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Nearest-neighbor ferromagnets

Sx = spin at x ∈ Zd , Sx ∈ � ⊂ Rν

Hamiltonian: 3 ⊂ Zd

H3(S) = −
1

2d

∑
〈x,y〉

x,y∈3

Sx · Sy

Minus sign = ferromagnet

Gibbs measure:

µ3(dS) =
e−βH3(S)

Z3

∏
x∈3

µ0(dSx)

µ0 = a priori measure on spins (i.i.d.)



Simple examples

(1) Ising model : σx ∈ � = {−1, +1} ⊂ R

H(σ) = −

∑
〈x,y〉

σxσy

(2) The O(N)-model : Sx ∈ � = {z ∈ RN : |z| = 1} ⊂ RN

H(S) = −

∑
〈x,y〉

Sx · Sy

Both cases: µ0 = uniform on �



Another example

(3) Potts model :

standard form: σx ∈ {1, . . . , q}

H(σ) = −

∑
〈x,y〉

δσx σy

vector representation:

� = {v̂1, . . . , v̂q} ⊂ Rq−1

v̂i = vertices of a simplex in Rq−1

v̂i · v̂j =
q − 1

q
×

{
1 if i = j

−
1

q−1 o/w

µ0 = uniform



Yet another example
(4) Nematic liquid crystal :

standard form: ux ∈ {z ∈ RN : |z| = 1}

H(u) = −

∑
〈x,y〉

(ux · uy )
2

matrix representation: Q = (Qij) ↔ u ∈ RN (|u| = 1)

Qij = uiuj −
1
N

δij 1 ≤ i, j ≤ N

If Q ↔ u and Q̃ ↔ v then

(u · v)2
= Tr(QQ̃) +

1
N

� = set of such matrices, � ⊂ RN2

inner product Q · Q̃ = Tr(QQ̃T)



Mean-field theory
MFE for magnetization

Magnetization: m = Eµ(S0)

DLR equation:

Eµ(S0) = Eµ

(
Eµ0(SeβM0·S)

Eµ0(e
βM0·S)

)
where M0 =

1
2d

∑
x∼0 Sx

Assume that M0 is concentrated: M0 ≈ m

Mean-field equation for magnetization:

m =
Eµ0(Seβm·S)

Eµ0(e
βm·S)



Typical situation
q-state Potts model (q ≥ 3)

Scalar magnetization: m = mv̂j

Mean-field equation:

m =
eβm

− 1
eβm + q − 1

Solutions:

β

m

β0

Ambiguity if more than one solution



Mean-field free energy
Model on complete graph

Cumulant generating function:

G(h) = log
∫

�

µ0(dS) eS·h

Entropy:
S(m) = inf

h

[
G(h) − h · m

]
Free energy function:

8β(m) = −
β

2
|m|

2
− S(m)

Lemma 1
∇8β(m) = 0 ⇔ m = ∇G(βm) ⇔ m solves MFE



Typical situation continued

Free energy m 7→ 8β(mv̂1) as β increases:

����� ����� ���	�

(d)

Magnetization picture revised: (βt 6= β0)

β

m

local min

local max

βt



Main result

Fourier transform of lattice Laplacian:

D̂(k) = 1 −
1
d

∑d
j=1 cos(kj)

Theorem 2 (Physical magnetization nearly minimizes 8β)

Let m? be a value of magnetization in an extremal translation
invariant Gibbs state. Then

8β(m?) ≤ inf
m

8β(m) + cβId

where c is a constant (depending only on �) and

Id =

∫
[−π,π ]d

dk
(2π)d

[1 − D̂(k)]2

D̂(k)

Note: Id < ∞ for d ≥ 3 and Id ∼
1

2d as d → ∞



Potts model revisited
Free energy “landscape” as β increases:

����� ����� ���	�

(d)

Allowed values of physical magnetization:

β

m

βt

Implies discontinuous phase transition!



Proof: Convexity inequality

Lemma 3
Let µ be a translation & rotation invariant Gibbs state. Let
m? = Eµ(S0). Then:

8β(m?) ≤ inf
m

8β(m) +
β

2

[
Eµ

(
S0 · Sx

)
− |m?|

2]
Sketch of proof.
Jensen’s inequality: Z3 ≥ exp

{
−|3| infm 8β(m) + O(∂3)

}
. From

e|3|G(h)
= Eµ

(
eh·M3+βH3Z3

)
we get

|3|G(h) ≥ |3|(h · m?) + βEµ(H3) − |3| inf
m

8β(m) + O(∂3)

Now divide by |3|, let 3 ↑ Zd and optimize over h.



Proof: Principal ingredient

Infrared bound: (Dyson, Fröhlich, Lieb, Simon, Spencer)∑
x,y∈Zd

vxvy Eµ

(
(Sx − m?) · (Sy − m?)

)
≤

ν

β

∑
x,y∈Zd

vxvyD−1(x − y)

Choosing vx =
1

2d for x ∼ 0 and vx = 0 o/w yields

Lemma 4 (Key estimate)

Eµ

∣∣∣ 1
2d

∑
x∼0

Sx − m?

∣∣∣2
≤

ν

β
Id

This proves the main “assumption” of mean-field theory!

Problem: Only torus states obey IRB—need to approximate



Proof: Energy concentration

Lemma 5
Let µ be an extremal translation & rotation invariant Gibbs
state. Let m? = Eµ(S0). Then

0 ≤ Eµ

(
S0 · Sx

)
− |m?|

2
≤ c νId

Sketch of proof.
Symmetrize & apply DLR:

Eµ

(
Sx · S0

)
= Eµ

(
M0 · S0

)
= Eµ

(
M0 · ∇G(βM0)

)
Eµ

(
S0 · Sx

)
− |m?|

2
= Eµ

[
(M0 − m?) ·

(
∇G(βM0) − ∇G(βm?)

)]
RHS is less than cβVarµ(M0) ≤ cνId where c = ‖∇∇G‖∞



Results for specific models

For class of models considered above, to prove first order
phase transitions it suffices to understand mean-field theory.

This yields first-order phase transitions in e.g.

I q-state Potts model for q ≥ 3
I O(N)-nematic for N ≥ 3

provided d � 1

Note: Both were open problems for & 20 years

Details: CMP 238 (2003) 53-93



Extensions to other interactions
Joint work w/ Nick Crawford

Principal requirement: reflection positivity

H(S) = −

∑
x,y∈Zd

Jx,y Sx · Sy

Satisfied by e.g.
I n.n. & n.n.n. interactions
I Yukawa potentials: Jx,y = e−λ|x−y |1

I Power-law decaying potentials:
Jx,y = |x − y |

−s
1 d < s < min{2d, d + 2}



Mean-field philosophy

Theorem 6
In the class of RP models, as interaction range diverges and/or
d → ∞, the following holds at any uniqueness point of MFT:

I Magnetization converges to mean-field value
I Energy density converges to mean-field value
I Gibbs measure converges weakly to product measure

This yields an alternative approach to “Kac limit”

Details: JSP 122 (2006) 1139-1193



Some open problems

I Extensions to other regular lattices
I Gauge theories, non-linear σ-models
I Continuous phase transitions
I Quantum models



THE END
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