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Long-range percolation on Z?

Graph with vertices Z“ and edge between x and y with probability

p(x,y) :=1—exp{—q(x—y)}

where q: Z¢ — [0,0]. Usually, power-law decay assumed:

q(x) ~ Bl




Original motivation — phase transitionind = 1

Q: For what powers does a phase transition occur in Ising model on Z?
A: 1/r’-decay critical
Kac-Thompson (1968), Dyson (1971), ..., Frohlich-Spencer (1982)

Thouless phenomenon (Thouless 1971, Anderson-Yuval 1971): Discontinuity
of magnetization (expected spin at origin) at B¢

Proofs:
Aizenman-Newman (1986) for percolation
Aizenman-Chayes?-Newman (1986) for random cluster model

Note: 1/r?-percolation model percolates at criticality!



Main questions for this talk

Define the graph-theoretical distance by
D(x,y) := inf{n > 0: 3 path x — y with n edges}

Key questions:
@ Scaling of D(x,y) with |x —y|?
e Asymptotic shape of metric balls

{xeZ%: D(0,x) < n}

asn — o0?

e Asymptotic shape of isoperimetric sets?



Five regimes of behavior

Abbreviate N := |x — y|. Then, as N — oo,

( — [%" lf s < d Benjamini, Peres, Kesten & Schramm (2004)
logN .
= (d + 0(1 )) % ].f S = d Coppersmith, Gamarnik & Siridenko (2002), T. Wu
D(x, ]/) = (log N)A(s’d) ifd<s<?2d B. (2004), B.& Lin (2018)
= NO# ifs =2d Ding & Sly (2014), Baumler (2022)
~ N lf S > 2d Berger (2007)
Here A(s,d) := 1%2(#/5) and 6(B) € (0,1) for each g € (0, )

No percolation at criticality for d < s < 2d!!! erger 2002), Hutcheroft (2020), Biumler-Berger (2022)

Quenched invariance principle for random walk for s > 2d  b.-chen-Kumagai-Wang (2021)



Simulations of x — D(0,x) ind = 1




Asymptotic ford < s < 2d

Theorem (B.-Lin 2019, B.-Krieger 2021)

Suppose qg(x) = +0 for x ~ 0. Then there exists ¢pg: (0,00) — (0,0) continuous
and ¥. < (0, 00) at most countable such that, for vy := 53,

Vr>1: ¢p(r) = pp(r7)

and such that for all B € (0,00) N\ Z and all € > 0,

ld# {erd:|x]< ’7) 1’>e} L0
r Pp(r)(logr)A r—00

where A := 710 ELIO)

In short:

D(0, x) Nt [pp(|x]) +0(1)](log|x|)A

for typical (large) x with high probability.



Classical proof in FPP context

Subadditivity relation
D(0,x+vy) < D(0,x) + D(x,x +y)

with
D(x,x +v) law D(0,y)

Kingman’s Subadditive Ergodic Theorem: For each x € 77, the limit

o(x) := lim D0, nx)

n—oo n

exists a.s. and (if non-zero for x # 0) is a restriction of a norm on R%.

Problem: The limit vanishes when s < 24 so no information gained here!!!



Why polylogarithmic scaling?

Given any 71,72 € (0,1) and a unit vector e RY,

NATNar2
P <[—N“,N”]d «— Ne+ [—N”/N”]d) ~1- exp{—ﬁcT}
So an edge like this

o will exist wh.p. ifd(y1 4+ 72) = s

o will NOT exist w.h.p. if d(y1 +72) <5

Boundary case: 71 + 72 = 2y with 7y := 5.

Can be built into a proof of an upper bound s. o0
Lower bound now proved using a different argument trapman (2010)



Enhanced subadditivity bound

Restricted “distance:”

{(xk_1,x¢): k=1,...,n} edges, xo = x, }

D(x,y) := inf{n=>0:
(x,y) :=in {” Xp=y, Yk=1,...,n: |x—x| <2/x—y]

Proposition (Subadditivity inequality)
Fixn e (0,1) and 7y € (,1) and let Z, Z' be i.i.d. R%-valued with common law
P(ZeB) = «/qﬁj e~ Paole gz,
B

where cq is a normalization constant. There are c1, ¢ € (0, 00) and, for each x € 74,
an event A(x) € 0(Z,Z') such that

~ law ~ ~, /
D(0,x) < D(0,|x["Z) + D'(0, |x|"Z") + 1+ |x|1 14

where D' be an independent copy of D, independent of Z and Z', and
P(A(x)) < cre—e2 ™




Subadditivity: proof ideas

Identity to prove:

1

D(0,x) < D(0,[x]"Z) + D' (0, 1xZ') + 1 + [xhi 1ag)

Key steps:
@ Use 1 < 1 to couple most long edges to a Poisson point process.

@ Z and Z' are then the scaled distances to endpoints of the (long) edge
chosen so that (Z, Z') minimizes

Z,Z/ — |Z|2d + |Zl‘2d

This choice ensures (by way of a calculation) that Z 1L Z’

@ Thanks to working with modified distance, Z, Z" 1L D and also that
D(0, Z|x|7) and D(x, x + Z'|x|") law D'(0,Z'|x|7) are independent.

o If anything in the above description fails — which is what defines
event A(x) — then instead bound D(0, x) < [x1]14(x)-



“Solving” subadditivity via a random argument

Iterating the subadditivity bound leads to arguments of the form x| times

Zo | li-q |Zk|'7k, where Zy, Zy, ... arei.i.d. copies of Z. In order to close the
expression, we insert a random argument from the start:

Lemma
Let Zo,Zy,. .. bei.id. copies of Z. The random variable

0

Wi=Zo [ [1zi|"

k=1

is well defined and has moments of all orders. Moreover, for each r > 1 the limit
1~ —n
. L(r) := lim - [D(0, Wr" )]
where W 1L D(, -), exists and obeys
Vr>1: Lg(r) = 2Lg(r")

where 7y 1= 5.




