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Overarching theme

Goal: Describe extremal/exceptional values of log-correlated processes

Completed for:
o Branching Brownian motion
o Two-dimensional Gaussian Free Field

o A couple of other related processes

Talk today: Local time of two-dimensional simple random walk



Motivation (previous talk of Oren Louidor)

Erd6s and Taylor (1960): How much time does simple random walk on Z2 of
time-length n spent at its most frequented point?

For {X;: n > 1} SRW (with X = 0), let £, (x) := 3} 1ix.—x)
Then [ET60]: 3¢y, ¢z € (0, 0) s.t. w.h.p.

c1(logn)* < max £, (x) < co(logn)?
xeZ4

Dembo, Peres, Rosen and Zeitouni (2001):

p 4
(ogn? max ) =2 =

Q: Beyond leading order? Limit law?

Ind = 3: maxy ¢, (x) = O(logn) with limit law Poisson
Ind = 1: maxy {; (x) = O(4/n), at most 3 maximizers! (B.Toth 2001)



More motivation: Thick points

Definition

Say x € Z? is a A-thick point if

lnlx) > A%(logn)z

Dembo, Peres, Rosen and Zeitouni (2001):
-2
Z 1{4"(")??\%(1%71)2} — 12(1=A)+o(1)

xeZ?

Jego 2019: Full description of limit law for all A € (0, 1); cf previous talk



More motivation

Dembo, Peres, Rosen and Zeitouni (2006): What does the set of avoided (a.k.a.

late) points look like for random walk on torus?
SRW on torus T, := (Z/nZ)?. Define 6, n-late points as
Ly(a) := {x € Ty: by (x) = 0 for k(n) := 9%(nlogn)2}
Then wh.p. £,(0) = & for 6 > 1 and, for 6 € (0,1),
£4(0)] = 2(1-0)+0(1)

where 0(1) — 0 in probability
Q: Beyond leading order? Limit law?

Ind = 3: strong coupling to i.i.d. (Miller and Souzi 2017)
Cover time problem: Ding, Lee and Peres (2012), Ding (2014), ..., Cortines, Louidor and Saglietti (2019)



Simulations: single run

Set of visited sites Local time profile

Note: Fractal on range of SRW



More simulations: avoided points

SRW run until -multiple of cover time

w0

N :=2000, 8 := 0.1 (left) and 6 := 0.3 (right)

B>y



Our problem: Random walk in “planar” domains

Planar domains: D < R? bounded, open, “nice”

Discretization:
Dy i= {x e Z%: dys (315, D) > &}

Return mechanism: “boundary vertex” ¢

-
A ARV . W

P* :=law of SRW on Dy v {o} started from x

Local time: .
Lt(x> = mgltdeg(ﬁwﬂ (.X')

where deg(Dy) := Y xeDyuio) deg(x)



Setting the scales

Theorem (Max/min of local time)
Let g := % and assume {tN}n=1 is s.t., for some 6 > 0,
lim = 2g6
N (log N)? &
Then for any xy € Dy, in P*N-probability:
1
———— maxLy(x) — 2¢(vV0+ 1)2

(logN)? xeDy N—
and

1 ) 2

o Random walk is run for actual time ty deg(Dy) = N?(log N)?

o 6 = 1 marks the leading-order scale of the cover time



Scaling limit of late/avoided points

Theorem (Points avoided by SRW)
There exist random a.s.-diffuse Borel measures
{ZP: 1 e (0,1)}

on D satisfying P(0 < ZP(0) < o) = 1 for all O < D non-empty open s.t. for all
0 € (0,1) and any {tN}n=1 with

tn ~ 2¢0(log N)?

we have

It
Z Ly -0y 0N = 205

XEDN

~ N
where Wy := N2e™ s1sN




Thick/thin points

Recall: max Ly (x) ~ 29(V0 + l)z(log[\])2 and min Ly (x) ~ 28[(VO—1) v [)]z(logl\l)2
xeDy * xeDy '

At typical points: Ly (x) ~ ty ~ 2¢(logN)?

