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Abstract: We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattice) ver-
sions of suitably regular continuum domains D⊂ C and describe the scaling limit, including local
structure, of the level sets at heights growing as a λ -multiple of the height of the absolute maxi-
mum, for any λ ∈ (0,1). We prove that, in the scaling limit, the scaled spatial position of a typical
point x sampled from this level set is distributed according to a Liouville Quantum Gravity (LQG)
measure in D at parameter equal λ -times its critical value, the field value at x has an exponential
intensity measure and the configuration near x reduced by the value at x has the law of a pinned
DGFF reduced by a suitable multiple of the potential kernel. In particular, the law of the total size
of the level set, properly-normalized, converges that that of the total mass of the LQG measure.
This sharpens considerably an earlier conclusion by Daviaud [13].

1. INTRODUCTION

It has long been recognized that the two-dimensional continuum Gaussian Free Field (CGFF) of-
fers a variety of constructions of random fractals with an underlying conformally-invariant struc-
ture. This has been used fruitfully in the work of Schramm and Sheffield [29] on the convergence
to SLE4 of the level lines at specific heights of order unity and the ensuing coupling of the whole
field to the Conformal Loop Ensemble by Sheffield and Werner [27,28]. Other examples include
the construction of the Liouville Quantum Gravity measures by Duplantier and Sheffield [16] as
well as the recent research programs of Miller and Sheffield on imaginary geometry [19–22] and
the connection between the Liouville Quantum Gravity and the Brownian Map [23, 24].

A parallel, and largely independent, line of recent research has focused on various quantitative
aspects of the extremal values associated with the discrete Gaussian Free Field (DGFF). This is a
Gaussian process {hx : x ∈ Z2}marked by a proper (typically finite) subset V of the square lattice
(other infinite graphs can be considered as well) with the law determined by

E(hx) = 0 and E(hx hy) = GV (x,y), (1.1)

where GV denotes the Green function of the simple symmetric random walk in V killed upon exit
from V . (In particular, h vanishes outside of V almost surely.) Here an early paper of Bolthausen,
Deuschel and Giacomin [8] showed that the maximum of the DGFF in square boxes VN :=
(0,N)2∩Z2 grows as

max
x∈VN

hx ∼ 2
√

g logN, N→ ∞, (1.2)
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FIG. 1 Plots of the level sets (1.3) for a sample of the DGFF on a square domain with
N := 500 and λ taking values (as labeled left to right) 0.1, 0.3 and 0.5, respectively.
The clustering (and fractal) nature of these sets is quite apparent.

where “∼” designates that the ratio of the two quantities tends to one in the stated limit and
g := 2/π is a constant such that the Green function obeys GVN (x,x) = g logN +O(1) as N → ∞

for x “deep” inside VN . Daviaud [13] subsequently finessed the approach of [8] to capture some
geometric aspects of the intermediate level sets{

x ∈VN : hx ≥ 2
√

gλ logN
}

for λ ∈ (0,1). (1.3)

He showed that this set contains N2(1−λ 2)+o(1) points, where o(1)→ 0 in probability as N→ ∞,
and thus demonstrated a fractal nature of this set. (The structure of the exponent is quite universal;
see Chatterjee, Dembo and Ding [12]. Continuum versions of this result exist, dealing with thick
points of CGFF; cf Hu, Peres and Miller [17].) Other fractal properties were also proved; e.g. the
growth-rate exponents of its intersection with balls of increasing radii.

The objective of the present paper is to show that the intermediate level set (1.3) admits a non-
trivial scaling limit which can be quite explicitly characterized. A number of issues need to be
addressed when setting the problem up mathematically. The first one is a proper formulation of
the limit. Indeed, after scaling the space by N, the set (1.3) is increasingly dense everywhere in the
unit square [0,1]2 and so taking its limit directly (e.g., in the topology of Hausdorff convergence)
does not seem useful. We resolve this by encoding the level set into the point measure

∑
x∈VN

δx/N⊗δhx−aN , (1.4)

where aN is a scale sequence such that, in light of (1.2),
aN

logN
−→
N→∞

2
√

gλ (1.5)

for some λ ∈ (0,1). The next issue is unbounded mass, and that even under integration against
compactly-supported continuous functions. We resolve this by showing that (1.4) can be normal-
ized by a deterministic quantity so that a non-degenerate distributional limit becomes possible.
Another issue is dependence on the underlying domain; we resolve this by working in a class of
lattice approximations DN of a “nice” continuum set D⊂ C. This will be useful technically and,
moreover, will permit discussion of behavior under conformal maps.
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2. MAIN RESULTS

Throughout the rest of the paper we will write hV (x) to denote the DGFF in V evaluated at x. The
presentation of our results opens up with the existence of the scaling limit.

2.1 Existence of scaling limit.

We start by fixing the class of admissible domains. Let D be the class of all bounded open sets
D⊂C with a finite number of connected components and with boundary ∂D that has only a finite
number of connected components with each having a positive (Euclidean) diameter. Given D∈D,
we will restrict to sequences {DN} of lattice domains such that

DN ⊆
{

x ∈ Z2 : d∞(x/N,Dc)> 1/N
}

(2.1)

and, for each δ > 0 and all N sufficiently large, also

DN ⊇
{

x ∈ Z2 : d∞(x/N,Dc)> δ
}
, (2.2)

where d∞ denotes the `∞-distance on Z2. Note that x ∈ DN implies x/N ∈ D.
Next let us consider the DGFF φ on Z2 pinned to zero at the origin or, equivalently, the DGFF

on Z2 r{0}. This is a Gaussian process {φx : x ∈ Z2} with law to be denoted by ν0 which is of
mean zero and covariance given by

Eν0

(
φxφy) = a(x)+a(y)−a(x− y), (2.3)

where a : Z2 → [0,∞) is the potential kernel, i.e., the unique function that obeys a(0) = 0, is
discrete harmonic on Z2 r {0} and has the asymptotic form a(x) = g log |x|+O(1) as |x| → ∞,
with |x| denoting the Euclidean norm of x. Our main result is then:

Theorem 2.1 For each λ ∈ (0,1) and each D ∈D, there is a random Borel measure ZD
λ

on D
with E[ZD

λ
(D)] ∈ (0,∞) such that the following holds for each sequence aN satisfying (1.5) and

each sequence DN of scaled-up versions of D obeying (2.1–2.2): Set

KN :=
N2
√

logN
e−

a2
N

2g logN (2.4)

and, for each sample hDN of the DGFF in DN , define the point measure

η
D
N :=

1
KN

∑
x∈DN

δx/N⊗δhDN (x)−aN
⊗δ{hDN (x)−hDN (x+z) : z∈Z2}. (2.5)

Then, relative to the topology of vague convergence of measures on D×R×RZ2
,

η
D
N

law−→
N→∞

ZD
λ
(dx) ⊗ e−αλhdh ⊗ νλ (dφ), (2.6)

where α := 2/
√

g and νλ is the probability measure on RZ2
defined by

νλ ( ·) = ν
0
(

φ +
2
√

g
λ a ∈ ·

)
, (2.7)

with ν0 and a as specified above.

As it turns out, the convergence in (2.6) actually holds in (a somewhat larger) space of Radon
measures on D× (R∪{+∞})×RZ2

. As an immediate consequence we thus get:
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Corollary 2.2 Let D ∈ D. For any DN related to D as in (2.1–2.2), any sequence aN such
that (1.5) holds with some λ ∈ (0,1), and KN as in (2.4),

1
KN

#
{

x ∈ DN : hDN (x)≥ aN
} law−→

N→∞
(αλ )−1 ZD

λ
(D). (2.8)

Moreover, the random variables on the left are uniformly integrable and the convergence thus
holds also under expectation.

