tilde{f}(x)} := \mathbb{E}\left(\mathrm{e}^{-\langle \eta,f(x+\cdot)\rangle}\right)$$

Here $\mathcal{F}_n := \sigma(\xi_0,\ldots,\xi_n).$

Explanation: Write $\{x_i\}_{i \ge 1}$ for the points of ξ_n . Then ξ_{n+1} has points $\{x_i + y_j^{(i)} : i, j \ge 1\}$ where $\{y_j^{(i)}\}_{j \ge 1}$ enumerates the points of $\eta^{(i)}$ for $\{\eta^{(i)}\}_{i \ge 1}$ i.i.d. copies of η . A computation shows

$$\begin{split} \mathbb{E} \left(\mathrm{e}^{-\langle \xi_{n+1}, f \rangle} \, \big| \, \mathcal{F}_n \right) &= \mathbb{E} \left(\prod_{i \ge 1} \prod_{j \ge 1} \mathrm{e}^{-f(x_i + y_j^{(i)})} \, \Big| \, \mathcal{F}_n \right) \\ &= \prod_{i \ge 1} \mathbb{E} \big(\mathrm{e}^{-\langle \eta, f(x_i + \cdot) \rangle} \big) = \prod_{i \ge 1} \mathrm{e}^{-\tilde{f}(x_i)} = \mathrm{e}^{-\langle \xi_n, \tilde{f} \rangle} \end{split}$$

(Note: The marginal laws of $\langle \xi_{n+1}, f \rangle$ for f as above determine the law of ξ_{n+1} .)

Suppose for simplicity:

- branching is always into *b* "children"
- positions are chosen independently

i.e., $\eta = \sum_{i=1}^{b} \delta_{Y_i}$ where Y_1, \ldots, Y_b are i.i.d.

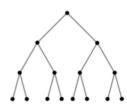
The total progeny at "time" *n* is indexed by vertices of *b*-ary rooted tree \mathbb{T}_n of depth *n*. Write $\Lambda_n :=$ leaves at depth *n*.

A **family history** of $x \in \Lambda_n$ is the sequence $(x_0, x_1, ..., x_n)$ of neighbors in \mathbb{T}_n where $x_0 :=$ root and $x_n = x$.

A natural **"scale" invariant metric** on Λ_n is

$$\varrho(x,y) := b^{1-\min\{i=1,\dots,n:\ x_i\neq y_i\}}, \quad x \neq$$

Corresponds, roughly, to natural embedding of Λ_n to [0, 1].



For i.i.d. copies
$$\{Y_x : x \in \mathbb{T}_n\}$$
 of Y , we then have
 $\xi_n = \sum_{x \in \Lambda_n} \delta_{\varphi_x}$ for $\varphi_x := \sum_{i=1}^n Y_{x_i}$
and so $\mathbb{E}(\varphi_x) = n\mathbb{E}(Y)$ and
 $\operatorname{Cov}(\varphi_x, \varphi_y) = \operatorname{Var}(Y) \log_b \left(\frac{1}{\rho(x, y)}\right), \quad x \neq y$

In short, the BRW is log-correlated.

Gaussian Free Field

Let $\mathcal{G} = (V, E)$ be connected, unoriented, locally-finite graph. Write deg(*x*) for degree of *x* in \mathcal{G} . The **simple random walk** on \mathcal{G} is a Markov chain with state space *V* and transition probability

$$\mathsf{P}(x,y) := \frac{1}{\deg(x)} \mathbb{1}_{(x,y) \in E}$$

Notations:

- $X = {X_k}_{k \ge 0}$ is a sample path, P^x is the law of X with $P^x(X_0 = x) = 1$ and E^x is associated expectation
- Given a finite set $U \subsetneq V$, the **Green function in** *U* is

$$G^{U}(x,y) := E^{x} \left(\sum_{k=0}^{\tau_{U}-1} \mathbb{1}_{\{X_{k}=y\}} \right)$$

where $\tau_U := \inf\{k \ge 0 \colon X_k \notin U\}$

Definition (GFF)

