Large-scale metric properties of long-range percolation

Marek Biskup (UCLA)

based on joint papers with
Jeff Lin and Andrew Krieger

Stochastic Models in Mathematical Physics
Technion, Haifa, September 2022
In memory of Dima Ioffe

Graph with vertices \mathbb{Z}^{d} and edge between x and y with probability

$$
\mathfrak{p}(x, y):=1-\exp \{-\mathfrak{q}(x-y)\}
$$

where $\mathfrak{q}: \mathbb{Z}^{d} \rightarrow[0, \infty]$. Usually, power-law decay assumed:

$$
\mathfrak{q}(x) \underset{|x| \rightarrow \infty}{\sim} \beta|x|^{-s}
$$

for $\beta, s>0$ parameters and a norm $|\cdot|$ on \mathbb{R}^{d}.

Q: For what powers does a phase transition occur in Ising model on \mathbb{Z} ?
A: $1 / r^{2}$-decay critical
Kac-Thompson (1968), Dyson (1971), ... , Fröhlich-Spencer (1982)
Thouless phenomenon (Thouless 1971, Anderson-Yuval 1971): Discontinuity of magnetization (expected spin at origin) at β_{c}
Proofs:
Aizenman-Newman (1986) for percolation Aizenman-Chayes ${ }^{2}$-Newman (1986) for random cluster model

Note: $1 / r^{2}$-percolation model percolates at criticality!

Define the graph-theoretical distance by

$$
D(x, y):=\inf \{n \geqslant 0: \exists \text { path } x \rightarrow y \text { with } n \text { edges }\}
$$

Key questions:

- Scaling of $D(x, y)$ with $|x-y|$?
- Asymptotic shape of metric balls

$$
\left\{x \in \mathbb{Z}^{d}: D(0, x) \leqslant n\right\}
$$

as $n \rightarrow \infty$?

- Asymptotic shape of isoperimetric sets?

Abbreviate $N:=|x-y|$. Then, as $N \rightarrow \infty$,

$$
D(x, y)\left\{\begin{array}{llr}
\rightarrow\left\lceil\frac{d}{d-s}\right\rceil & \text { if } s<d & \text { Beniamini, Peres, Kesten \& Sccramm (2004) } \\
=(d+o(1)) \frac{\log N}{\log N \log N} & \text { if } s=d & \text { Coppersmith, Camarnik \& Siridenko (2002), T. Wu } \\
=(\log N)^{\Delta(s, d)} & \text { if } d<s<2 d & \text { B. (2004), B\&\& Lin (2018) } \\
=N^{\theta(\beta)} & \text { if } s=2 d & \text { Ding \& Sly (2014), Bäumler (2022) } \\
\sim N & \text { if } s>2 d & \text { Berger (2007) }
\end{array}\right.
$$

Here $\Delta(s, d):=\frac{1}{\log _{2}(2 d / s)}$ and $\theta(\beta) \in(0,1)$ for each $\beta \in(0, \infty)$

No percolation at criticality for $d<s<2 d!!!$ Berger (2002) Huthcrorft (2020), Baumer-Berger (2022)
Quenched invariance principle for random walk for $s>2 d$ в.chen-Kumagai-Wang (2021)

$$
s=1.5
$$

$$
\beta=5
$$

Theorem (B.-Lin 2019, B.-Krieger 2021)

Suppose $\mathfrak{q}_{\beta}(x)=+\infty$ for $x \sim 0$. Then there exists $\phi_{\beta}:(0, \infty) \rightarrow(0, \infty)$ continuous and $\Sigma \subseteq(0, \infty)$ at most countable such that, for $\gamma:=\frac{s}{2 d}$,

$$
\forall r>1: \quad \phi_{\beta}(r)=\phi_{\beta}\left(r^{\gamma}\right)
$$

and such that for all $\beta \in(0, \infty) \backslash \Sigma$ and all $\epsilon>0$,

$$
\frac{1}{r^{d}} \#\left(\left\{x \in \mathbb{Z}^{d}:|x| \leqslant r \wedge\left|\frac{D(0, x)}{\phi_{\beta}(r)(\log r)^{\Delta}}-1\right|>\epsilon\right\}\right) \underset{r \rightarrow \infty}{\stackrel{P}{\longrightarrow}} 0
$$

where $\Delta:=\frac{1}{\log _{2}(2 d / s)}$.
In short:

$$
D(0, x) \underset{|x| \rightarrow \infty}{=}\left[\phi_{\beta}(|x|)+o(1)\right](\log |x|)^{\Delta}
$$

for typical (large) x with high probability.