As is readily checked, (1.5) yields KN = N2(1−λ 2)+o(1) as N → ∞. Since ZD
λ
(D) ∈ (0,∞) a.s.

(see Theorem 2.3(7)), (2.8) determines the asymptotic size of the level set (1.3). This strengthens
considerably the aforementioned conclusion of Daviaud [13]. The asymptotic positivity of the
size of the level set normalized by its expectation appears already in the recent work by the first
author, Ding and Goswami [4].

2.2 Properties of Zλ -measures.

In order to make our description of the limit law in (2.6) complete, we have to characterize the law
of the random measure ZD

λ
. For this, we will first note a number of properties of these measures

that will in fact be proved jointly with the above convergence theorem.
We first need some additional notations. For each D ∈D and each x ∈ D, let ΠD(x, ·) denote

the harmonic measure on ∂D relative to x. As is well known (see, e.g., [6, Lemma 2.3]), if D̃⊆D
are two admissible domains, then

CD,D̃(x,y) = g
∫

∂D
Π

D(x,dz) log |y− z|−g
∫

∂ D̃
Π

D̃(x,dz) log |y− z| (2.9)

defines a symmetric, positive semi-definite function CD,D̃ : D̃× D̃→ R which is analytic in both
variables. We may thus define {ΦD,D̃(x) : x ∈ D̃} to be a Gaussian field with mean zero and
covariance CD,D̃; this field has smooth sample paths a.s. For λ ≥ 0, we define ψD

λ
: D→ [0,∞) by

ψ
D
λ
(x) := exp

{
2λ

2
∫

∂D
Π

D(x,dz) log |x− z|
}
. (2.10)

For D simply connected, ψD
λ
(x) is the 2λ 2-th power of the conformal radius of D from x. Setting

ψD
λ
(x) := 0 for x ∈ ∂D, the resulting function is continuous on D. Writing Leb(A) to denote the

Lebesgue measure of a (measurable) set A⊂ R2, we then have:

Theorem 2.3 Let λ ∈ (0,1) and recall that α := 2/
√

g. Then the family of (laws of) random
measures {ZD

λ
: D ∈D} obeys the following properties:

(1) For each D ∈D, the measure ZD
λ

is supported on D; i.e., ZD
λ
(R2 rD) = 0 a.s.

(2) If A⊂ D ∈D is measurable with Leb(A) = 0, then ZD
λ
(A) = 0 a.s.

(3) There is c = c(λ ) ∈ (0,∞) such that for each D ∈D and each measurable A⊂ D,

EZD
λ
(A) = c

∫
A

ψ
D
λ
(x)dx. (2.11)

(4) If D, D̃ ∈D obey D∩ D̃ = /0, then

ZD∪D̃
λ

(dx) law
= ZD

λ
(dx)+ZD̃

λ
(dx), (2.12)

with the measures ZD
λ

and ZD̃
λ

on the right regarded as independent.
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(5) (Gibbs-Markov) If D, D̃ ∈D obey D̃⊆ D and Leb(Dr D̃) = 0, then

ZD
λ
(dx) law

= eαλΦD,D̃(x) ZD̃
λ
(dx), (2.13)

where {ΦD,D̃(x) : x ∈ D̃} is as above and is regarded as independent of ZD̃
λ

.

(6) The law of ZD
λ

is translation invariant; Za+D
λ

(a+dx) law
= ZD

λ
(dx) for each a ∈ R2.

(7) For each A⊂ D non-empty and open, ZD
λ
(A)> 0 a.s.

The properties (1-6), for a given c > 0 in (2.11), determine the laws of {ZD
λ

: D ∈D} uniquely.

Obviously, (2) is a special case of (3) although we prefer to state these separately. The con-
stant c in (2.11) can be computed explicitly; just compare (2.8) with (3.6). Perhaps the most
important property of all is (5). Here we note that the measure on the right of (2.12) is well
defined due to the fact that ZD̃

λ
(Dr D̃) = 0 a.s. thanks to property (1), and this carries no loss on

the left-hand side because also ZD
λ
(Dr D̃) = 0 a.s. thanks to property (2). We will refer to (5)

— sometimes also in conjunction with (4) — as the Gibbs-Markov property. This is because
properties (4-5) arise directly from the Gibbs-Markov decomposition of the DGFF; cf (A.6).

By property (6), the law of ZD
λ

transforms canonically under the spatial shifts. The behavior
of ZD

λ
under scaling of D is more subtle as it is intimately tied to the existence of the limit (2.6) and

its independence of the sequence of discrete domains DN and of how the centering sequence aN
achieves the overall asymptotic (1.5). Once a suitable scaling relation is established, the Gibbs-
Markov property yields also rotation invariance and, in fact, leads to:

Theorem 2.4 Let λ ∈ (0,1). Under any conformal bijection f : D→ f (D) between the admis-
sible domains D, f (D) ∈D, the laws of the above measures transform as

Z f (D)
λ
◦ f (dx) law

= | f ′(x)|2+2λ 2
ZD

λ
(dx). (2.14)

2.3 Connection to Liouville Quantum Gravity.

Although the above properties already determine the law of {ZD
λ

: D ∈D} uniquely, we are able
to make even a more explicit connection with the so called Liouville Quantum Gravity measures
that have been introduced and studied by Duplantier and Sheffield [16].

Again we start with some definitions. Let H1
0(D) denote the closure of the set of smooth,

functions with compact support in D with respect to the norm induced by the Dirichlet inner
product 〈 f ,g〉∇ := 1

4
∫

D ∇ f (x) ·∇g(x)dx. Given a sequence {Xn : n≥ 1} of i.i.d. standard normal
random variables and an orthonormal basis { fn : n≥ 1} in H1

0(D), define

ϕn(x) :=
n

∑
k=1

Xk fk(x). (2.15)

For each β ∈ [0,∞), define the random measure

µ
D,β
n (dx) := 1D(x)eβϕn(x)− β2

2 E[ϕn(x)2] dx. (2.16)

As goes back to Kahane [18], there exists a random, a.s. finite (albeit possibly trivial) Borel mea-
sure µ

D,β
∞ — called the Gaussian multiplicative chaos associated with the continuum Gaussian
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FIG. 2 A sample of the LQG measure ψD
λ
(x)µD,β

∞ (dx) for D a unit square and pa-
rameters β = λα and λ = 0.3. The high points indicate places of high local intensity.

Free Field — which is concentrated on D and such that, for each measurable set A,

µ
D,β
n (A) −→

n→∞
µ

D,β
∞ (A) a.s. (2.17)

It is also known (cf a remark after Rhodes and Vargas [25, Theorem 5.5]) that for each β ∈ (0,βc),
where (in our normalization) βc :=α = 2/

√
g, we have µ

D,β
∞ (D)> 0 a.s. Moreover, as was shown

in [25, Theorem 5.5], the law of the limit measure does not depend on the choice of the above
orthonormal basis. (In fact, thanks to Shamov [26, Corollary 5], the law of µ

D,β
∞ is determined

solely by its expectation and the way the measure transforms under the Cameron-Martin shifts of
the underlying CGFF.) With this stated, we now claim:

Theorem 2.5 Let λ ∈ (0,1), α := 2/
√

g and consider the family of measures {ZD
λ

: D ∈D} as
above. Then, for c ∈ (0,∞) as in (2.11) and for each D ∈D,

ZD
λ
(dx) law

= cψ
D
λ
(x)µ

D,λα
∞ (dx). (2.18)

In particular, ZD
λ

has the law of the Liouville Quantum Gravity measure in D corresponding to
(subcritical) parameter β := λα .

