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Long-range percolation on Zd 2

Graph with vertices Zd and edge between x and y with probability

ppx, yq :“ 1´ expt´qpx´ yqu

where q : Zd Ñ r0,8s. Usually, power-law decay assumed:

qpxq „
|x|Ñ8

β|x|´s

for β, s ą 0 parameters and a norm | ¨ | on Rd.



Original motivation — phase transition in d “ 1 3

Q: For what powers does a phase transition occur in Ising model on Z?
A: 1{r2-decay critical
Kac-Thompson (1968), Dyson (1971), . . . , Fröhlich-Spencer (1982)

Thouless phenomenon (Thouless 1971, Anderson-Yuval 1971): Discontinuity
of magnetization (expected spin at origin) at βc

Proofs:
Aizenman-Newman (1986) for percolation
Aizenman-Chayes2-Newman (1986) for random cluster model

Note: 1{r2-percolation model percolates at criticality!



Main questions for this talk 4

Define the graph-theoretical distance by

Dpx, yq :“ inf
 

n ě 0 : D path x Ñ y with n edges
(

Key questions:
Scaling of Dpx, yqwith |x´ y|?
Asymptotic shape of metric balls

 

x P Zd : Dp0, xq ď n
(

as n Ñ8?
Asymptotic shape of isoperimetric sets?



Five regimes of behavior 5

Abbreviate N :“ |x´ y|. Then, as N Ñ8,

Dpx, yq
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Ñ r d
d´s s if s ă d Benjamini, Peres, Kesten & Schramm (2004)

“ pd` op1qq log N
log log N if s “ d Coppersmith, Gamarnik & Siridenko (2002), T. Wu

— plog Nq∆ps,dq if d ă s ă 2d B. (2004), B.& Lin (2018)

— Nθpβq if s “ 2d Ding & Sly (2014), Bäumler (2022)

„ N if s ą 2d Berger (2007)

Here ∆ps, dq :“ 1
log2p2d{sq and θpβq P p0, 1q for each β P p0,8q

No percolation at criticality for d ă s ă 2d!!! Berger (2002), Hutchcroft (2020), Bäumler-Berger (2022)

Quenched invariance principle for random walk for s ą 2d B.-Chen-Kumagai-Wang (2021)



Simulations of x ÞÑ Dp0, xq in d “ 1 6

β “ 1

β “ 5

s “ 1.5



Asymptotic for d ă s ă 2d 7

Theorem (B.-Lin 2019, B.-Krieger 2021)

Suppose qβpxq “ `8 for x „ 0. Then there exists φβ : p0,8q Ñ p0,8q continuous
and Σ Ď p0,8q at most countable such that, for γ :“ s

2d ,

@r ą 1 : φβprq “ φβprγq

and such that for all β P p0,8qr Σ and all ε ą 0,

1
rd #

˜

"

x P Zd : |x| ď r ^
ˇ

ˇ

ˇ

Dp0, xq
φβprqplog rq∆

´ 1
ˇ

ˇ

ˇ
ą ε

*

¸

P
ÝÑ
rÑ8

0

where ∆ :“ 1
log2p2d{sq .

In short:
Dp0, xq “

|x|Ñ8

“

φβp|x|q ` op1q
‰

plog |x|q∆

for typical (large) x with high probability.



Classical proof in FPP context 8

Subadditivity relation

Dp0, x` yq ď Dp0, xq `Dpx, x` yq

with
Dpx, x` yq law

“ Dp0, yq

Kingman’s Subadditive Ergodic Theorem: For each x P Zd, the limit

$pxq :“ lim
nÑ8

Dp0, nxq
n

exists a.s. and (if non-zero for x ‰ 0) is a restriction of a norm on Rd.

Problem: The limit vanishes when s ď 2d so no information gained here!!!



Why polylogarithmic scaling? 9

Given any γ1, γ2 P p0, 1q and a unit vector e P Rd,

P
´

r´Nγ1 , Nγ1sd ÐÑ Ne` r´Nγ2 , Nγ2sd
¯

« 1´ exp
!

´βc
Ndγ1Ndγ2

Ns

)

So an edge like this
will exist w.h.p. if dpγ1 ` γ2q Á s
will NOT exist w.h.p. if dpγ1 ` γ2q À s

Boundary case: γ1 ` γ2 “ 2γ with γ :“ s
2d .

Can be built into a proof of an upper bound B. (2004)

Lower bound now proved using a different argument Trapman (2010)



Enhanced subadditivity bound 10

Restricted “distance:”

rDpx, yq :“ inf

#

n ě 0 :
tpxk´1, xkq : k “ 1, . . . , nu edges , x0 “ x,
xn “ y, @k “ 1, . . . , n : |xk ´ x| ă 2|x´ y|

+

.