Subadditivity relation

$$
D(0, x+y) \leqslant D(0, x)+D(x, x+y)
$$

with

$$
D(x, x+y) \stackrel{\text { law }}{=} D(0, y)
$$

Kingman's Subadditive Ergodic Theorem: For each $x \in \mathbb{Z}^{d}$, the limit

$$
\varrho(x):=\lim _{n \rightarrow \infty} \frac{D(0, n x)}{n}
$$

exists a.s. and (if non-zero for $x \neq 0$) is a restriction of a norm on \mathbb{R}^{d}.
Problem: The limit vanishes when $s \leqslant 2 d$ so no information gained here!!!

Given any $\gamma_{1}, \gamma_{2} \in(0,1)$ and a unit vector $e \in \mathbb{R}^{d}$,

$$
P\left(\left[-N^{\gamma_{1}}, N^{\gamma_{1}}\right]^{d} \longleftrightarrow N e+\left[-N^{\gamma_{2}}, N^{\gamma_{2}}\right]^{d}\right) \approx 1-\exp \left\{-\beta c \frac{N^{d \gamma_{1}} N^{d \gamma_{2}}}{N^{s}}\right\}
$$

So an edge like this

- will exist w.h.p. if $d\left(\gamma_{1}+\gamma_{2}\right) \gtrsim s$
- will NOT exist w.h.p. if $d\left(\gamma_{1}+\gamma_{2}\right) \lesssim s$

Boundary case: $\gamma_{1}+\gamma_{2}=2 \gamma$ with $\gamma:=\frac{s}{2 d}$.
Can be built into a proof of an upper bound в. (2004)
Lower bound now proved using a different argument Trapman (2010)

Restricted "distance:"

$$
\widetilde{D}(x, y):=\inf \left\{n \geqslant 0: \begin{array}{l}
\left\{\left(x_{k-1}, x_{k}\right): k=1, \ldots, n\right\} \text { edges }, x_{0}=x, \\
x_{n}=y, \forall k=1, \ldots, n:\left|x_{k}-x\right|<2|x-y|
\end{array}\right\} .
$$

Proposition (Subadditivity inequality)

Fix $\eta \in(0,1)$ and $\bar{\gamma} \in(\gamma, 1)$ and let Z, Z^{\prime} be i.i.d. \mathbb{R}^{d}-valued with common law

$$
P(Z \in B)=\sqrt{\eta \beta} \int_{B} \mathrm{e}^{-\eta \beta c_{0}|z|^{2 d}} \mathrm{~d} z,
$$

where c_{0} is a normalization constant. There are $c_{1}, c_{2} \in(0, \infty)$ and, for each $x \in \mathbb{Z}^{d}$, an event $A(x) \in \sigma\left(Z, Z^{\prime}\right)$ such that

$$
\widetilde{D}(0, x) \stackrel{\text { law }}{\leqslant} \widetilde{D}\left(0,|x|^{\gamma} Z\right)+\widetilde{D}^{\prime}\left(0,|x|^{\gamma} Z^{\prime}\right)+1+|x|_{1} 1_{A(x)}
$$

where \widetilde{D}^{\prime} be an independent copy of \widetilde{D}, independent of Z and Z^{\prime}, and

$$
P(A(x)) \leqslant c_{1} \mathrm{e}^{-c_{2}|x| \gamma^{\bar{\gamma}}-\gamma}
$$

Identity to prove:

$$
\widetilde{D}(0, x) \stackrel{\text { law }}{\lessgtr} \widetilde{D}\left(0,|x|^{\gamma} Z\right)+\widetilde{D}^{\prime}\left(0,|x|^{\gamma} Z^{\prime}\right)+1+|x|_{1} 1_{A(x)}
$$

Key steps:

- Use $\eta<1$ to couple most long edges to a Poisson point process.
- Z and Z^{\prime} are then the scaled distances to endpoints of the (long) edge chosen so that $\left(Z, Z^{\prime}\right)$ minimizes

$$
z, z^{\prime} \mapsto|z|^{2 d}+\left|z^{\prime}\right|^{2 d}
$$

This choice ensures (by way of a calculation) that $Z \Perp Z^{\prime}$

- Thanks to working with modified distance, $Z, Z^{\prime} \Perp \widetilde{D}$ and also that $\widetilde{D}\left(0, Z|x|^{\gamma}\right)$ and $\widetilde{D}\left(x, x+Z^{\prime}|x|^{\gamma}\right) \stackrel{\text { law }}{=} \widetilde{D}^{\prime}\left(0, Z^{\prime}|x|^{\gamma}\right)$ are independent.
- If anything in the above description fails - which is what defines event $A(x)$ - then instead bound $\widetilde{D}(0, x) \leqslant\left|x_{1}\right| 1_{A(x)}$.

Iterating the subadditivity bound leads to arguments of the form $|x| \gamma^{n+1}$ times $Z_{0} \prod_{k=1}^{n}\left|Z_{k}\right| \gamma^{k}$, where Z_{0}, Z_{1}, \ldots are i.i.d. copies of Z. In order to close the expression, we insert a random argument from the start:

Lemma

Let Z_{0}, Z_{1}, \ldots be i.i.d. copies of Z. The random variable

$$
W:=\left.Z_{0} \prod_{k=1}^{\infty}\left|Z_{k}\right|\right|^{k}
$$

is well defined and has moments of all orders. Moreover, for each $r>1$ the limit

$$
L_{\beta}(r):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \mathbb{E}\left[\widetilde{D}\left(0, W r^{\gamma^{-n}}\right)\right]
$$

where $W \Perp \widetilde{D}(\cdot, \cdot)$, exists and obeys

$$
\forall r>1: \quad L_{\beta}(r)=2 L_{\beta}\left(r^{\gamma}\right)
$$

$$
\text { where } \gamma:=\frac{s}{2 d} \text {. }
$$

The existence of W goes via Z having at least Gaussian tails. Note that then

Subadditivity gives

$$
Z \Perp W \Rightarrow Z|W|^{\gamma} \stackrel{\text { law }}{=} W
$$

$$
\widetilde{D}(0, W r) \stackrel{\text { law }}{\leqslant} \widetilde{D}\left(0,|W|^{\gamma} Z\right)+\widetilde{D}^{\prime}\left(0,|W|^{\gamma} Z^{\prime}\right)+1+|W r|_{1} 1_{A(W r)}
$$

which under expectation translates into

$$
\mathbb{E}[D(0, W r)] \leqslant 2 \mathbb{E}\left[\widetilde{D}\left(0,|W|^{\gamma} Z r^{\gamma}\right)\right]+1+\mathbb{E}\left(|W r|_{1} 1_{A(W r)}\right)
$$

As $\sup _{r>1} \mathbb{E}\left(|W r|_{1} 1_{A(W r)}\right)<\infty$, we have

$$
\mathbb{E}[D(0, W r)] \leqslant 2 \mathbb{E}\left[\widetilde{D}\left(0, W r^{\gamma}\right)\right]+c
$$

This shows that $n \mapsto 2^{-n}\left[\mathbb{E} D\left(0, W r \gamma^{-n}\right)+c\right]$ is non-increasing and so

$$
L_{\beta}(r):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} E\left[\widetilde{D}\left(0, W r^{r^{-n}}\right)\right]
$$

exists as claimed. The identity $L_{\beta}(r)=2 L\left(r^{\gamma}\right)$ follows.