2.4 Remarks and open problems.

We proceed by a series of remarks and questions left to be studied.

(1) General Gaussian processes: We believe that the form of the limit measure in (2.6) is actually
quite universal. For instance, for i.i.d. Gaussians indexed by the vertices in DN (see Fig. 3) with
variance g logN with same KN we get the same limit statement with ZD

λ
replaced by (a multiple

of) the Lebesgue measure on D and νλ by the point mass concentrated on φ defined by φ0 := 0
and φx := −∞ for x 6= 0. That ZD

λ
is itself random in the case of the DGFF is a reflection of

long-range correlations.

(2) Simultaneous limit for all λ : Our proofs are technically based on the computation of the first
two moments of the measure ηD

N integrated against compactly-supported, continuous functions.
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FIG. 3 Left: A sample of the measure in (1.4) on a square of side-length N := 300
with λ := 0.2. Right: A corresponding sample for i.i.d. normals with mean zero and
variance g logN. Only the points with positive vertical coordinate are depicted.

(This is literally true when λ < 1/
√

2 with a truncation needed for complementary λ .) One
could use similar techniques to study the level sets for several values of λ simultaneously but the
number of required moments seems to increase with the number of the levels to be controlled. In
particular, we presently do not see a way to solve:

Problem 2.6 Find a way to extract a joint distributional limit of the level sets (1.3), or their
associated point measures (2.5), simultaneously for all λ ∈ (0,1).

Our belief that a joint limit should exist is supported by the fact that (2.15–2.17), and a suitable
continuity argument, define the LQG measure for all β ∈ (0,βc) at the same time. This is because
the LQG measure is a measurable function of the underlying CGFF.

(3) Relation to extremal process: Our point process-based approach is strongly motivated by re-
cent advances in the understanding of the extremal values of the DGFF; i.e., roughly speaking, the
set (1.3) with λ := 1. Here, first, building on the work of Bolthausen, Deuschel and Zeitouni [9]
and Bramson and Zeitouni [11], Bramson, Ding and Zeitouni [10] showed that for

mN := 2
√

g logN− 3
4
√

g log logN, (2.19)

the centered maximum, maxx∈VN hx−mN , converges to a non-degenerate distributional limit as
N→∞. Then, in [5–7], the present authors described the limit of the full extremal process for the
DGFF expressed in terms of the “structured” point process,

η
D
N,r := ∑

x∈DN

1{hx=maxz∈Λr(x) hz}δx/N⊗δhx−mN ⊗δ{hx−hx+z : z∈Z2}, (2.20)

where Λr(x) := {z ∈ Z2 : |z− x| ≤ r} and the indicator thus effectively restricts the sum to the
points where the field has an r-local maximum. The main result of [5–7] is that, for any rN with
rN → ∞ and N/rN → ∞, relative to the topology of vague convergence,

η
D
N,rN

law−→
N→∞

PPP
(

ZD(dx) ⊗ e−αhdh ⊗ ν1(dφ)
)
, (2.21)
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where PPP stands for Poisson point process, ZD is a random a.s.-finite Borel measure on D,
and ν is a (deterministic) probability measure on [0,∞)Z

2
; cf (2.26). In [6], the ZD measure was

shown to coincide with a version of the critical Liouville Quantum Gravity; unfortunately, the
identification with the versions constructed in Duplantier, Rhodes, Sheffield and Vargas [14, 15]
has not yet been fully completed. Notwithstanding, in [6] we show that

Z f (D)
1 ◦ f (dx) law

= | f ′(x)|4 ZD
1 (dx). (2.22)

This corresponds, at least formally, to λ ↑ 1 limit of (2.14). The λ ↓ 0 limit reduces ZD
λ

to (a
multiple of) the Lebesgue measure on D.

(4) Conformal invariance and uniqueness of LQG measure: The previous remark brings us to the
formulation of the conformal transformation rule in Theorem 2.4. In Duplantier and Sheffield [16,
Proposition 1.2], a version of this rule is stated for the LQG measure in the following form:
Supposing that the CGFF hD in a domain D transforms under any conformal map f : D→ f (D)
(in our parametrization) as follows

h f (D) law
= hD ◦ f +

( 2
β
+

2β

α2

)
log | f ′| (2.23)

(note that this requires working with CGFF of non-zero mean and/or Cameron-Martin shifts),
the LQG measure in D for parameter β transforms into the corresponding LQG measure in f (D).
Unfortunately, this harbors a technical caveat: The measure must be realized as a unique function
of the CGFF function of the CGFF or, at least, one that is independent of the approximation
scheme used to define it. This is in fact a subtle issue that has been fully settled only quite
recently (cf the aforementioned references to [25, Theorem 5.5] or [26, Corollary 5]).

Our approach to Theorem 2.4 has the advantage that it works solely with the family of random
measures {ZD

λ
: D ∈D} and, in particular, avoids dealing with the uniqueness of LQG and/or its

dependence on the underlying CGFF. In fact, Theorem 2.4 could concisely be stated as:

Theorem 2.4’ Every family of measures {ZD
λ

: D∈D} satisfying properties (1-6) in Theorem 2.3
obeys also (2.14), for each conformal bijection f : D→ f (D) with D, f (D) ∈D.

Our proof of (2.14) reduces, after some minor amount of preparation, to the same argument as
the proof of (2.22) in Theorem 7.2 in [6]. The only time when we need to invoke uniqueness of
the LQG measure is, quite naturally, when we identify ZD

λ
with the (unique) LQG measure in the

proof of Theorem 2.5.

(5) Fluctuations around random limit: Our next remark concerns going beyond the limit state-
ment (2.6). The point is that the limit measure, albeit random, captures only the leading-order
growth of the level set. We thus pose:

Problem 2.7 Characterize the limit law of the (suitably scaled) fluctuations in the limit (2.6).

To make the formulation easier, one may choose to work in the setting when all the DGFFs are
defined on the same probability space as the limit LQG measure. Perhaps the easiest underlying
graph for this is the triangular lattice.

(6) Crossover to critical regime: Of quite some interest is how the behavior for λ < 1 blends
with that at λ = 1. Our proofs only apply for aN such that aN/ logN is, in the limit, strictly less
than 2

√
g. This is for a good reason: When aN/ logN → 2

√
g, the growth rate of the requisite
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normalizing sequence should be slower than (2.4). This stems from a subtle entropic-repulsion
effect that lies at the heart of the paper [7] and can be seen by noting that plugging aN := mN for
mN as in (2.19) results in KN ∼ logN. We thus pose:

Problem 2.8 Suppose that aN/ logN → 2
√

g yet mN − aN → ∞. Prove that, for a suitably re-
defined KN , we still have (2.5) with ZD

λ
replaced by the critical LQG measure ZD from (2.21).

An affirmative resolution of this problem may in fact require that mN−aN tends to infinity at some
minimal rate. A reasonable guess is that mN−aN of order

√
logN should already be enough. This

scale appears naturally as it marks the level where the discrete approximation to the critical LQG
measure is typically supported.

(7) Beyond 2D DGFF: A natural question is of course whether the above results are in any
sense universal for other models that are, at least at large spatial scales, well captured by CGFF.
These include general logarithmically-correlated Gaussian fields, gradient models and local time
of a two-dimensional simple random walk. Some progress on these has already been made (e.g.,
Belius and Wu [3], Abe [1]).

2.5 Proof strategy.

The overall strategy of our proofs is rather simple. Through moment calculations for the size of
the level set, we establish tightness and asymptotic non-triviality of the measures {ηD

N : N ≥ 1}
relative to the vague topology. This permits extraction of subsequential weak limits. We then
proceed to derive various relations that such limits have to satisfy which ultimately characterize
them uniquely. This proves existence of the limit as well as its desired properties.