Proposition (Subadditivity inequality)

Fix η P p0, 1q and γ P pγ, 1q and let Z, Z1 be i.i.d. Rd-valued with common law

PpZ P Bq “
a

ηβ

ż

B
e´ηβc0|z|2d

dz,

where c0 is a normalization constant. There are c1, c2 P p0,8q and, for each x P Zd,
an event Apxq P σpZ, Z1q such that

rDp0, xq
law
ď rD

`

0, |x|γZ
˘

` rD1
`

0, |x|γZ1
˘

` 1` |x|11Apxq

where rD1 be an independent copy of rD, independent of Z and Z1, and

P
`

Apxq
˘

ď c1e´c2|x|γ´γ



Subadditivity: proof ideas 11

Identity to prove:

rDp0, xq
law
ď rD

`

0, |x|γZ
˘

` rD1
`

0, |x|γZ1
˘

` 1` |x|11Apxq

Key steps:
Use η ă 1 to couple most long edges to a Poisson point process.
Z and Z1 are then the scaled distances to endpoints of the (long) edge
chosen so that pZ, Z1qminimizes

z, z1 ÞÑ |z|2d ` |z1|2d

This choice ensures (by way of a calculation) that Z KK Z1

Thanks to working with modified distance, Z, Z1 KK rD and also that
rDp0, Z|x|γq and rDpx, x`Z1|x|γq law

“ rD1p0, Z1|x|γq are independent.
If anything in the above description fails — which is what defines
event Apxq— then instead bound rDp0, xq ď |x1|1Apxq.



“Solving” subadditivity via a random argument 12

Iterating the subadditivity bound leads to arguments of the form |x|γ
n`1

times
Z0

śn
k“1 |Zk|

γk
, where Z0, Z1, . . . are i.i.d. copies of Z. In order to close the

expression, we insert a random argument from the start:

Lemma
Let Z0, Z1, . . . be i.i.d. copies of Z. The random variable

W :“ Z0

8
ź

k“1

|Zk|
γk

is well defined and has moments of all orders. Moreover, for each r ą 1 the limit

Lβprq :“ lim
nÑ8

1
2n E

“

rDp0, Wrγ´n
q
‰

where W KK rDp¨, ¨q, exists and obeys

@r ą 1 : Lβprq “ 2Lβprγq

where γ :“ s
2d .



Proof of Lemma 13

The existence of W goes via Z having at least Gaussian tails. Note that then

Z KK W ñ Z|W|γ law
“ W

Subadditivity gives

rDp0, Wrq
law
ď rD

`

0, |W|γZ
˘

` rD1
`

0, |W|γZ1
˘

` 1` |Wr|11ApWrq

which under expectation translates into

E
“

Dp0, Wrq
‰

ď 2E
“

rDp0, |W|γZrγq
‰

` 1`E
`

|Wr|11ApWrq
˘

As suprą1 E
`

|Wr|11ApWrq
˘

ă 8, we have

E
“

Dp0, Wrq
‰

ď 2E
“

rDp0, Wrγq
‰

` c

This shows that n ÞÑ 2´nrEDp0, Wrγ´n
q ` cs is non-increasing and so

Lβprq :“ lim
nÑ8

1
2n E

“

rDp0, Wrγ´n
q
‰

exists as claimed. The identity Lβprq “ 2Lprγq follows.



Lip service about rest of the proof 14

From Lβprq “ 2Lprγq and γ´∆ “ 2 we get Lβprq « plog rq∆. Define φβ so that

Lβprq “ φβprqplog rq∆

This gives log-log-periodicity relation

@r ą 1 : φβprq “ φβprγq

Remaining steps (details omitted):
Prove concentration (to improve convergence in the mean)
Replace W by a deterministic point
Interpolate doubly exponential sequences
Replace restricted “distance” by actual distance

Warning: Limit does NOT exist a.s., at best in probability



Moving on 15

Summarizing the above, we have derived

Dp0, xq “
|x|Ñ8

“

φβp|x|q ` op1q
‰

plog |x|q∆

As LRP model is scale-covariant, a natural conjecture is that φβ is a constant.
This would mean that also

ψβptq :“ φβ

`

eγ´t˘

which is a 1-periodic function on the reals, ψβpt` 1q “ ψβptq, would be
constant. However, this turns out to be false . . .