A-thick point: for A € [0,1],
Liy (x) = 2g(V8 + A)*(log N)?
A-thin point: for A € [0,v/0 A 1],

Ly (x) < Zg(\/g — )\)2(logN)2



More simulations: thick/thin points

N :=1000, 6 := 10 and A := £0.1 (same run of the walk)



Scaling limit of thick/thin points

Theorem (Random walk thick/thin points)
Suppose ty ~ 2g0(log N)? for 6 > 0 and let {an}n=1 be s.t.

Z\IIHOO (log N2~ 23(VO+ A

for some A # 0 with —(1 Af) <A< 1. Then

D
CN = Z /N © O(L, (x)—an)/v/2n
XGDN
where
N2 GNP
WN = e 2glogN
v/logN

obeys, for o := 2/[

/ —a2A2/16 ZD dx)@e”‘)‘hdh

Convenient notation: ZP, := ZP



Gaussian Free Field

Q: What are the Z)’? ?
Gaussian Free Field: centered Gaussian {/,: x € Dy} with
Cov(hy, hy) = GPN(x,y)

where GP¥(x,y) := @E"[ Z;’:Ol 1{x,=y}] is the Green function

Large-N asymptotic: For r°(z) := conformal radius of D from z € D,

GPN(x,x) = glog N + ¢p + glog r” (x/N) + o(1)

while, for x # y,
G™¥(x,y) = GP(x/N,y/N) +o(1)

where GP := the (continuum) Green function on D



GFF thick points

Setting scales:

Bolthausen, Deuschel and Giacomin (2001):
irelgz hy ~ 2,/glog N
Daviaud (2004): GFF thick points (A € (0,1))
#{x e Dy: hy > 2,/gAlog N} = N21-A)+o)

where 0(1) — 0 in probability



Scaling limit of GFF thick points

Biskup and Louidor (2019): Set

1

D

N = 7— Z Oy /N® by,
KN XGDN N

where

N2  _ay?
KN = e XlogN

\/log N

and {ay}n>1 obeys ay ~ 2,/gAlog N with A € (0,1). Then

nD 2% (1) ZP(dx) @ e *Mdh
N—oo

where Z/? is the (normalized) LQG measure at parameter A and
¢(A) := A~ 1e20M/3 /\/B7r
Jego (2019): Similar result for A-thick points of SRW

Limit law of maxyep,, hx known too: Bramson, Ding and Zeitouni (2015),
Biskup and Louidor (2015,2018,2020)



Zero-average process

Theorem (Thick points of zero-average DGFF)

The LQG measure admits a decomposition

ZB (dx) ' @Y ZD0(dx)

where Y 1L ZPP with Y = N(0,03) for

and

In addition,

03 = f dxdy GP(x, 1))
DxD

§p dy GP(x, 1)
SpypdzdyGP(z,y)

0(x) := Leb(D)

(’713 ‘ 2 I :0> B e(A) ZD0(dx) @ e~ Md

N—w
XGDN -

Intuitive form: Z2° faw (Z? ) §ph(x)dx = 0)



Identification with zero-average GFF

Plot of d-function:

Theorem (Limit measure formula)
Limit laws for avoided/thick/thin points hold with

ZP(dx) ' ()M CO-Y ZDO(qy)

where Y 1L ZP0 with Y = N(0,03)

Note: RHS kind of “log-normal interpolation” of Z} and Zf 0



Proof idea

General strategy:

@ Prove tightness

@ Characterize the law of (subsequential) weak limits
Ad (1): Away from “endpoint” values of parameters, tightness is verified by a
first-moment calculation

Ad (2): Earlier work (not giving sharp results) used 2nd moment calculations.
This requires truncation which is doable for GFF but difficult for local time.
An alternative approach goes via 2nd Ray-Knight Theorem/Dynkin Isomorphism



2nd Ray-Knight Theorem

Let {X;: t > 0} := constant-speed cont. time RW on V U {o}. Set

~ 1 t
gt(X) = deg(x)J;) ds 1{XS:x}

~

Denote T,(t) := inf{s > 0: {5(0) > t} and set

A Li(x) := Lz (%)
Note: Li(0) = t ... parametrization by time at o!

