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Random Schrodinger operator

Transport theory in disordered quantum systems

(Anderson tight-binding) Hamiltonian on lattice (x € Z9):

HE(x) = ) [fy) = F(x)] + Z(x)F(x)

yily—x|=1
Objects:

f(x) = wave function at site x
¢(x) = potential energy at x

Disordered system: ¢(x) random, i.i.d.

NOTE: Different sign convention from physics.



Time evolution

“To i or not to i”

Quantum evolution:
f(t,x) = <5X,eitHf(0,-)>gz(Zd)

f(t,x) = wave function of an electron in a disordered metal

Diffusive dynamics:
f(t,X) = <(5X, etHf(O, -)>g2(Zd)

f(t,x) = density profile in landscape of sources & sinks
y



Quantum evolution

Transport theory of metals 101:

» Paul Drude (1900): mean-free path of an electron
> Felix Bloch (1928): ideal crystals are perfect conductors
» Conclusion: resistivity must come from crystal imperfections

» Phil Anderson (1958): strong disorder —> transport stops
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Anderson localization
Nobel prize for physics 1977: Anderson, van Vleck, Mott

A. Lagendijk, B. van Tiggelen, D.S. Wiersma (2009): Fifty years of
Anderson localization, Physics Today 62, no. 8

disorder
strength

» Conductor < continuous spectrum Anderson Insulator
a.k.a. metal or extended state \ : ,
» Insulator < discrete spectrum A /
a.k.a. localized state \ Metal /
» Mott transition = line in-between ¢4 \\ /// Gap

\

also called mobility edge

energy

Rigorous work: Frohlich & Spencer (1983), Dreifus & Klein (1989),
Aizenman & Molchanov (1993), ...
Delocalization on Cayley tree:
Abou-Chacra & Anderson & Thouless (1973), Klein (1998),
Aizenman & Sims & Warzel (2006)



Diffusive dynamics
Back to probability

Parabolic Anderson model (PAM):

—u(t,x) = Au(t,x) + &(x)u(t,x)

u(0, x) = do(x).

Applications:

» chemical kinetics (Zel'dovich et al)

» hydrodynamics (Carmona and Molchanov)

» magnetic phenomena (Molchanov and Ruzmaikin)
In probability:

» population dynamics w/ inhomogeneous rates

» Brownian motion among obstacles

> interacting random polymers



Heuristic picture

Feynman-Kac + spectral analysis

Probabilistic solution: (X;)s>o continuous-time SRW

u(t,x) = EX <exp{/otC(Xs)d5} 1{xt—x}>

= path wants to be in regions of large potential

Functional-analytic solution: {A"(&)},>1 ordered eigenvalues
Ze” Vk Vk(O)

= nearly maximal eigenvalues are those most desired

Trade-off: Benefit of nice region against cost of getting there
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Localization in PAM

From Feynman-Kac to eigenvalues

Technically falls in the realm of large deviation analysis
Key issue: scale at which dominant “islands” distinguished

For this we need:
» Eigenvalue scaling limit

» Eigenvector localization

> location of “localization center”
> decay rate of eigenfunction from the “center”



Heavy tailed case

van der Hofstad & Morters & Sidorova (2008)
Konig & Lacoin & Morters & Sidorova (2009)
Astrauskas (2008, 2009)

Answers are “easy” —> extremes of ¢

NOTE: Gaussian or even exponential tails are heavy!



Doubly exponential tails

Gartner & Molchanov (1998), Gartner & den Hollander (1999)

Prob(&(0) > r) = exp{—e"/*}

Definition: We say that IP is in doubly-exponential class if ¢(0)
is continuously distributed and the limit
1 log log[[P(2(0) > r) Y]

—:= lim
0 r—oo r

exists in (0, 0).

One out of 4 universality classes



Results

Notation and setup

Background box: By := [—L/p, L/]9 N Z9
Open set D C [—1/2,1/2]? —> scaled up lattice version
D, :={x €z x €D}

Ordered eigenvalues of H in D;:

HGELAGERS

Eigenfunctions:
VSL)/C(X), k=1,2,...

Continuous distribution: Well-defined almost surely



Theorem (Eigenvalue order statistics)

Suppose IP is in doubly-exponential class with parameter p. Then

for each L > 1 there are X1, Xa,- -+ € B.(0) and (ar) with

ap = maxg(x) — x +o(1), L — oo,
x€eB;

such that: For any open D C [—1/5, 1/2]d and any R — oo,

in probability, for each k > 1. Moreover, the law of

{ (% (A% (8) — au) log L) C X, € DL}k21

converges weakly to the ranking, by the value of the last

coordinate, of a Poisson point process on D x R with intensity

measure dx ® ke **dA where x := d/p.

(1)



Compare with bulk of spectrum

Localization regime:
Homogeneous Poisson point process
Killip & Nakano (2007)

Delocalization regime: (random matrices)
Dyson’s Brownian motions, etc
Edge: Tracy-Widom law



Ideas from proof

Scales

Note: For purely doubly exponential case:

max &(x) = ploglog L9 + o(1), L — oo.
xeby

Gartner and Molchanov:

AD(E) = ploglog L9 — x + o(1)

where

X = —sup{/\%)d(q)): Z e?2)/p < 1}

zeZd



Extreme islands

Fix D C Z9 and set

Proposition
For all k =1,2,...,|U| such that

we have



Martingale approximation argument

Lemma
Let (A,v) be eigenvalue pairin D C Z9 and Y = (Yy, Y1,...) a
path of a (discrete-time) SRW. Set

T:=inf{k >0:&(Yx) > Aor Ysx & D}. (4)

Then Mrp,, where My = v(Yy) and

= 2d
M, = V(Y”)gzdwx—g(vk)’ n>1, (5)

is a martingale for the filtration 7, = 0(Yo,..., Yn).



Proof of Lemma

Key calculation

On {t > n},

But (A+¢&)v = Av and so
E(Mp+1|Y1,..., Ya)

= [v(Yn) .-

Hence, M;\, is a martingale.

= M,



Mass outside islands

Corollary
A\ —2R
v < (1455) T IvIB
xgU
Proof.
(Sketch)

V() |? < EX|Menn|?

But [Mengr| < (14 45) R|v(Xear)| pointwise.



Deforming the landscape

Proof of Proposition

Set {s(x) := §(x) — sligyy. Then

M@ =25, k=1,...,|U]

Now, for a.e. s,

d
T (&) = 3 Ve, ([

From Corollary:

A+s\ 2R
) IvIE

RH.S. < (1+ ¥

Integrate over s from 0 to oo to get the result.



Further items

Above ensures eigenvalues can be coupled to i.i.d. RVs
= order statistics can only be one of three max-order classes
= need to find a; and b; such that, roughly,

IP(/\%L >a + sbL) = L*defs(l + o(l))

Here s = 0 is definition of a;. For s # 0, this is a Lemma.

Proof of this Lemma is the only point where double-exp needed
Eigenvector localization: Whenever |A%) — AD| > eg
‘VU()(Z)‘ < Cle*C2aL\Z*Xk\

Gap ensured by scaling limit (replaces Minami estimate).



Remarks

Spectral control so strong that we can avoid Feynman-Kac
Preliminary calculations suggest that

Max-order class is always Gumbel



THE END