Arithmetic oscillations 16

Theorem (B.-Krieger 2021)

Denote mpβq :“ suptk P Z : γ´k ď log βu for γ :“ s
2d and set

upβq :“ γmpβq log β P r1, γ´1q.

Then for all t P r0, 1s,

plog βq∆ ψβ

ˆ

t´
logp upβq

2d´sq

logp1{γq

˙

ÝÑ
βÑ8

” s
2d´ s

p2γq´t ´ 2
s´ d
2d´ s

2´t
ı

p2d´ sq∆

with the limit uniform on r0, 1s.

Corollary (Non-constancy)

For each q as above there is β0 P p0,8q such that φβ is not constant for β ą β0.



Plots and large-β asymptotic 17

φβprq

Lβprq

r

Corollary (Scaling with β)

For each q as above there are c, C P p0,8q and β1 ą 1 such that

@β ą β1 @r ą 1 :
c

plog βq∆
ď φβprq ď

C
plog βq∆

.



Heuristic derivation 18

Idea: For β " 1 and each n ě 0, we have

Dpx, yq

#

ď n, for N :“ |x´ y| ! βθn ,
ě n` 1, for N " βθn ,

for some exponent θn ą 0. This is checked inductively:
n “ 0: a direct edge between x and y occurs with probability „ βN´s, so
we have θ1 :“ 1{s.
n “ 1: an edge between x and a ball of radius βθ1 centered at y occurs
with probability „ βˆ βdθ1N´s, so θ2 :“ 1

s `
d
s θ1.

general n: an edge between a ball of radius βθk centered at x and a ball of
radius βθn´k centered at y occurs with probability βˆ βdθk ˆ βdθn´kN´s so

θn`1 :“
1
s
`

d
s

max
0ďkďn

pθk ` θn´kq



Solving for θn 19

Define θ0 :“ 0 and

θn`1 :“
1
s
`

d
s

max
0ďkďn

pθk ` θn´kq

Lemma

Recall that γ :“ s
2d . The following holds for all n ě 0:

θ2n´1 “
1
s

1´ γn

1´ γ
γ´n`1

and, for all integers k satisfying 2n ´ 1 ď k ď 2n`1 ´ 1,

θk “
2n`1 ´ 1´ k

2n θ2n´1 `
k´ 2n ` 1

2n θ2n`1´1

In short, k ÞÑ θk is piecewise linear with explicit values for k P t2n ´ 1 : n ě 0u.



Extracting limit formula 20

The above gives Dp0, βθnxq „ n. For λ P r0, 1swith 2nλ P N we get

Dp0, β
θ

λ2n`p1´λq2n`1 xq „ λ2n ` p1´ λq2n`1 “
“

λ` p1´ λq2
‰

2n

Asymptotic analysis shows θ2n „ 1
2d´s γ´n and so

θλ2n`p1´λq2n`1 „ λθ2n ` p1´ λqθ2n`1 „
“

λ` p1´ λqγ´1‰ 1
2d´ s

γ´n

Hence
Lβ

`

βrλ`p1´λqγ´1s 1
2d´s

˘

„ λ` p1´ λq2
and so

φβ

`

βrλ`p1´λqγ´1s 1
2d´s

˘

„
λ` p1´ λq2

rλ` p1´ λqγ´1s∆
p2d´ sq∆

1
plog βq∆

Now pick t P r0, 1s so that λ` p1´ λqγ´1 “ γ´t. Then λ “ 2d
2d´s ´

s
2d´s γ´t and,

after a calculation,

φβ

`

eγ´t upβq
2d´s

˘

„ 2´t
” s

2d´ s
γ´t ´ 2

s´ d
2d´ s

ı

p2d´ sq∆
1

plog βq∆

Shifting the argument and rewriting in terms of ψβ, we get the claim.



Intuitive explanation 21

Minimizing paths retain dyadic structure all the way to lattice scale.
It thus matters when the dyadic refinements reach the scale β´1{s at
which direct connections become prevalent.
This mechamism dominates the limit β Ñ8; for β fixed φβ contains all
the local optimization effects.



Towards “shape” theorem 22

After all of this, we only have the leading order scale.
No info obtained on shapes of large balls: Lβp2rq “ Lβprq ` op1q

Conjecture

For each x P Zd, define Yx by

Dp0, xq “ φβp|x|q
”

log |x| ´
1

2p2d´ sq
log log |x| `Yx

ı∆

Then
Yx

law
ÝÑ
|x|Ñ8

Gumbel law

So ball of radius r should be close to tx P Zd : |x| ď er1{∆ ϕprq`Op1qu for some
slowly varying ϕ. Long edges make this set very fuzzy, though.



23

THANK YOU!