Theorem (Eisenbaum, Kaspi, Marcus, Rosen and Shi (2000))

Foreach t > 0, there is a coupling of EY and two GEFs h and h on V (with zero
boundary conditions at o) s.t.

h¥ and E}’ are independent
and, forallx e V,

LY () + 58 = 3 (e + V1)




Main idea continued

Assume we wish to describe points where ftN (x) ~ ay. If GFF on LHS can be
neglected, meaning

Ly (x (h + \/ZTN)

this corresponds to

either 1~ +/2ay — /2ty or h~ —/2ay —+/2tn

Only one eventuality relevant for thick/thin (not avoided) points. This
reduces the problem to GFF thick point asymptotic at scale

Gy = \/2ay — /2ty
For ty ~ 2¢68(log N)? and ay ~ 2¢(v/0 + 1)?(log N)? we get
an ~ 2,/gA1logN
so results of Biskup and Louidor (2019) are applicable.

Key problem: Control the effect of GFF on LHS! This leads to a convolution
identity that, fortunately, can be solved.



Avoided/light points

Light points: ftN(x) =0(1)

Key difference: For light/avoided points, GFF on LHS of 2nd Ray-Knight
formula acts as a thinning process with intensity O(1/4/log N)!

Light point measure:

1

D._ ~

Oy = =— >, SN ® 07,
NXGDN

Lemma (Light point thinning)

Suppose 9X tends in law to 9P along subsequence {Ny}. Then

+/log N
T @, = 9PE
k

1
t ‘ = /
xeDy N 1]:]_,1\02 2 8

Leb

Proof: Conditional 2nd moment calculation



A convolution identity

Recall: itN +in? law 3(h + +/2ty)?. Evaluating the measure on LHS against
functions of £ + 1h? yields:

Lemma (Convolution identity)
Given f € Co(D x [0,0)) with f > 0 denote

1

mJRdhf(x,h— iy

Then for every weak subsequential limit 9P of 9%,

f*Leb (x, E) -

(O, F110) 9 c(B) | 205 @ Phan f(x, )

simultaneously for all f as above




Solving the convolution identity

Use analytic arguments to prove unique solution. This yields:

gb v /2718 ¢(V0) Z%(dx)@y(dh)

N—oo
where

w(dh) = So(dh) + (inlﬂ)( ;9)”“11”)1(0,@)(;1)%

Restricting to atom at 0 gives

10 N law
\/? Z (B (0)=0}Ox/N 271g ¢(V/6) Bg(dx)

This gives law of avoided points in time parametrization by local time at ¢



Parametrization juggles

Need to reduce time parametrization to:
@ the actual time of cont.-time walk

@ discrete-time random walk



Parametrization juggles

Ad (1): Need to control the fluctuations of total time at a given time at 0. Key
observation: Summing 2nd-RN identity we get

S (L) 1) 45 D2 ER) = 2 (R ER) 41 Y R

xeDy xeV xeV xeDy

A covariance calculation shows that the GFF-squared terms are both order
|Dn|?. Since t = ty — 0, they can be neglected. Hence:

o Fluctuations of total time are asymptotically Gaussian with mean zero
and variance ~ 03t/ Dy/?
o Fixing the fluctuations is tantamount to fixing > .., Iy

Put together, this step amounts to

replacing Z?/é by @)=Y ZE,O (dx)

Ad (2): No effect for limit for avoided points, but additional factor due to
fluctuations of sums of exponentials appears for thick/thin points.



Work in progress

Goal: Random walk with periodic/reflecting b.c.

Key issue: GFF now pinned at starting point; picks up additional v/N
near-constant fluctuation. This shifts levels by term that diverges as N — co.



THANK YOU!



