Proofs of phase transitions by comparison
to mean-field theory

Marek Biskup
(UCLA)

joint work with

Lincoln Chayes
and
Nicolas Crawford



Nearest-neighbor ferromagnets

S =spinatx €Z%, S, e Qc R’

Hamiltonian: A c Z9

1
HA® =-55 2. S-S

(x.y)
X,YEA
Minus sign = ferromagnet
Gibbs measure:
e AHA(S)
uA(dS) = [T #ot@so
XeA

o = a priori measure on spins (i.i.d.)



Simple examples

(1) Isingmodel: oy e Q={-1,+1} C R

H(o) = — Z Ox Oy
x.y)

(2) The O(N)-model: S, e Q={zeRN:|z| =1} c RN

HO=->'S"S
(x.y)

Both cases: 1 = uniform on Q



Another example

(3) Potts model :

standard form: o € {1,...,q}

H(0) = = D due
(X,y)

vector representation:

Vi = vertices of a simplex in R4—1

q-1 [1 ifi = j
X

ViV = q 1

~a-1 o/w

Lo = uniform



Yet another example
(4) Nematic liquid crystal

standard form: u, € {z e RN: |z| = 1}
Hu) = — > (ux - uy)?
(x.y)
matrix representation: Q = (Q;) <> u € RN (ju| = 1)
1 .
Qijj = UjUj — —Jj 1<i,j<N
N
If Q euand@evthen
~ 1
(u-v)*> =Tr(QQ) + N

Q = set of such matrices, Q RN?
inner product Q - Q = Tr(QQ")



Mean-field theory

MFE for magnetization
Magnetization: m = E,(Sp)
DLR equation:

E#O(SeﬂMO'S))

where Mo = 55 > oS«
Assume that Mg is concentrated: Mg ~ m
Mean-field equation for magnetization:

_ E,,(Sef™S)
- Eﬂo(e,ﬁm-S)



Typical situation
g-state Potts model (g > 3)

Scalar magnetization: m = my;
Mean-field equation:
o em-n
S efmipqg-1

Solutions: m

Bo
Ambiguity if more than one solution



Mean-field free energy

Model on complete graph

Cumulant generating function:
G(h) =log | 4o@)e*”
Q

Entropy:
S(m) = iﬂf[G(h) —h-m]

Free energy function:

@) =~ mi? — s(m)

Lemma 1
Vozm) =0 & m=VG(m) < m solves MFE



Typical situation continued

Free energy m — ®;(mvy) as f increases:

m

A

Bt B




Main result
Fourier transform of lattice Laplacian:
Dk)=1-2>" cos(k)

Theorem 2 (Physical magnetization nearly minimizes Dp)

Let m, be a value of magnetization in an extremal translation
invariant Gibbs state. Then

Dp(m,) < igf Dp(mM) + cfLy

where c is a constant (depending only on Q) and

dk [1 - D(K)]?
Ty = -
‘ /[] @) DBk

Note: 7y < oo ford >3and Zg ~ % asd — oo



Potts model revisited

Free energy “landscape” as f increases:

d
() (b) ©

Allowed values of physical magnetization:

m

Implies discontinuous phase transition!



Proof: Convexity inequality

Lemma 3
Let u be a translation & rotation invariant Gibbs state. Let

m, = E,(S). Then:

Dp(m,) < igfcbﬁ(m) + g [Eﬂ(So . 3() — |m*|2]

Sketch of proof.
Jensen’s inequality: Z, > exp{—|A]infn ®4(m) + O(3A)}. From

dAIGth) _ E (Ma+pHA 7
we get u »)

IAIG(h) > [Al(h-m,) + SE,(Ha) — [A]INf ®p(m) 4 O(5A)

Now divide by |A[, let A 1 Z¢ and optimize over h. O



Proof: Principal ingredient

Infrared bound: (Dyson, Frohlich, Lieb, Simon, Spencer)

D W E,((Sc—my) - (S —my)) <§ > vy DTHx —y)

x,yezd x,yezd
Choosing vy = 2 for x ~ 0 and vy = 0 o/w yields

Lemma 4 (Key estimate)

1 2y
E‘—E -m,| < -7,
“l2g 22 =5

Xx~0

This proves the main “assumption” of mean-field theory!

Problem: Only torus states obey IRB—need to approximate



Proof: Energy concentration

Lemma 5
Let « be an extremal translation & rotation invariant Gibbs

state. Letm, = E,(S). Then
0 <E,(So-S) — Im? < cvy
Sketch of proof.
Symmetrize & apply DLR:
E.(Sc-So) =E.(Mo-S) =E, (Mo - VG(BMy))

Eu(So - &) — Im.|? = E,[(Mo —m,) - (VG(BMo) — VG(sm,))]
RHS is less than cpVar,(Mg) < cvZg where ¢ = [|[VVG|o [



Results for specific models

For class of models considered above, to prove first order
phase transitions it suffices to understand mean-field theory.

This yields first-order phase transitions in e.g.

» (-state Potts model forq > 3
» O(N)-nematic for N > 3

providedd > 1
Note: Both were open problems for > 20 years
Details: CMP 238 (2003) 53-93



Extensions to other interactions
Joint work w/ Nick Crawford

Principal requirement: reflection positivity

HO =—- D> 5ySS

x,yezd

Satisfied by e.g.
» n.n. & n.n.n. interactions
» Yukawa potentials: Jy y = e~ **=Yh

» Power-law decaying potentials:
Iy =X —yI° d <s <min{2d,d + 2}



Mean-field philosophy

Theorem 6
In the class of RP models, as interaction range diverges and/or
d — oo, the following holds at any uniqueness point of MFT:

» Magnetization converges to mean-field value
» Energy density converges to mean-field value
» Gibbs measure converges weakly to product measure

This yields an alternative approach to “Kac limit”
Details: JSP 122 (2006) 1139-1193



Some open problems

» Extensions to other regular lattices
» Gauge theories, non-linear s-models
» Continuous phase transitions

» Quantum models



THE END

Slides available from:
http://www.math.ucla.edu/~biskup/talks.html



