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Overarching theme 2

Goal: Describe extremal/exceptional values of log-correlated processes

Completed for:
Branching Brownian motion
Two-dimensional Gaussian Free Field
A couple of other related processes

Talk today: Local time of two-dimensional simple random walk



Motivation (previous talk of Oren Louidor) 3

Erdős and Taylor (1960): How much time does simple random walk on Z2 of
time-length n spent at its most frequented point?

For tXn : n ě 1u SRW (with X0 “ 0), let `npxq :“
řn

j“0 1tXj“xu

Then [ET60]: Dc1, c2 P p0,8q s.t. w.h.p.

c1plog nq2 ď max
xPZd

`npxq ď c2plog nq2

Dembo, Peres, Rosen and Zeitouni (2001):

1
plog nq2

max
xPZ2

`npxq
P
ÝÑ
nÑ8

4
π

Q: Beyond leading order? Limit law?

In dě 3: maxx `npxq “ Oplog nqwith limit law Poisson

In d“ 1: maxx `npxq “ Op
?

nq, at most 3 maximizers! (B.Toth 2001)



More motivation: Thick points 4

Definition

Say x P Z2 is a λ-thick point if

`npxq ě λ
4
π
plog nq2

Dembo, Peres, Rosen and Zeitouni (2001):
ÿ

xPZ2

1
t`npxqěλ 4

π plog nq2u “ n2p1´λq`op1q

Jego 2019: Full description of limit law for all λ P p0, 1q; cf previous talk



More motivation 5

Dembo, Peres, Rosen and Zeitouni (2006): What does the set of avoided (a.k.a.
late) points look like for random walk on torus?

SRW on torus Tn :“ pZ{nZq2. Define θ, n-late points as

Lnpαq :“
!

x P Tn : `kpnqpxq “ 0 for kpnq :“ θ
4
π
pn log nq2

)

Then w.h.p. Lnpθq “ H for θ ą 1 and, for θ P p0, 1q,
ˇ

ˇLnpθq
ˇ

ˇ “ n2p1´θq`op1q

where op1q Ñ 0 in probability

Q: Beyond leading order? Limit law?

In dě 3: strong coupling to i.i.d. (Miller and Souzi 2017)

Cover time problem: Ding, Lee and Peres (2012), Ding (2014), . . . , Cortines, Louidor and Saglietti (2019)



Simulations: single run 6

Set of visited sites Local time profile

Note: Fractal on range of SRW



More simulations: avoided points 7

SRW run until θ-multiple of cover time

N :“ 2000, θ :“ 0.1 (left) and θ :“ 0.3 (right)



Our problem: Random walk in “planar” domains 8

Planar domains: D Ď R2 bounded, open, “nice”

Discretization:
DN :“

!

x P Z2 : d8
`

x{N, Dc˘ ą 1
N

)

Return mechanism: “boundary vertex” $

Px :“ law of SRW on DN Y t$u started from x

Local time:
Ltpxq :“

1
degpxq

`
tt degpDNqu

pxq

where degpDNq :“
ř

xPDNYt$u
degpxq



Setting the scales 9

Theorem (Max/min of local time)

Let g :“ 1
2π and assume ttNuNě1 is s.t., for some θ ą 0,

lim
NÑ8

tN

plog Nq2
“ 2gθ,

Then for any xN P DN, in PxN -probability:
1

plog Nq2
max
xPDN

LtNpxq ÝÑ
NÑ8

2g
`

?
θ ` 1

˘2

and
1

plog Nq2
min
xPDN

LtNpxq ÝÑ
NÑ8

2g
“

p
?

θ ´ 1q _ 0
‰2

Random walk is run for actual time tN degpDNq — N2plog Nq2

θ “ 1 marks the leading-order scale of the cover time



Scaling limit of late/avoided points 10

Theorem (Points avoided by SRW)

There exist random a.s.-diffuse Borel measures

tZD
λ : λ P p0, 1qu

on D satisfying Pp0 ă ZD
λ pOq ă 8q “ 1 for all O Ď D non-empty open s.t. for all

θ P p0, 1q and any ttNuNě1 with

tN „ 2gθplog Nq2

we have
1
pWN

ÿ

xPDN

1tLtN pxq“0u δx{N
law
ÝÑ

NÑ8
ZD?

θ

where pWN :“ N2e´
tN

g log N



Thick/thin points 11

Recall: max
xPDN

LtN pxq „ 2gp
?

θ` 1q2plog Nq2 and min
xPDN

LtN pxq „ 2grp
?

θ´ 1q_ 0s2plog Nq2

At typical points: LtN pxq „ tN „ 2gplog Nq2

λ-thick point: for λ P r0, 1s,

LtNpxq ě 2g
`

?
θ ` λ

˘2
plog Nq2

λ-thin point: for λ P r0,
?