The specific “characterization” steps are as follows. First we focus only on the measures (2.5)
restricted to the first two coordinates. One more (subtle) second moment calculation shows that
every subsequential limit ηD of such two-coordinate measures admits the decomposition

η
D(dxdh) = ZD

λ
(dx)⊗ e−αλhdh, (2.24)

with ZD
λ

a non-degenerate, a.s. finite measure whose law possibly depends on the subsequence,
the sequence of approximation domains DN as well as the way aN approaches the limit (1.5).

Next we demonstrate that the measures ZD
λ

, with D restricted to a suitable countable collection
of domains (this is the best one can hope to have when extracting limits by subsequences), obey
properties (1-7) in Theorem 2.3. Property (5) is then particularly important, as it yields a repre-
sentation of ZD

λ
, for D a dyadic square, in terms of a multiplicative chaos measure. From here we

get uniqueness of the law of ZD
λ

on dyadic squares; one more use of property (5) then extends this
to all D ∈ D. The existence of the limit of ηD

N , and its independence of the approximation do-
mains DN or the specific way aN achieves the limit aN/ logN→ 2

√
gλ , follow. This pretty much

completes the proof of Theorems 2.1, 2.3 and Theorem 2.5 for the two-coordinate measures.
The sheer existence of the limit (and translation invariance of the DGFF) now implies the

transformation rule for shifts and scaling of the underlying domain:

Za+rD
λ

(a+ rdx) law
= r2+2λ 2

ZD
λ
(dx), a ∈ R2, r > 0. (2.25)

The representation using multiplicative chaos adds rotation invariance to this as well. One more
use of property (5) for a decomposition of a given D using a myriad of tiny dyadic squares then
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permits us to apply these symmetries “infinitesimally” thus proving, with the help of conformal
invariance of the “binding” fields ΦD,D̃, Theorem 2.4.

As a final step, we extend control to the full three-coordinate process (2.5). This boils down to
yet another moment calculation, which yields factorization of the limit into the product measure
on the right of (2.6). It is easy to see why the limit law of hDN (x)−hDN (x+ ·) should be described
by (2.7): Conditioning on hDN (x) to be roughly 2

√
gλ logN changes the mean of the field at y

by, roughly, 2√
g λa(y− x) while the variance tends to that of the DGFF on Z2 r {0}. We note

that a similar reasoning applies also to the extremal process limit (2.21) except there the “cluster
law” ν1 requires an extra conditioning (to ensure a local maximum at x) and taking a limit,

ν1(·) = lim
r→∞

ν
0
(

φ +
2
√

g
a ∈ ·

∣∣∣∣φ(x)+ 2
√

g
a(x)≥ 0: |x| ≤ r

)
. (2.26)

This limit is singular, which is a source of much headache in the proofs of [7].

Remark 2.9 The above strategy — extract a subsequential limit and then prove its uniqueness
— also lies at the core of our earlier work [5–7] on the extrema of the DGFF. However, the two
approaches are technically quite different, both in the proof of the factorization (which, in [5–7],
relies on a connection with particle systems) and in the proof of uniqueness (which, for the
extremal values, relies on the existence of the limit of the centered absolute maximum).

Since we are dealing with scaling limits of the DGFF, it is no surprise that we will need to
invoke bounds on, as well as limits of, the Green function in various lattice domains of interest.
The limit statements in particular require weak convergence of the harmonic measure on 1

N ∂DN
to that on ∂D. This is where the containment D ∈ D and relations (2.1–2.2) are required. To
make referencing easier, we collect the needed statements in the Appendix.

3. PROOFS IN THE SECOND MOMENT REGIME

We are now ready to commence the exposition of our proofs. As noted above, the starting point
are calculations of the first two moments of the size of the level set. These are straightforward for
λ ∈ (0,1/

√
2) but harder in the complementary regime of λ , where additional (albeit standard)

truncations are required to keep the second moment comparable to the square of the first. For ease
of exposition as well as pedagogical appeal, we will first deal with the former regime leaving the
latter to a subsequent section.

Throughout this section, we thus assume that aN is a sequence such that (1.5) holds for
some λ ∈ (0,1/

√
2). We suppose that, for each D ∈ D, a sequence {DN} of approximating

lattice domains is given satisfying (2.1–2.2). Unless stated otherwise, all estimates will depend
on the choice of D and the sequences aN and DN .

3.1 Level-set size moments.

For each b ∈ R, define

Γ
D
N(b) :=

{
x ∈ DN : hDN (x)≥ aN +b

}
. (3.1)

We begin by a bound on the overall size of ΓD
N(b):
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Lemma 3.1 For each D ∈D there is c = c(D) ∈ (0,∞) such that for all b ∈ R with |b| ≤ logN,
all non-negative sequences aN satisfying aN ≤ 4

√
g logN, all sequences DN satisfying (2.1–2.2),

all A⊂ DN and all N ≥ 1, we have

E
∣∣ΓD

N(b)∩A
∣∣≤ cKN

|A|
N2 e−

aN
g logN b . (3.2)

Proof. The claim will follow by summing over x ∈ DN once we prove that, for some constant c
depending only on the diameter of D, we have

P
(
hDN (x)≥ aN +b

)
≤ c

1√
logN

e−
a2

N
2g logN e−

aN
g logN b (3.3)

uniformly in x ∈ DN and in b ∈ [− logN, logN]. To this end we first invoke the Gibbs-Markov
property of the DGFF (cf (A.6)) to note that, if U ⊂V are finite lattice domains, then by writing
hV (x) law

= hU(x)+ϕV,U(x) and requiring ϕV,U(x)≥ 0,

P
(
hU(x)≥ a

)
≤ 2P

(
hV (x)≥ a

)
. (3.4)

By enlarging DN to, say, a square domain D̃N of comparable diameter, we may thus assume
that all x ∈ DN lie deep inside D̃N . The variance of hD̃N (x) is then within a constant of g logN
uniformly in x ∈ DN and so we get, for some c > 0 independent of N,

P
(
hD̃N (x)≥ aN +b

)
≤ 1√

2π

1√
g logN− c

∫
∞

b
e−

(aN+s)2

2g logN+c ds. (3.5)

The s≥ 2logN portion of the integral is bounded directly; in the rest we use that c can be dropped
at the cost of a suitable multiplicative term popping in the front. Bounding (aN +s)2≥ a2

N +2aNs,
the integral over s ∈ [b,2logN] is then performed explicitly. �

With the overall scale under control, we can now calculate the leading-order asymptotic of the
above expectation for nice-enough sets A.

Lemma 3.2 There is a constant c0 ∈ R such that for each b ∈ R and each open set A⊆ D,

E
∣∣{x ∈ Γ

D
N(b) : x/N ∈ A}

∣∣= ec0λ 2+λα

√
2πg

e−αλb
[∫

A
ψ

D
λ
(x)dx+o(1)

]
KN . (3.6)

where o(1)→ 0 as N→ ∞ uniformly on compact sets of b.

