# Eigenvalue order statistics for random Schrödinger operators 

Marek Biskup

## (UCLA)

Joint work with<br>Wolfgang König (WIAS \& TU Berlin)

## Random Schrödinger operator

Transport theory in disordered quantum systems
(Anderson tight-binding) Hamiltonian on lattice $\left(x \in \mathbb{Z}^{d}\right)$ :

$$
H f(x):=\sum_{y:|y-x|=1}[f(y)-f(x)]+\xi(x) f(x)
$$

Objects:

$$
\begin{aligned}
& f(x)=\text { wave function at site } x \\
& \xi(x)=\text { potential energy at } x
\end{aligned}
$$

Disordered system: $\xi(x)$ random, i.i.d.

NOTE: Different sign convention from physics.

## Time evolution

"To i or not to i"

## Quantum evolution:

$$
f(t, x)=\left\langle\delta_{x}, \mathrm{e}^{\mathrm{i} t H} f(0, \cdot)\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}
$$

$f(t, x)=$ wave function of an electron in a disordered metal

Diffusive dynamics:

$$
f(t, x)=\left\langle\delta_{x}, \mathrm{e}^{t H} f(0, \cdot)\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}
$$

$f(t, x)=$ density profile in landscape of sources \& sinks

## Quantum evolution

Transport theory of metals 101:

- Paul Drude (1900): mean-free path of an electron
- Felix Bloch (1928): ideal crystals are perfect conductors
- Conclusion: resistivity must come from crystal imperfections
- Phil Anderson (1958): strong disorder $\longrightarrow$ transport stops



## Anderson localization

Nobel prize for physics 1977: Anderson, van Vleck, Mott
A. Lagendijk, B. van Tiggelen, D.S. Wiersma (2009): Fifty years of Anderson localization, Physics Today 62, no. 8

- Conductor $\Leftrightarrow$ continuous spectrum a.k.a. metal or extended state
- Insulator $\Leftrightarrow$ discrete spectrum a.k.a. localized state
- Mott transition = line in-between also called mobility edge


Rigorous work: Fröhlich \& Spencer (1983), Dreifus \& Klein (1989), Aizenman \& Molchanov (1993), ...
Delocalization on Cayley tree:
Abou-Chacra \& Anderson \& Thouless (1973), Klein (1998), Aizenman \& Sims \& Warzel (2006)

## Diffusive dynamics

## Back to probability

Parabolic Anderson model (PAM):

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x)=\Delta u(t, x)+\xi(x) u(t, x) \\
u(0, x)=\delta_{0}(x)
\end{array}\right.
$$

## Applications:

- chemical kinetics (Zel'dovich et al)
- hydrodynamics (Carmona and Molchanov)
- magnetic phenomena (Molchanov and Ruzmaikin)

In probability:

- population dynamics w/ inhomogeneous rates
- Brownian motion among obstacles
- interacting random polymers


## Heuristic picture

Feynman-Kac + spectral analysis

Probabilistic solution: $\left(X_{s}\right)_{s \geq 0}$ continuous-time SRW

$$
u(t, x)=E^{x}\left(\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s\right\} 1_{\left\{X_{t}=x\right\}}\right)
$$

$\Rightarrow$ path wants to be in regions of large potential
Functional-analytic solution: $\left\{\lambda^{(k)}(\xi)\right\}_{k \geq 1}$ ordered eigenvalues

$$
u(t, x)=\sum_{k} \mathrm{e}^{t \lambda^{(k)}(\xi)} v_{k}(x)^{\star} v_{k}(0)
$$

$\Rightarrow$ nearly maximal eigenvalues are those most desired
Trade-off: Benefit of nice region against cost of getting there

## Literature

Gärtner \& Molchanov (1990, 1998)
Carmona \& Molchanov (1994)
Gärtner \& den Hollander (1999)
Donsker \& Varadhan, Bolthausen, ..., Fukushima
Sznitman (1998), Antal (1995), Povel, ...
Gärtner \& König \& Molchanov (2000)
B. \& König (2001), van der Hofstad \& König \& Mörters (2006)

## Localization in PAM

From Feynman-Kac to eigenvalues

Technically falls in the realm of large deviation analysis
Key issue: scale at which dominant "islands" distinguished
For this we need:

- Eigenvalue scaling limit
- Eigenvector localization
- location of "localization center"
- decay rate of eigenfunction from the "center"


## Heavy tailed case

van der Hofstad \& Mörters \& Sidorova (2008) König \& Lacoin \& Mörters \& Sidorova (2009)
Astrauskas $(2008,2009)$
Answers are "easy" $\rightarrow$ extremes of $\xi$
NOTE: Gaussian or even exponential tails are heavy!