θ ^ 1s,

LtNpxq ď 2g
`

?
θ ´ λ

˘2
plog Nq2



More simulations: thick/thin points 12

N :“ 1000, θ :“ 10 and λ :“ ˘0.1 (same run of the walk)



Scaling limit of thick/thin points 13

Theorem (Random walk thick/thin points)

Suppose tN „ 2gθplog Nq2 for θ ą 0 and let taNuNě1 be s.t.

lim
NÑ8

aN

plog Nq2
“ 2gp

?
θ ` λq2

for some λ ‰ 0 with ´p1^
?

θq ă λ ă 1. Then

ζD
N :“

1
WN

ÿ

xPDN

δx{N b δpLtN pxq´aNq{
?

2aN

where

WN :“
N2

a

log N
e´

p
?

2tN´
?

2aNq
2

2g log N

obeys, for α :“ 2{?g,

ζD
N

law
ÝÑ

NÑ8

d ?
θ

?
θ ` λ

e´α2λ2{16 ZD
λ pdxq b eαλhdh

Convenient notation: ZD
´λ :“ ZD

λ



Gaussian Free Field 14

Q: What are the ZD
λ ?

Gaussian Free Field: centered Gaussian thx : x P DNuwith

Covphx, hyq :“ GDNpx, yq

where GDNpx, yq :“ 1
degpyqE

xr
řτρ´1

k“0 1tXk“yus is the Green function

Large-N asymptotic: For rDpzq :“ conformal radius of D from z P D,

GDNpx, xq “ g log N` c0 ` g log rDpx{Nq ` op1q

while, for x ‰ y,
GDNpx, yq “ pGDpx{N, y{Nq ` op1q

where pGD :“ the (continuum) Green function on D



GFF thick points 15

Setting scales:

Bolthausen, Deuschel and Giacomin (2001):

max
xPDN

hx „ 2
?

g log N

Daviaud (2004): GFF thick points (λ P p0, 1q)

#
 

x P DN : hx ě 2
?

gλ log N
(

“ N2p1´λ2q`op1q

where op1q Ñ 0 in probability



Scaling limit of GFF thick points 16

Biskup and Louidor (2019): Set

ηD
N :“

1
KN

ÿ

xPDN

δx{N b δhx´paN

where

KN :“
N2

a

log N
e´

ppaNq
2

2g log N

and tpaNuně1 obeys paN „ 2?gλ log N with λ P p0, 1q. Then

ηD
N

law
ÝÑ

NÑ8
cpλqZD

λ pdxq b e´αλhdh

where ZD
λ is the (normalized) LQG measure at parameter λ and

cpλq :“ λ´1e2c0λ2{g{
?

8π

Jego (2019): Similar result for λ-thick points of SRW

Limit law of maxxPDN hx known too: Bramson, Ding and Zeitouni (2015),
Biskup and Louidor (2015,2018,2020)



Zero-average process 17

Theorem (Thick points of zero-average DGFF)

The LQG measure admits a decomposition

ZD
λ pdxq law

“ eλαdpxqY ZD,0
λ pdxq

where Y KK ZD,0
λ with Y “ N p0, σ2

Dq for

σ2
D :“

ż

DˆD
dxdy pGDpx, yq

and

dpxq :“ LebpDq
ş

D dy pGDpx, yq
ş

DˆD dz dy pGDpz, yqIn addition,
´

ηD
N

ˇ

ˇ

ˇ

ÿ

xPDN

hx “ 0
¯

law
ÝÑ

NÑ8
cpλqZD,0

λ pdxq b e´αλhdh

Intuitive form: ZD,0
λ

law
“

´

ZD
λ

ˇ

ˇ

ˇ

ş

D hpxqdx “ 0
¯



Identification with zero-average GFF 18

Plot of d-function:

Theorem (Limit measure formula)

Limit laws for avoided/thick/thin points hold with

ZD
λ pdxq law

“ cpλqeλαpdpxq´1qY ZD,0
λ pdxq

where Y KK ZD,0
λ with Y “ N p0, σ2

Dq

Note: RHS kind of “log-normal interpolation” of ZD
λ and ZD,0

λ



Proof idea 19

General strategy:
1 Prove tightness
2 Characterize the law of (subsequential) weak limits

Ad (1): Away from “endpoint” values of parameters, tightness is verified by a
first-moment calculation

Ad (2): Earlier work (not giving sharp results) used 2nd moment calculations.
This requires truncation which is doable for GFF but difficult for local time.
An alternative approach goes via 2nd Ray-Knight Theorem/Dynkin Isomorphism



2nd Ray-Knight Theorem 20

Let tXt : t ě 0u :“ constant-speed cont. time RW on VY t$u. Set

p`tpxq :“
1

degpxq

ż t

0
ds 1tXs“xu

Denote pτ$ptq :“ infts ě 0 : p`sp$q ě tu and set

pLtpxq :“ `
pτ$ptqpxq

Note: pLtp$q “ t . . . parametrization by time at $!