Proof. Thanks to the uniform control from Lemma 3.1, we may assume that the closure of A lies
in D. We will need the asymptotic

GDN
(
bxNc,bxNc

)
= g logN +g

∫
∂D

Π
D(x,dz) log |x− z|+ c0 +o(1) , (3.7)

with c0 a constant and o(1)→ 0 as N→∞ uniformly on compact sets in D, and thus in x∈A. (This
is where the conditions on DN are relevant, see (A.4–A.5).) Now we repeat the calculation from
the proof of Lemma 3.1 while keeping careful track of all non-vanishing terms. The boundedness
and continuity of ψD

λ
finally permit us to replace a Riemann sum by the integral in (3.6). �

Our next lemma concerns the second moment estimate for the size of ΓD
N(b). It is here where

we need to limit the range of possible λ :



12 BISKUP AND LOUIDOR

Lemma 3.3 Suppose 0< λ < 1/
√

2. For each b0 ∈R and each D∈D there is c1 = c1(λ ,b0,D)∈
(0,∞) such that for each b ∈ [−b0,b0] and each N ≥ 1,

E
(
|ΓD

N(b)|2
)
≤ c1K2

N (3.8)

Moreover, there is an absolute constant c2 ∈ (0,∞) such that for all D ∈D,

limsup
N→∞

1
K2

N
E
(
|ΓD

N(0)|2
)
≤ c2

∫
D×D

(
[diamD]2

|x− y|

)4λ 2

dxdy (3.9)

where diamD is the diameter of D in the Euclidean norm.

Proof of (3.8). Thinking, without much loss of generality, of b as absorbed into aN , we can
assume b := 0 in the following. Writing

E
(
|ΓD

N(0)|2
)
= ∑

x,y∈DN

P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
. (3.10)

we will need a good estimate on the probability on the right-hand side. First we again take D̃N
to be a neighborhood of DN of diameter twice the diameter of DN and note that, by the argument
leading to (3.4) and the FKG inequality for ϕV,U (implied by Cov(ϕV,U(x),ϕV,U(y))≥ 0)

P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
≤ 4P

(
hD̃N (x)≥ aN , hD̃N (y)≥ aN

)
. (3.11)

Next we invoke the Gibbs-Markov decomposition (see (A.6))

hD̃N (y) = gx(y)hD̃N (x)+ ĥD̃Nr{x}(y), (3.12)

where hD̃N (x) and ĥD̃Nr{x} on the right-hand side are independent with ĥD̃Nr{x} having the law
of the DGFF in D̃N r {x} and where gx is a function that is harmonic in D̃N r {x}, vanishing
outside D̃N and normalized such that gx(x) = 1. Using this decomposition, the above probability
is recast as

P
(
hD̃N (x)≥ aN , hD̃N (y)≥ aN

)
=
∫

∞

0
P
(

ĥD̃Nr{x}(y)≥ aN(1−gx(y))− sgx(y)
)

P
(
hD̃N (x)−aN ∈ ds

)
. (3.13)

We will pick δ > 0 and bound the right-hand side by P(hD̃N ≥ aN) when |x− y| ≤ δ
√

KN so let
us suppose that |x− y|> δ

√
KN from now on.

Observe that since x,y lie “deep” inside D̃N and |x− y|> δ
√

KN = N1−λ 2+o(1), we have

gx(y) =
GD̃N (x,y)

GD̃N (x,x)
≤

log N
|x−y| + c

logN− c
≤ 1− (1−λ

2)+o(1) = λ
2 +o(1), (3.14)

where o(1)→ 0 uniformly in x,y ∈ DN . Assuming s ∈ [0,aN ], from λ < 1/
√

2 we then have

aN(1−gx(y))− sgx(y)> εaN (3.15)
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for some ε > 0 as soon as N is large enough, uniformly in x,y ∈DN . The argument in Lemma 3.1
in conjunction with gx(y) ∈ [0,1] and the asymptotic (1.5) then show

P
(

ĥD̃Nr{x}(y)≥ aN(1−gx(y))− sgx(y)
)

≤ c√
logN

e−
[aN (1−gx(y))−sgx(y)]2

2G(y,y) ≤ c
KN

N2 egx(y)
a2

N
g logN +

aN
G(y,y)gx(y)s , (3.16)

where we wrote G(y,y) for GD̃Nr{x}(y,y) to reduce clutter of indices and then used that |G(y,y)−
g logN| ≤ c uniformly in y∈DN . The explicit form of the law of hDN with respect to the Lebesgue
measure readily shows

P
(
hD̃N (x)−aN ∈ ds

)
≤ c

KN

N2 e−
aN

G(x,x) sds. (3.17)

Since G(x,x)/G(y,y) = 1+o(1) and gx(y)≤ λ 2+o(1)< 1, the integral in (3.13) over s ∈ [0,aN ]
yields a harmless multiplicative factor. Also, the middle inequality in (3.14) implies

egx(y)
a2

N
g logN ≤ c

(
N
|x− y|

)4λ 2+o(1)

(3.18)

with o(1)→ 0 uniformly in x,y ∈ DN with |x− y|> δ
√

KN . From (3.11) we thus get

P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
≤ P

(
hDN (x)≥ 2aN

)
+ c
(KN

N2

)2
(

N
|x− y|

)4λ 2+o(1)

(3.19)

uniformly in x,y ∈ DN with|x− y|> δ
√

KN .
In order to finish the proof, we now write

E
(
|ΓD

N(0)|2
)
≤ ∑

x,y∈DN
|x−y|≤δ

√
KN

P
(
hDN (x)≥ aN

)
+ ∑

x,y∈DN
|x−y|>δ

√
KN

P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
.

(3.20)

Summing over y and invoking Lemma 3.1 bounds the first term by a factor of order (δKN)
2. The

contribution of the first term on the right of (3.19) to the second sum is bounded via Lemma 3.1
as well:

P
(
hDN (x)≥ 2aN

)
≤ c√

logN
e−2

a2
N

g logN = c
(KN

N2

)2
e−

a2
N

g logN
√

logN ≤ cδ

(KN

N2

)2
. (3.21)

Plugging in also the second term on the right of (3.19), we thus get

E
(
|ΓD

N(0)|2
)
≤ 2cδ (KN)

2 + c
(KN

N2

)2
∑

x,y∈DN
|x−y|>δ

√
KN

(
N
|x− y|

)4λ 2+o(1)

. (3.22)

The standard domination by integrals bounds the sum by c(N2)2 ∫
D×D |x− y|−4λ 2+o(1)dxdy re-

gardless of δ , with the integral convergent since λ < 1/
√

2 implies 4λ 2 < 2. Hence, also the
second term on the right is of order (KN)

2, thus proving (3.8). �
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Proof of (3.9). For the limit statement (3.9), we will have to reveal the D-dependence of cer-
tain constants in the above derivation. The bound (3.22) shows that we need to consider only
pairs x,y ∈ DN with |x− y| ≥ εN as the contribution of the complementary pairs is negligible in
the limit N → ∞ and ε ↓ 0. We only need to refine the bounds (3.17) and (3.18). Concerning
(3.17), the asymptotic (3.7) along with the fact that diam(D̃N)≤ 2diam(DN) gives

GD̃N (x,x)≤ g logN +g log(2diamD)+ c0 +o(1) (3.23)

and so, in light of aN = O(logN), the constant c in (3.17) is bounded by a numerical constant
(which comes from bounding such constants in the probability density of hD̃N (x)) times

e
a2
N

g(logN)2
log(diamD)+o(1)

= (diamD)4λ 2+o(1) (3.24)

with o(1)→ 0 as N→∞. Concerning (3.18), the asymptotic of the Green function (A.5) at points
of distance order N in turns gives

gx(y)≤
1

logN

[
− log

|x− y|
N

+ log(2diamD)+o(1)
]

(3.25)

which then implies

egx(y)
a2

N
g logN ≤ c

(
N diamD
|x− y|

)4λ 2+o(1)

. (3.26)

Using (3.24) and (3.26) in the derivation of (3.19) and taking N→ ∞ followed by ε ↓ 0, we then
readily get (3.9) as well. �

3.2 Subsequential limits and factorization.

We will now start deriving consequences of the above lemmas for the random measures ηD
N

from (2.5). Since our strategy is to first deal only with events/functions that are trivial in the third
“coordinate,” we will temporarily abuse notation and set

η
D
N :=

1
KN

∑
x∈DN

δx/N⊗δhDN (x)−aN
(3.27)

instead of the full definition in (2.5). As a direct consequence of the above lemmas and the fact
that D× (R∪{∞}) is a separable metric space, we then get:

Corollary 3.4 Suppose λ ∈ (0,1/
√

2). Then {ηD
N : N ≥ 1} is tight with respect to the vague

topology on the space of Radon measures on D× (R∪ {∞}). Moreover, every subsequential
weak limit ηD of these measures satisfies, for each b ∈ R,

P
(

η
D(D× [b,∞)

)
< ∞

)
= 1 (3.28)

and, for each non-empty open A⊂ D and each b ∈ R,

P
(

η
D(A× [b,∞)

)
> 0
)
> 0. (3.29)

Furthermore, we have ηD(A×R) = 0 a.s. for each measurable A with Leb(A) = 0 and, in par-
ticular, ηD(∂D×R) = 0 a.s..
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Proof. The first part of the statement requires showing that, for any continuous compactly-
supported function f : D× (R∪{∞})→ R, the family of random variables {〈ηD

N , f 〉 : N ≥ 1} is
tight. For this it suffices to show that the family {ηD

N (D× [b,∞)) : N ≥ 1} is tight for each b ∈R.
This is a consequence of Lemma 3.1 and the fact that ηD

N (D× [b,∞)) = |ΓD
N(b)|.

Let now ηD be a subsequential weak limit of the measures {ηD
N : N ≥ 1}. Fatou’s lemma,

a straightforward approximation argument and Lemma 3.1 then show EηD(D× [b,∞)) < ∞ for
each b ∈ R. Lemma 3.1 also gives ηD(A×R) = 0 a.s. whenever Leb(A) = 0. It remains to
show that ηD is non-trivial in the sense stated in (3.29). Let A ⊂ D be non-empty and open and
pick b ∈ R. Denote XN := ηD

N (A× [b,∞)). Lemma 3.3 shows that supN≥1 E(X2
N)< ∞ and so the

family {XN : N ≥ 1} is uniformly integrable. Since infN≥1 E(XN)> 0 by Lemma 3.2 and the fact
that ψD

λ
> 0, any distributional limit of XN has positive expectation as well. �

Given a function f : D× (R∪{∞})→ R and b ∈ R, define

fb(x,h) := f (x,h+b)e−αλb. (3.30)

A key step is now the proof of:

Proposition 3.5 Suppose λ ∈ (0,1/
√

2). Any subsequential limit ηD of {ηD
N : N ≥ 1} obeys the

following: For each b ∈ R and each f : D× (R∪{∞})→ R of the form f (x,h) = 1A(x)1[0,∞)(h)
with A⊂ D open,

〈ηD, fb〉= 〈ηD, f 〉 ∈ R (3.31)

holds with probability one.

The proof of this proposition relies on a calculation that is formalized as:

Lemma 3.6 For any λ ∈ (0,1/
√

2), any open A⊂D, any b∈R, and AN := {x∈Z2 : x/N ∈ A},

lim
N→∞

1
KN

E
∣∣∣∣∣ΓD

N(0)∩AN
∣∣− eαλb

∣∣ΓD
N(b)∩AN

∣∣∣∣∣= 0. (3.32)

Proof. Since any open set A ⊂ D can be written as the union of an increasing sequence of open
sets whose closure lies inside D, we can assume without loss of generality that A has positive
Euclidean distance to Dc. Then, using Cauchy-Schwarz, we may as well show

lim
N→∞

1
K2

N
E
((∣∣ΓD

N(0)∩AN
∣∣− eαλb

∣∣ΓD
N(b)∩AN

∣∣)2
)
= 0. (3.33)

Invoking (3.10), the calculation in the proof of Lemma 3.3 shows that the second moment of
|ΓD

N(b)| is dominated by the sum of pairs x,y ∈ DN that are within distance of order N. It thus
suffices to prove that, for any ε > 0,

max
x,y∈AN
|x−y|≥εN

(
P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
− eαλbP

(
hDN (x)≥ aN +b, hDN (y)≥ aN

)
− eαλbP

(
hDN (x)≥ aN , hDN (y)≥ aN +b

)
+ e2αλbP

(
hDN (x)≥ aN +b, hDN (y)≥ aN +b

))
= o
(K2

N

N4

)
(3.34)
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as N → ∞. For this we need to compute a sharp leading order asymptotic of the probability
P(hDN (x)≥ aN +b1, hDN (y)≥ aN +b2) for the four possible choices b1,b2 ∈ {0,b}.

We will invoke the decomposition (3.12) and the representation (3.13). Writing again G(y,y)
for GDNr{x}(y,y), for any s ∈ [0,aN +b2] we then get

P
(

ĥDNr{x}(y)≥ aN(1−gx(y))− sgx(y)+b1

)
=

c+o(1)√
logN

e−
[aN (1−gx(y))−sgx(y)+b1 ]

2

2G(y,y) =
c+o(1)√

logN
e−

[aN (1−gx(y))−sgx(y)]2

2G(y,y) e−αλb1

=
(
e−αλb1 +o(1)

)
P
(

ĥDNr{x}(y)≥ aN(1−gx(y))− sgx(y)
)
,

(3.35)

where c > 0 is a numerical constant and where we used that gx(y) = O(1/ logN) when |x− y| ≥
εN and then applied the asymptotic of aN and GDNr{x}(y,y) = g logN +O(1) enabled by the fact
that now y is “deep” inside DN r {x} as implied by the assumptions on A and x,y. In addition,
writing G(x,x) for GDN (x,x), we also get

P
(
hDN (x)−aN−b2 ∈ ds

)
=

c+o(1)√
logN

e−
[aN+b2+s]2

2G(x,x) ds

= e−αλb2
c+o(1)√

logN
e−

[aN+s]2

2G(x,x) ds =
(
e−αλb2 +o(1)

)
P
(
hDN (x)−aN ∈ ds

)
. (3.36)

where c is again a positive constant and o(1)→ 0 as N → ∞ uniformly in s ∈ [0,aN ]. Putting
(3.35–3.36) together and integrating over s ∈ [0,aN ] we get

P
(
hDN (x)≥ aN +b1, hDN (y)≥ aN +b2

)
=
(
e−αλ (b1+b2)+o(1)

)
P
(
hDN (x)≥ aN , hDN (y)≥ aN

)
, (3.37)

where we used that, by the FKG inequality and Lemma 3.2,

P
(
hDN (x)≥ 2aN

)
= o(1)P

(
hDN (x)≥ aN , hDN (y)≥ aN

)
(3.38)

with o(1)→ 0 as N → ∞ uniformly in x,y ∈ AN with |x− y| ≥ εN. Plugging (3.37) into (3.34),
the desired claim follows. �

We are now ready to give:
Proof of Proposition 3.5. Let f (x,h) := 1A(x)1[0,∞)(h) with A ⊂ D closed. Lemma 3.6 can be
rephrased as

lim
N→∞

E
∣∣〈ηD

N , f 〉−〈ηD
N , fb〉

∣∣= 0 , b ∈ R. (3.39)

Taking the distributional limit (choosing further subsequence if necessary) of 〈ηD
N , f − fb〉 then

shows, by Fatou’s lemma, 〈ηD, f − fb〉= 0 a.s. which is the desired claim. (The finiteness follows
from the tightness proved in Lemma 3.1.) �

The identity (3.31) now readily yields the desired factorization property:

Lemma 3.7 (Factorization) Suppose ηD is a Borel measure on D×R with ηD(∂D×R) = 0
a.s. such that (3.31) holds for each function f : D×R→ R of the form f (x,h) := 1A(x)1[0,∞)(h)
with A⊂ D open and each b ∈ R. Then, with probability one, ηD takes the form

η
D(dxdh) = ZD

λ
(dx)⊗ e−αλhdh (3.40)
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for some finite random Borel measure ZD
λ

on D.