## Doubly exponential tails

Gärtner \& Molchanov (1998), Gärtner \& den Hollander (1999)

$$
\operatorname{Prob}(\xi(0)>r)=\exp \left\{-\mathrm{e}^{r / \rho}\right\}
$$

Definition: We say that $\mathbb{P}$ is in doubly-exponential class if $\xi(0)$ is continuously distributed and the limit

$$
\frac{1}{\rho}:=\lim _{r \rightarrow \infty} \frac{\log \log \left[\mathbb{P}(\xi(0)>r)^{-1}\right]}{r}
$$

exists in $(0, \infty)$.
One out of 4 universality classes

## Results

Notation and setup

Background box: $B_{L}:=[-L / 2, L / 2]^{d} \cap \mathbb{Z}^{d}$
Open set $D \subset[-1 / 2,1 / 2]^{d} \longrightarrow$ scaled up lattice version

$$
D_{L}:=\left\{x \in \mathbb{Z}^{d}: x_{L} \in D\right\}
$$

Ordered eigenvalues of $H$ in $D_{L}$ :

$$
\lambda_{D_{L}}^{(1)}(\xi) \geq \lambda_{D_{L}}^{(2)}(\xi) \geq \ldots
$$

Eigenfunctions:

$$
v_{D_{L, \xi}}^{(k)}(x), \quad k=1,2, \ldots
$$

Continuous distribution: Well-defined almost surely

## Theorem (Eigenvalue order statistics)

Suppose $\mathbb{P}$ is in doubly-exponential class with parameter $\rho$. Then for each $L \geq 1$ there are $X_{1}, X_{2}, \cdots \in B_{L}(0)$ and $\left(a_{L}\right)$ with

$$
a_{L}=\max _{x \in B_{L}} \xi(x)-\chi+o(1), \quad L \rightarrow \infty,
$$

such that: For any open $D \subset[-1 / 2,1 / 2]^{d}$ and any $R_{L} \rightarrow \infty$,

$$
\sum_{z:\left|z-X_{k}\right| \leq R_{L}}\left|v_{D_{L, \xi}}^{(k)}(z)\right|^{2} \underset{L \rightarrow \infty}{\longrightarrow} 1
$$

in probability, for each $k \geq 1$. Moreover, the law of

$$
\begin{equation*}
\left\{\left(\frac{X_{k}}{L},\left(\lambda_{D_{L}}^{(k)}(\xi)-a_{L}\right) \log L\right): X_{k} \in D_{L}\right\}_{k \geq 1} \tag{1}
\end{equation*}
$$

converges weakly to the ranking, by the value of the last coordinate, of a Poisson point process on $D \times \mathbb{R}$ with intensity measure $\mathrm{d} x \otimes \kappa \mathrm{e}^{-\kappa \lambda} \mathrm{d} \lambda$ where $\kappa:=d / \rho$.

## Compare with bulk of spectrum

Localization regime:
Homogeneous Poisson point process
Killip \& Nakano (2007)
Delocalization regime: (random matrices)
Dyson's Brownian motions, etc
Edge: Tracy-Widom law

## Ideas from proof

Scales

Note: For purely doubly exponential case:

$$
\max _{x \in B_{L}} \xi(x)=\rho \log \log L^{d}+o(1), \quad L \rightarrow \infty .
$$

Gärtner and Molchanov:

$$
\lambda_{D}^{(1)}(\xi)=\rho \log \log L^{d}-\chi+o(1)
$$

where

$$
\chi:=-\sup \left\{\lambda_{\mathbb{Z}^{d}}^{(1)}(\varphi): \sum_{z \in \mathbb{Z}^{d}} \mathrm{e}^{\varphi(z) / \rho} \leq 1\right\}
$$

## Extreme islands

Fix $D \subset \mathbb{Z}^{d}$ and set

$$
U:=\bigcup_{\substack{z \in D \\ \xi(z) \geq \lambda_{D}^{(1)}(\xi)-2 A}} B_{R}(z) \cap D
$$

## Proposition

For all $k=1,2, \ldots,|U|$ such that

$$
\begin{equation*}
\lambda_{D}^{(k)}(\xi) \geq \lambda_{D}^{(1)}(\xi)-\frac{A}{2} \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|\lambda_{D}^{(k)}(\xi)-\lambda_{U}^{(k)}(\xi)\right| \leq 2 d\left(1+\frac{A}{2 d}\right)^{1-2 R} \tag{3}
\end{equation*}
$$