The **Gaussian Free Field** on *U* is a Gaussian process $\{\varphi_x : x \in U\}$ with

$$\mathbb{E}(\varphi_x) = 0$$
 and $\operatorname{Cov}(\varphi_x, \varphi_y) = \frac{1}{\operatorname{deg}(y)} G^U(x, y), \quad x, y \in U$

GFF on \mathbb{Z}^d

For $\mathcal{G} := \mathbb{Z}^d$ and $U_N := \{x \in \mathbb{Z}^d : x/N \in U\}$ for $U \subseteq \mathbb{R}^d$ a nice open set,

$$G^{U_N}(x,y) = \begin{cases} c_1 |x-y| + O(1), & \text{if } d = 1\\ c_d |x-y|^{2-d} + o(1), & \text{if } d \ge 3 \text{ and } |x-y| \gg 1\\ \log\left(\frac{N}{1+|x-y|}\right) + O(1), & \text{if } d = 2 \end{cases}$$

provided *x*, *y* are "deep" inside U_N . (In $d \ge 3$ we can take $U_N = \mathbb{Z}^d$.)

Upshot: GFF on \mathbb{Z}^2 is logarithmically correlated

It gets event better ...

GFF on \mathbb{Z}^2 — precise asymptotic & conformal invariance

In
$$d = 2$$
 and with $U_N := \{x \in \mathbb{Z}^d : \operatorname{dist}_{\infty}(x/N, \mathbb{R}^d \setminus U) > 1/N\}$ we even get

$$G^{U_N}(x,x) = \frac{1}{2\pi} \log N + \frac{1}{2\pi} \log r^U(x/N) + c_0 + o(1)$$

where $r^{U}(x) :=$ **conformal radius** of *U* from *x* and c_0 is a known constant. For off-diagonal values we get

$$G^{U_N}(x,y) = \hat{G}^U(x/N,y/N) + o(1)$$

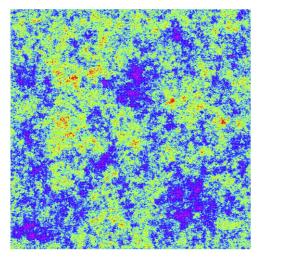
where

- \hat{G}^{U} is a **continuum Green function** in U solving $\Delta \hat{G}^{U}(x, \cdot) = \delta_{x}(\cdot)$
- $o(1) \to 0$ as $N \to \infty$ uniformly in $|x y| \ge \epsilon N$, for each $\epsilon > 0$

Upshot: GFF is asymptotically (as $N \to \infty$) conformally invariant Key issue: Pointwise limit **does not exist**! (Note that $Var(\varphi_x) \to \infty$.)

2D Gaussian Free Field — a conformally invariant random fractal

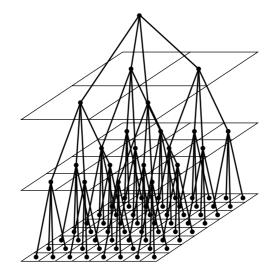
 $U_N := (0, N)^d \cap \mathbb{Z}^d$ with N := 500



25

Level lines described by SLE₄-process: Schramm, Sheffield, Miller, etc

GFF is BRW in disguise

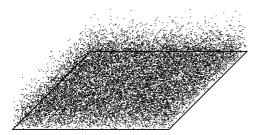


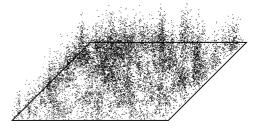
Extremal behavior of log-correlated processes

Key observations (based on above examples):

- Local correlations matter significantly nearby values remain close so no "isolated" local maxima possible.
- Global correlation matter as well albeit by O(1) effects

The PPP limit as for i.i.d. cannot hold but something similar maybe ...





i.i.d. normals

GFF

Let $\{\varphi_x : x \in \Lambda_n\}$ be one of the processes:

- Branching Brownian Motion at time *n*
- Branching Random Walk at time *n*
- Gaussian Free Field in a box of side-length 2ⁿ

For the BRW, we assume a.s. survival and certain moment conditions.

Denote

$$M_n := \max_{x \in \Lambda_n} \varphi_x$$

Then we have ...