From $L_{\beta}(r)=2 L\left(r^{\gamma}\right)$ and $\gamma^{-\Delta}=2$ we get $L_{\beta}(r) \approx(\log r)^{\Delta}$. Define ϕ_{β} so that

$$
L_{\beta}(r)=\phi_{\beta}(r)(\log r)^{\Delta}
$$

This gives log-log-periodicity relation

$$
\forall r>1: \quad \phi_{\beta}(r)=\phi_{\beta}\left(r^{\gamma}\right)
$$

Remaining steps (details omitted):

- Prove concentration (to improve convergence in the mean)
- Replace W by a deterministic point
- Interpolate doubly exponential sequences
- Replace restricted "distance" by actual distance

Warning: Limit does NOT exist a.s., at best in probability

Summarizing the above, we have derived

$$
D(0, x) \underset{|x| \rightarrow \infty}{=}\left[\phi_{\beta}(|x|)+o(1)\right](\log |x|)^{\Delta}
$$

As LRP model is scale-covariant, a natural conjecture is that ϕ_{β} is a constant. This would mean that also

$$
\psi_{\beta}(t):=\phi_{\beta}\left(\mathrm{e}^{\gamma^{-t}}\right)
$$

which is a 1-periodic function on the reals, $\psi_{\beta}(t+1)=\psi_{\beta}(t)$, would be constant. However, this turns out to be false ...

Theorem (B.-Krieger 2021)

Denote $m(\beta):=\sup \left\{k \in \mathbb{Z}: \gamma^{-k} \leqslant \log \beta\right\}$ for $\gamma:=\frac{s}{2 d}$ and set

$$
u(\beta):=\gamma^{m(\beta)} \log \beta \in\left[1, \gamma^{-1}\right) .
$$

Then for all $t \in[0,1]$,

$$
(\log \beta)^{\Delta} \psi_{\beta}\left(t-\frac{\log \left(\frac{u(\beta)}{2 d-s}\right)}{\log (1 / \gamma)}\right) \underset{\beta \rightarrow \infty}{\longrightarrow}\left[\frac{s}{2 d-s}(2 \gamma)^{-t}-2 \frac{s-d}{2 d-s} 2^{-t}\right](2 d-s)^{\Delta}
$$

with the limit uniform on $[0,1]$.

Corollary (Non-constancy)

For each \mathfrak{q} as above there is $\beta_{0} \in(0, \infty)$ such that ϕ_{β} is not constant for $\beta>\beta_{0}$.

Corollary (Scaling with β)

For each \mathfrak{q} as above there are $c, C \in(0, \infty)$ and $\beta_{1}>1$ such that

$$
\forall \beta>\beta_{1} \forall r>1: \quad \frac{c}{(\log \beta)^{\Delta}} \leqslant \phi_{\beta}(r) \leqslant \frac{C}{(\log \beta)^{\Delta}} .
$$

Idea: For $\beta \gg 1$ and each $n \geqslant 0$, we have

$$
D(x, y) \begin{cases}\leqslant n, & \text { for } N:=|x-y| \ll \beta^{\theta_{n}} \\ \geqslant n+1, & \text { for } N \gg \beta^{\theta_{n}},\end{cases}
$$

for some exponent $\theta_{n}>0$. This is checked inductively:

- $n=0$: a direct edge between x and y occurs with probability $\sim \beta N^{-s}$, so we have $\theta_{1}:=1 / \mathrm{s}$.
- $n=1$: an edge between x and a ball of radius $\beta^{\theta_{1}}$ centered at y occurs with probability $\sim \beta \times \beta^{d \theta_{1}} N^{-s}$, so $\theta_{2}:=\frac{1}{s}+\frac{d}{s} \theta_{1}$.
- general n : an edge between a ball of radius $\beta^{\theta_{k}}$ centered at x and a ball of radius $\beta^{\theta_{n-k}}$ centered at y occurs with probability $\beta \times \beta^{d \theta_{k}} \times \beta^{d \theta_{n-k}} N^{-s}$ so

$$
\theta_{n+1}:=\frac{1}{s}+\frac{d}{s} \max _{0 \leqslant k \leqslant n}\left(\theta_{k}+\theta_{n-k}\right)
$$

Define $\theta_{0}:=0$ and

$$
\theta_{n+1}:=\frac{1}{s}+\frac{d}{s} \max _{0 \leqslant k \leqslant n}\left(\theta_{k}+\theta_{n-k}\right)
$$