## Martingale approximation argument

Lemma
Let $(\lambda, v)$ be eigenvalue pair in $D \subset \mathbb{Z}^{d}$ and $Y=\left(Y_{0}, Y_{1}, \ldots\right)$ a path of a (discrete-time) SRW. Set

$$
\begin{equation*}
\tau:=\inf \left\{k \geq 0: \xi\left(Y_{k}\right) \geq \lambda \text { or } Y_{k} \notin D\right\} \tag{4}
\end{equation*}
$$

Then $M_{\tau \wedge n}$, where $M_{0}=v\left(Y_{0}\right)$ and

$$
\begin{equation*}
M_{n}:=v\left(Y_{n}\right) \prod_{k=0}^{n-1} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)}, \quad n \geq 1 \tag{5}
\end{equation*}
$$

is a martingale for the filtration $\mathscr{F}_{n}=\sigma\left(Y_{0}, \ldots, Y_{n}\right)$.

## Proof of Lemma

## Key calculation

On $\{\tau>n\}$,

$$
E\left(v\left(Y_{n+1}\right) \mid Y_{1}, \ldots, Y_{n}\right)=v\left(Y_{n}\right)+\frac{1}{2 d}(\Delta v)\left(Y_{n}\right)
$$

$\operatorname{But}(\Delta+\xi) v=\lambda v$ and so
$E\left(M_{n+1} \mid Y_{1}, \ldots, Y_{n}\right)$

$$
\begin{aligned}
& =\left[v\left(Y_{n}\right)+\frac{1}{2 d}(\Delta v)\left(Y_{n}\right)\right] \prod_{k=0}^{n} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)} \\
& =v\left(Y_{n}\right)\left[1+\frac{1}{2 d}\left(\lambda-\xi\left(Y_{n}\right)\right)\right] \prod_{k=0}^{n} \frac{2 d}{2 d+\lambda-\xi\left(Y_{k}\right)}=M_{n}
\end{aligned}
$$

Hence, $M_{\tau \wedge n}$ is a martingale.

## Mass outside islands

Corollary

$$
\sum_{x \notin U}|v(x)|^{2} \leq\left(1+\frac{A}{2 d}\right)^{-2 R}\|v\|_{2}^{2}
$$

Proof.
(Sketch)

$$
|v(x)|^{2} \leq E^{x}\left|M_{\tau \wedge n}\right|^{2}
$$

But $\left|M_{\tau \wedge R}\right| \leq\left(1+\frac{A}{2 d}\right)^{-R}\left|v\left(X_{\tau \wedge R}\right)\right|$ pointwise.

## Deforming the landscape

## Proof of Proposition

Set $\xi_{s}(x):=\xi(x)-s 1_{\{x \notin U\}}$. Then

$$
\lambda_{D}^{(k)}\left(\xi_{\infty}\right)=\lambda_{U}^{(k)}(\xi), \quad k=1, \ldots,|U|
$$

Now, for a.e. s,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \lambda_{D}^{(k)}\left(\xi_{s}\right)=\sum_{x \notin U}\left|v_{D, \xi_{s}}^{(k)}(x)\right|^{2}
$$

From Corollary:

$$
\text { R.H.S. } \leq\left(1+\frac{A+s}{2 d}\right)^{-2 R}\|v\|_{2}^{2}
$$

Integrate over $s$ from 0 to $\infty$ to get the result.

## Further items

Above ensures eigenvalues can be coupled to i.i.d. RVs
$\Rightarrow$ order statistics can only be one of three max-order classes
$\Rightarrow$ need to find $a_{L}$ and $b_{L}$ such that, roughly,

$$
\mathbb{P}\left(\lambda_{B_{R}}^{(1)} \geq a_{L}+s b_{L}\right)=L^{-d} \mathrm{e}^{-s}(1+o(1))
$$

Here $s=0$ is definition of $a_{L}$. For $s \neq 0$, this is a Lemma.
Proof of this Lemma is the only point where double-exp needed
Eigenvector localization: Whenever $\left|\lambda^{(k)}-\lambda^{(k \pm 1)}\right|>\epsilon_{R}$

$$
\left|v^{(k)}(z)\right| \leq c_{1} \mathrm{e}^{-c_{2} a_{L}\left|z-X_{k}\right|}
$$

Gap ensured by scaling limit (replaces Minami estimate).

## Remarks

Spectral control so strong that we can avoid Feynman-Kac
Preliminary calculations suggest that

## Max-order class is always Gumbel

## THE END