Theorem (Eisenbaum, Kaspi, Marcus, Rosen and Shi (2000))

For each t ě 0, there is a coupling of pLV
t and two GFFs h and h̃ on V (with zero

boundary conditions at $) s.t.
hV and pLV

t are independent
and, for all x P V,

pLV
t pxq `

1
2
phV

x q
2 “

1
2
`

h̃x `
?

2t
˘2



Main idea continued 21

Assume we wish to describe points where pLtNpxq « aN. If GFF on LHS can be
neglected, meaning

pLtNpxq «
1
2
`

h̃x `
a

2tN
˘2

this corresponds to

either h̃ «
a

2aN ´
a

2tN or h̃ « ´
a

2aN ´
a

2tN

Only one eventuality relevant for thick/thin (not avoided) points. This
reduces the problem to GFF thick point asymptotic at scale

paN :“
a

2aN ´
a

2tN

For tN „ 2gθplog Nq2 and aN „ 2gp
?

θ ` λq2plog Nq2 we get

paN „ 2
?

gλ log N

so results of Biskup and Louidor (2019) are applicable.

Key problem: Control the effect of GFF on LHS! This leads to a convolution
identity that, fortunately, can be solved.



Avoided/light points 22

Light points: pLtNpxq “ Op1q

Key difference: For light/avoided points, GFF on LHS of 2nd Ray-Knight
formula acts as a thinning process with intensity Op1{

a

log Nq!

Light point measure:

ϑD
N :“

1
pWN

ÿ

xPDN

δx{N b δ
pLtN pxq

Lemma (Light point thinning)

Suppose ϑD
N tends in law to ϑD along subsequence tNku. Then

a

log N
pWN

ÿ

xPDN

δx{N b δ
pLtN pxq

b δhx
law
ÝÑ

N“Nk
kÑ8

ϑD b
1

a

2πg
Leb

Proof: Conditional 2nd moment calculation



A convolution identity 23

Recall: pLtN `
1
2 h2 law

“ 1
2ph̃`

?
2tNq

2. Evaluating the measure on LHS against
functions of `` 1

2 h2 yields:

Lemma (Convolution identity)

Given f P CcpDˆ r0,8qq with f ě 0 denote

f ˚Lebpx, `q :“
1

a

2πg

ż

R

dh f
`

x, `` h2

2

˘

Then for every weak subsequential limit ϑD of ϑD
N,

@

ϑD, f ˚LebD law
“ cp

?
θq

ż

ZD?
θ
pdxq b eα

?
θ hdh f

`

x, h2

2

˘

simultaneously for all f as above



Solving the convolution identity 24

Use analytic arguments to prove unique solution. This yields:

ϑD
N

law
ÝÑ

NÑ8

a

2πg cp
?

θq ZD?
θ
pdxq b µpdhq

where

µpdhq :“ δ0pdhq `
ˆ 8
ÿ

n“0

1
n!pn` 1q!

´α2θ

2

¯n`1
hn
˙

1p0,8qphqdh

Restricting to atom at 0 gives
a

log N
pWN

ÿ

xPDN

1
tpLtN pxq“0uδx{N

law
ÝÑ

NÑ8

a

2πg cp
?

θq ZD?
θ
pdxq

This gives law of avoided points in time parametrization by local time at $



Parametrization juggles 25

Need to reduce time parametrization to:
1 the actual time of cont.-time walk
2 discrete-time random walk



Parametrization juggles 26

Ad (1): Need to control the fluctuations of total time at a given time at $. Key
observation: Summing 2nd-RN identity we get

ÿ

xPDN

`

Ltpxq ´ t
˘

`
1
2

ÿ

xPV

`

h2
x ´ Eh2

x
˘

“
1
2

ÿ

xPV

`

h̃2
x ´ Eh̃2

x
˘

` t
ÿ

xPDN

h̃x

A covariance calculation shows that the GFF-squared terms are both order
|DN|

2. Since t “ tN Ñ8, they can be neglected. Hence:
Fluctuations of total time are asymptotically Gaussian with mean zero
and variance „ σ2

Dt|DN|
2

Fixing the fluctuations is tantamount to fixing
ř

xPDN
h̃x

Put together, this step amounts to

replacing ZD?
θ

by eλαpdpxq´1qY ZD,0
λ pdxq

Ad (2): No effect for limit for avoided points, but additional factor due to
fluctuations of sums of exponentials appears for thick/thin points.



Work in progress 27

Goal: Random walk with periodic/reflecting b.c.

Key issue: GFF now pinned at starting point; picks up additional
?

N
near-constant fluctuation. This shifts levels by term that diverges as N Ñ8.
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THANK YOU!