Proof. For A⊂ D Borel, define ZD
λ
(A) := αληD(A× [0,∞)). This is automatically a finite Borel

measure on D. The condition (3.31) now shows that, almost surely if A is open then

η
D(A× [b,∞)

)
= e−αλb〈ηD, fb〉= e−αλb〈ηD, f 〉

= (αλ )−1e−αλbZD
λ
(A) =

∫
A×[b,∞)

ZD
λ
(dx)e−αλhdh.

(3.41)

The null set in this statement may depend on A and b but we can choose a common null set for all
sets in the class {A× [b,∞) : A⊂D open dyadic square, b∈Q} as it is countable. The equality of
the measures (3.40) on D then follows from the fact that this class is a π-system (in the sense of
Dynkin) which generates the product Borel σ -algebra on D×R. As ηD(∂D×R) = ZD

λ
(∂D) = 0,

the equality in (3.40) extends to all of D. �

3.3 Uniqueness of subsequential limit.

At this point we have shown that, assuming λ ∈ (0,1/
√

2), every subsequential limit ηD of the
measures {ηD

N : N ≥ 1}, with ηD
N as in (3.27), factors into the form (3.40). The goal of this

subsection is to show that the measure ZD
λ

, and thus also the subsequential limit ηD, is in fact
unique. This will in particular show that ηD

N converges in distribution to the same limit, regardless
of the approximating sequence DN or the way aN achieves the asymptotic (1.5).

As our first lemma we will check that ZD
λ

obeys the properties listed in Theorem 2.3. However,
these require extracting subsequential limits for multiple domains at the same time. Cantor’s
diagonal argument makes this possible provided we restrict ourselves to a countable class D0 of
domains in D. We will assume that D0 contains all open squares of the form(

k2−n,(k+1)2−n)× (`2−n,(`+1)2−n), k, `,n ∈ Z. (3.42)

For each domain D ∈D0 we then fix a sequence {DN} of lattice approximations satisfying (2.1–
2.2). All (simultaneous) subsequential limits will naturally pertain to the specific choice of D0 as
well as the lattice approximations {DN}.

Proposition 3.8 Assume λ ∈ (0,1/
√

2) and let {ηD : D ∈ D0} be subsequential limits (along
the same subsequence) of {ηD

N : N ≥ 1} for D ∈ D0. For each D ∈ D0, let ZD
λ

be the measure
associated with ηD as in (3.40). Then {ZD

λ
: D ∈D0} obeys properties (1-7) in Theorem 2.3, with

all domains restricted to be contained in D0 or translates thereof.

Proof of properties (1-6). Properties (1,2) are direct consequences of Lemma 3.1. Property (3)
holds for all open A ⊂ D thanks to Lemma 3.2; the equality for general measurable A ⊂ D is
then obtained by realizing that (2.11) represents equality of two Borel measures. Property (4) is
a consequence of the representation of ηD∪D̃

N as the sum of independent copies of ηD
N and η D̃

N —
which itself follows by representing hDN∪D̃N as the sum of independent fields hDN and hD̃N . The
translation invariance in property (6) is immediate.

Concerning property (5), let D, D̃ ∈D0 with D̃⊂ D and Leb(Dr D̃) = 0. The Gibbs-Markov
decomposition of the DGFF (see (A.6)) then yields

hDN law
= hD̃N +ϕ

DN ,D̃N . (3.43)
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This means that if f : D×R→ R is continuous with compact support in D̃, then

〈ηD
N , f 〉 law

= 〈η D̃
N , fϕ〉 (3.44)

where
fϕ(x,h) := f

(
x,h+ϕ

DN ,D̃N (bxNc)
)

(3.45)

with ϕDN ,D̃N independent of η D̃
N on the right-hand side of (3.44). As shown in [7, Lemma B.14],

for each N ≥ 1 and each δ > 0, there is a coupling of ϕDN ,D̃N (b·Nc) with ΦD,D̃ such that the
supremum of the difference on Dδ tends to zero in probability; see (A.8). Thanks to continuity
and restriction on the support of f , we thus have

〈η D̃
N , fϕ〉

law
= 〈η D̃

N , fΦ〉+o(1) (3.46)

where o(1)→ 0 in probability (as N→ ∞) and where

fΦ(x,h) := f
(
x,h+Φ

D,D̃(x)
)

(3.47)

with ΦD,D̃ independent of η D̃
N on the right-hand side of (3.46). Since x 7→ ΦD,D̃(x) is continuous

on D̃ a.s., for any simultaneous subsequential limits ηD of {ηD
N : N ≥ 1} and η D̃ of {η D̃

N : N ≥ 1},
we thus obtain

〈ηD, f 〉 law
= 〈η D̃, fΦ〉 , (3.48)

where ΦD,D̃ (implicitly contained in fΦ) is independent of η D̃ on the right-hand side. But the
representation (3.40) now permits us to write

〈η D̃, fΦ〉=
∫

D×R
ZD̃

λ
(dx)e−αλhdh f

(
x,h+Φ

D,D̃(x)
)

=
∫

D×R
ZD̃

λ
(dx)e−αλ (h−ΦD,D̃(x))dh f (x,h).

(3.49)

As this holds for any continuous f : D×R→ R with support in D̃, and since both ZD̃
λ

and ZD
λ

assign zero mass to Dr D̃ due to the fact that Leb(Dr D̃) = 0, property (5) follows. �

For property (7), and also later use, we will need:

Lemma 3.9 For each λ ∈ (0,1/
√

2) there is c ∈ (0,∞) such that for any open square S⊂ C

E
[
ZS

λ
(S)2]≤ c

[
EZS

λ
(S)
]2
. (3.50)

Proof. Suppose S is a translation (and rotation) of (0,r)2. Then (3.9) in Lemma 3.3 (with the
help of Fatou’s lemma) and a simple scaling argument show that E[ZS

λ
(S)2] ≤ cr4+4λ 2

for some
constant c independent of r. On the other hand, Lemma 3.2 along with uniform integrability of
normalized level-set sizes and the fact that ψrD

λ
(rx) = r2λ 2

ψD
λ
(x) show E[ZS

λ
(S)] ≥ c̃r2+2λ 2

for
some absolute c̃ > 0. The claim follows. �

Proof of property (7). It suffices to prove this for all squares of the form (3.42) as each open
set contains at least one such square. (Note that D0 contains all these squares.) For n ∈ Z, let
pn := P(ZSn

λ
> 0) where (appealing to translation invariance), Sn := (0,2−n). The second moment
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estimate in conjunction with Lemma 3.9 show that p := infn∈Z pn > 0. Decomposing Sn into 4m

translates Sn+m,1, . . . ,Sn+m,4m of the square Sn+m, the Gibbs-Markov property yields

ZSn
λ
(Sn)

law
=

4m

∑
i=1

∫
Sn+m,i

ZSn+m,i
λ

(dx) eαλΦSn ,S̃n,m (x), (3.51)

where S̃n,m :=
⋃4m

i=1 Sn+m,i. Then ZSn
λ
(Sn) = 0 forces ZSn+m,i

λ
(Sn+m,i) = 0 for all i = 1, . . . ,4m. Since

the latter measures are independent of one another as well as of the field ΦSn,S̃n,m , we have