Lemma

Recall that $\gamma:=\frac{s}{2 d}$. The following holds for all $n \geqslant 0$:

$$
\theta_{2^{n}-1}=\frac{1}{s} \frac{1-\gamma^{n}}{1-\gamma} \gamma^{-n+1}
$$

and, for all integers k satisfying $2^{n}-1 \leqslant k \leqslant 2^{n+1}-1$,

$$
\theta_{k}=\frac{2^{n+1}-1-k}{2^{n}} \theta_{2^{n}-1}+\frac{k-2^{n}+1}{2^{n}} \theta_{2^{n+1}-1}
$$

In short, $k \mapsto \theta_{k}$ is piecewise linear with explicit values for $k \in\left\{2^{n}-1: n \geqslant 0\right\}$.

The above gives $D\left(0, \beta^{\theta_{n}} x\right) \sim n$. For $\lambda \in[0,1]$ with $2^{n} \lambda \in \mathbb{N}$ we get

$$
D\left(0, \beta^{\theta} \lambda 2^{n}+\left(1-\lambda 2^{n+1} x\right) \sim \lambda 2^{n}+(1-\lambda) 2^{n+1}=[\lambda+(1-\lambda) 2] 2^{n}\right.
$$

Asymptotic analysis shows $\theta_{2^{n}} \sim \frac{1}{2 d-s} \gamma^{-n}$ and so

$$
\theta_{\lambda 2^{n}+(1-\lambda) 2^{n+1}} \sim \lambda \theta_{2^{n}}+(1-\lambda) \theta_{2^{n+1}} \sim\left[\lambda+(1-\lambda) \gamma^{-1}\right] \frac{1}{2 d-s} \gamma^{-n}
$$

Hence

$$
L_{\beta}\left(\beta^{\left[\lambda+(1-\lambda) \gamma^{-1} \frac{1}{2 d-s}\right.}\right) \sim \lambda+(1-\lambda) 2
$$

and so

$$
\phi_{\beta}\left(\beta^{\left[\lambda+(1-\lambda) \gamma^{-1}\right] \frac{1}{2 d-s}}\right) \sim \frac{\lambda+(1-\lambda) 2}{\left[\lambda+(1-\lambda) \gamma^{-1}\right]^{\Delta}}(2 d-s)^{\Delta} \frac{1}{(\log \beta)^{\Delta}}
$$

Now pick $t \in[0,1]$ so that $\lambda+(1-\lambda) \gamma^{-1}=\gamma^{-t}$. Then $\lambda=\frac{2 d}{2 d-s}-\frac{s}{2 d-s} \gamma^{-t}$ and, after a calculation,

$$
\phi_{\beta}\left(\mathrm{e}^{\gamma^{-t} \frac{u(\beta)}{2 d-s}}\right) \sim 2^{-t}\left[\frac{s}{2 d-s} \gamma^{-t}-2 \frac{s-d}{2 d-s}\right](2 d-s)^{\Delta} \frac{1}{(\log \beta)^{\Delta}}
$$

Shifting the argument and rewriting in terms of ψ_{β}, we get the claim.

- Minimizing paths retain dyadic structure all the way to lattice scale.
- It thus matters when the dyadic refinements reach the scale $\beta^{-1 / s}$ at which direct connections become prevalent.
- This mechamism dominates the limit $\beta \rightarrow \infty$; for β fixed ϕ_{β} contains all the local optimization effects.

After all of this, we only have the leading order scale.
No info obtained on shapes of large balls: $L_{\beta}(2 r)=L_{\beta}(r)+o(1)$

Conjecture

For each $x \in \mathbb{Z}^{d}$, define Y_{x} by

$$
D(0, x)=\phi_{\beta}(|x|)\left[\log |x|-\frac{1}{2(2 d-s)} \log \log |x|+Y_{x}\right]^{\Delta}
$$

Then

$$
Y_{x} \xrightarrow[|x| \rightarrow \infty]{\text { law }} \text { Gumbel law }
$$

So ball of radius r should be close to $\left\{x \in \mathbb{Z}^{d}:|x| \leqslant \mathrm{e}^{\mathrm{r}^{1 / \Delta} \varphi(r)+O(1)}\right\}$ for some slowly varying φ. Long edges make this set very fuzzy, though.

THANK YOU!