Theorem (Randomly-shifted decorated PPP limit)

For each of the above processes there exist constants $c_1, c_2 \in (0, \infty)$ such that, setting $m_n := c_1 n - c_2 \log n$, the family $\{M_n - m_n\}_{n \ge 1}$ is tight. Moreover, there exists

- an a.s.-positive random variable Z,
- a constant $\alpha > 0$, and
- a law \mathcal{D} on locally finite upper bounded point processes on \mathbb{R} ,

such that for all $f \in C_c^+(\mathbb{R})$,

$$\mathbb{E}\left(\exp\left\{-\sum_{x\in\Lambda_{n}}f(\varphi_{x}-m_{n})\right\}\right)$$
$$\xrightarrow[n\to\infty]{} E\left(\exp\left\{-Z\int e^{-\alpha h}dh\otimes\mathcal{D}(d\chi)\left(1-e^{-\langle\chi,f(h+\cdot)\rangle}\right)\right\}\right)$$

where expectation on the right is w.r.t. Z.

Credits go to many people, to be given later.

Sample independent objects:

$$\mathbb{E}(\mathrm{e}^{-\sum_{x\in\Lambda_{n}}f(\varphi_{x}-m_{n})}) \xrightarrow[n\to\infty]{} E(\mathrm{e}^{-Z}\mathrm{e}^{-\alpha h}\mathrm{d}h\otimes\mathcal{D}(\mathrm{d}\chi)(1-\mathrm{e}^{-\langle\chi,f(h+\cdot)\rangle}))$$

- random variable *Z*,
- $\{h_i: i \ge 1\} := \text{points of } PPP(e^{-\alpha h}dh)$
- $\{d_j^{(i)}: j \ge 1\}_{i \ge 1} := \text{i.i.d. samples from } \mathcal{D}, \text{ called decorations}$

Theorem then says

The quantity α^{-1}

$$\sum_{x \in \Lambda_n} \delta_{\varphi_x - m_n} \xrightarrow[n \to \infty]{\text{law}} \sum_{i,j \ge 1} \delta_{\alpha^{-1} \log Z + h_i + d_j^{(i)}}$$
og Z is a random shift.

Process on the right called:

Randomly-shifted decorated Poisson point process

31

1

As a consequence of above Theorem, we get:

Corollary

Let M_n be the maximum of any of the three processes above. Then there exists a constant $c_* \in (0, \infty)$ such that

$$\mathbb{P}(M_n \leq m_n + u) \xrightarrow[n \to \infty]{} \mathbb{E}(\mathrm{e}^{-c_\star Z \mathrm{e}^{-\alpha u}}), \quad u \in \mathbb{R}$$

In short, the centered maximum tends to a randomly shifted Gumbel law.

Proof: Approximate $\mathbb{P}(M_n \leq m_n + u)$ by $\mathbb{E}(e^{-\langle \eta_n f \rangle})$ for $f := \lambda \mathbb{1}_{(u,\infty)}$ and take $n \to \infty$ and $\lambda \to \infty$ to represent the limit as

$$E\left(\exp\left\{-Z\int \mathrm{e}^{-\alpha h}\mathrm{d}h\otimes\mathcal{D}(\mathrm{d}\chi)\mathbf{1}_{\{\langle\chi,\mathbf{1}_{(u-h,\infty)}\rangle=0\}}\right\}\right)$$

As χ is upper bounded, the integral is computed to be $c_*e^{-\alpha u}$.

Credits

Branching Brownian Motion:

- McKean (1975), Bramson (1978, 1983), Lalley and Selke (1987)
- Arguin, Bovier, Kistler (2011, 2012) Aïdekon, Berestycki, Brunnet, Shi (2013)

Branching Random Walk:

- Kingman (1975), Biggins (1976), Biggins and Kyprianou (2005)
- Addario-Berry, Reed (2009), Aïdekon, Shi (2010)
- Aïdekon (2013), Madule (2017), Maillard, Mallein (2021)

Gaussian Free Field:

- Bothausen, Deuschel, Zeitouni (2011), Bramson, Zeitouni (2012)
- Bramson, Ding, Zeitouni (2016)
- Biskup and Louidor (2016, 2018, 2020)

Ideas & proofs: 2nd lecture (tomorrow 9AM)