Proof of Lemma

The existence of W goes via Z having at least Gaussian tails. Note that then
ZIW = ZW) ' w
Subadditivity gives
D(0, Wr) e D(0,|W|"Z) +D'(0,|W["Z') + 1 + [Wr|11amn
which under expectation translates into
E[D(0, Wr)] < 2E[D(0, |[W["Zr")] + 1 + E(|Wrli Lagwn) )
As sup,_; E(|Wrl114wy)) < o0, we have
E[D(0, Wr)] < 2E[D(0, Wr")] + ¢

This shows that n + 27"[ED(0, Wr7") + c] is non-increasing and so

Lg(r) := lim %E[D(O, Wi )]

n—0oo

exists as claimed. The identity Lg(r) = 2L(r7) follows.



Lip service about rest of the proof

From Lg(r) = 2L(r") and y~* = 2 we get Lg(r) ~ (logr)*. Define ¢ so that

Lg(r) = ¢p(r)(logr)®

This gives log-log-periodicity relation

Vr>1:  ¢p(r) = pp(r7)

Remaining steps (details omitted):
@ Prove concentration (to improve convergence in the mean)
@ Replace W by a deterministic point
@ Interpolate doubly exponential sequences
@ Replace restricted “distance” by actual distance

Warning: Limit does NOT exist a.s., at best in probability



Moving on

Summarizing the above, we have derived

D(0, x) Nt [pp(|x]) +0(1)](log|x|)A

As LRP model is scale-covariant, a natural conjecture is that ¢ is a constant.

This would mean that also

Pp(t) := Pp(e )

which is a 1-periodic function on the reals, P5(t + 1) = p4(t), would be
constant. However, this turns out to be false ...



Arithmetic oscillations

Theorem (B.-Krieger 2021)
Denote m(B) := sup{k € Z: y~* < log B} for y := 35 and set

u() :== " Plogpe[1,77).
Then forall t € [0,1],

=

u(p

log(3

(log B)° g (t -

with the limit uniform on [0, 1].

—s) S _ s—d _
log(d/)> /3:3)0 [Zd—s(zr)/) t_22d_52 t](Zd—s)A

Corollary (Non-constancy)

For each q as above there is By € (0, o) such that ¢g is not constant for B > .




Pp(r)

Lg(r)

For each q as above there are c,C € (0, 0) and 1 > 1 such that

€ C

VB > By Vr > 1: (log )2 < Pp(r) < (log B>




Heuristic derivation

Idea: For B » 1 and each n > 0, we have

<mn, for N := |x —y| « B,
=>n+1, for N » po,

D(x,y) {

for some exponent 6,, > 0. This is checked inductively:
@ n = 0: a direct edge between x and y occurs with probability ~ BN~%, so
we have 6 := 1/s.
@ 1 = 1: an edge between x and a ball of radius g% centered at y occurs
with probability ~ B x BPIN~%, 506, := 1 + §91~
e general n: an edge between a ball of radius 8% centered at x and a ball of
radius g%+ centered at y occurs with probability B x f% x -kN—* so

1 d
041 := — + — max (6 + 0,_¢)

S S 0<k<n



Define 6y := 0 and

1 d
0,,1:=~ 4+ — 0, +6,
41 S+Sor§gg>§1( e + 0n—k)

Recall that 7y := ;. The following holds for all n > 0:

_ 11-9" —n+1
On_q = . 1_7’)’

and, for all integers k satisfying 2" — 1 < k < 2"*+1 1,

21 1 —k k—2"+1
9k= —02n_1+2—n+

o 62n+1_1

In short, k — 6y is piecewise linear with explicit values for k € {2" —1: n > 0}.




Extracting limit formula

The above gives D(0, 8%x) ~ n. For A € [0,1] with 2"A € N we get

D(0, 139A2"+(1—A)2”+1x) ~ A2 4 (1—A)2" L = [/\ +(1- /\)z]zn

Asymptotic analysis shows 61 ~ ~1—7~" and so

1
Oron(1—pyont1 ~ Abn + (1 =A)0pus1 ~ [A +(1- A),Y—l] yor

2d —
Hence i

Ls (5[A+(17A)7*1]ﬁ) ~A+(1-A)2
and so

-y gy o ATAZA2 oy a1
hlp i a-nr Y gy
Now pick t € [0,1] so that A + (1 = A)y~1 = 7L Then A = ;2. — -5~ and,

; 2d—s 2d
after a calculation,

Y B N . Y
Pple? ) ~2 [Zd—sly 22d—s](2d s) (log B)2

Shifting the argument and rewriting in terms of ¢3, we get the claim.




Intuitive explanation

@ Minimizing paths retain dyadic structure all the way to lattice scale.

o It thus matters when the dyadic refinements reach the scale g~/ at
which direct connections become prevalent.

@ This mechamism dominates the limit § — oo; for  fixed ¢p contains all
the local optimization effects.



Towards “shape” theorem

After all of this, we only have the leading order scale.
No info obtained on shapes of large balls: Lg(2r) = Lg(r) + o(1)

Conjecture

For each x € Z°, define Y by

1 A
D(0,) = ¢([x])[log Ix| — 557 —; loglog x| + Y4

Then

Ve 1w - Gumbel law
|x[—c0

So ball of radius r should be close to {x € Z¢: |x| < erl/A(P(’)+O(l)} for some

slowly varying ¢. Long edges make this set very fuzzy, though.




THANK YOU!