1− pn ≤ (1− pn+m)
4m ≤ (1− p)4m

. (3.52)

Taking m→ ∞ we get pn = 1 for each n ∈ Z and so property (6) follows. �

Using the same notation as in the previous proof, in order to prove uniqueness, we will first
characterize ZSn

λ
as the limit of the measures

Y Sn
m (dx) := c

4m

∑
i=1

eαλΦSn,S̃n,m (x)
ψ

Sn+m,i
λ

(x)1Sn+m,i(x)dx, (3.53)

where c is the constant from (2.11). Indeed, we have:

Lemma 3.10 For each λ ≥ 0, there exists an a.s. finite random measure Y Sn
∞ (possibly degenerate

to zero), such that for each bounded, measurable f : D→ R,

〈Y Sn
m , f 〉 −→

m→∞
〈Y Sn

∞ , f 〉, a.s. (3.54)

Proof. Thanks to the structure of the covariances (2.9), we can write ΦSn,S̃n,m(x) as the sum of
independent fields

Φ
Sn,S̃n,m(x) =

m

∑
j=1

Φ
S̃n, j−1,S̃n, j(x), (3.55)

where S̃n,0 := Sn. In light of the fact that

4m

∑
j=1

ψ
Sn+m, j

λ
(x)1Sn+m, j(x) = ψ

S̃n,m
λ

(x), x ∈ S̃n,m (3.56)

and that, for any D̃⊂ D,

EeαλΦD,D̃(x) = e
1
2 α2λ 2CD,D̃(x) =

ψD
λ
(x)

ψ D̃
λ
(x)

, x ∈ D̃, (3.57)

a straightforward calculation shows that {〈Y Sn
m , f 〉 : m ≥ 1} is a martingale with respect to the

filtration

Fm := σ

(
Φ

S̃n, j−1,S̃n, j(x) : x ∈ S′n, j = 1, . . . ,m
)

where S′n :=
⋂

m≥1

S̃n,m. (3.58)

(Note that, as Leb(Sn r S′n) = 0, restricting the measures to S′n carries no loss.) Since for f ≥ 0
the martingale is non-negative, the Martingale Convergence Theorem shows that

L( f ) := lim
m→∞
〈Y Sn

m , f 〉 (3.59)
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exists almost surely for each bounded measurable f (we treat the positive and the negative part
of f separately). The null set in this statement may depend on f .

In order to show that the limit is an integral of f with respect to a random measure, we follow
a standard argument from multiplicative chaos theory: Fix a countable dense subset A ⊂C(D).
Fatou’s lemma yields

E
∣∣L( f )

∣∣≤ c
∫

Sn

| f (x)|ψD
λ
(x)dx, f ∈C(D) (3.60)

and so by the Markov inequality, on a set of full probability, the linear functional f 7→ L( f ) is
well-defined for all f ∈ A simultaneously and bounded on A in the supremum norm. It follows
that f 7→ L( f ) extends uniquely to an almost-everywhere defined continuous linear functional
f 7→ L( f ) on C(D) such that L( f ) = L( f ) holds almost surely for each f ∈C(D). (The null set of
this equality may depend on f .) The Riesz Representation Theorem then readily gives existence
of a Borel measure Y Sn

∞ on D such that L( f ) = 〈Y Sn
∞ , f 〉 holds almost surely for each f ∈ C(D).

The measure is finite a.s. (albeit possibly trivially zero) thanks to (3.60). �

The desired uniqueness of the law of ZD
λ

will now follow from:

Proposition 3.11 Suppose λ ∈ (0,1/
√

2). Then for each n ∈ Z,

ZSn
λ
(dx) law

= Y Sn
∞ (dx). (3.61)

For the proof of this proposition, let f : Sn→ [0,∞) be a bounded, measurable function. Our
aim is to prove that

Ee−〈Z
Sn
λ
, f 〉 = Ee−〈Y

Sn
∞ , f 〉 (3.62)

We will do this by separately proving ≥ and ≤.

Proof of ≥ in (3.62). Thanks to the Gibbs-Markov property, we may represent ZSn
λ

as

ZSn
λ
(dx) =

4m

∑
i=1

eαλΦSn ,S̃n,m (x)1Sn+m,i(x)Z
Sn+m,i
λ

(dx), (3.63)

where ZSn+m,i
λ

, i = 1, . . . ,4m, are independent of one another as well as of ΦSn,S̃n,m on the right-hand
side. In light of (2.11) we have

E
(
〈ZSn

λ
, f 〉
∣∣∣σ(ΦSn,S̃n,m

))
= 〈Y Sn

m , f 〉. (3.64)

Jensen’s inequality then shows

Ee−〈Z
Sn
λ
, f 〉 ≥ Ee−〈Y

Sn
m , f 〉 −→

m→∞
Ee−〈Y

Sn
∞ , f 〉, (3.65)

where the limit uses Lemma 3.10 and the Bounded Convergence Theorem. �

For the opposite bound, we will need the following “reverse Jensen” inequality:

Lemma 3.12 If X1, . . . ,Xn are non-negative independent random variables, then for each ε > 0,

E
(

exp
{
−

n

∑
i=1

Xi

})
≤ exp

{
−e−ε

n

∑
i=1

E(Xi ; Xi ≤ ε)
}
. (3.66)
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Proof. Thanks to independence, it suffices to prove this for n = 1. This is checked by bounding
E(e−X)≤ E(e−X̃), where X̃ := X1{X≤ε}, writing

− logE(e−X̃) =
∫ 1

0
ds

E(X̃e−sX̃)

E(e−sX̃)
(3.67)

and invoking the bounds E(X̃e−sX̃)≥ e−εE(X̃) and E(e−sX̃)≤ 1. �

We will also need to invoke an additional truncation: For δ ∈ (0,1/2), let Sδ
k be the translate of

(δ2−k,(1−δ )2−k) centered at the same point as Sk. Analogously, let Sδ
n+m,i be the corresponding

truncation of Sn+m,i. Then set S̃δ
n,m :=

⋃4m

i=1 Sδ
n+m,i and let

fδ (x) := 1S̃δ
n,m
(x) f (x). (3.68)

Positivity of f implies that f − fδ ≥ 0 with fδ ↑ f (as δ ↓ 0) Lebesgue almost everywhere, the
Monotone Convergence Theorem and (3.60)) show E〈Y Sn

∞ , f − fδ 〉 → 0 as δ ↓ 0. In particular,

〈Y Sn
∞ , fδ 〉 −→

δ↓0
〈Y Sn

∞ , f 〉, a.s. (3.69)

This will permit us to work with fδ instead of f . Next we will need:

Lemma 3.13 Suppose λ ∈ (0,1/
√

2). Given δ ∈ (0,1/2), for each i = 1, . . . ,4m abbreviate

Xi :=
∫

Sδ
n+m,i

eαλΦSn ,S̃n,m (x) fδ (x)Z
Sn+m,i
λ

(dx). (3.70)

Then for each ε > 0,
4m

∑
i=1

E(Xi ; Xi > ε) −→
m→∞

0. (3.71)

Proof. Abbreviate L := 2m throughout this proof. Since E(Xi ; Xi > ε)≤ 1
ε
E(X2

i ), we can bound
the sum in (3.71) by

1
ε

L2

∑
i=1

E(X2
i )≤

‖ f‖2

ε

L2

∑
i=1

E
∫

Sδ
n+m,i×Sδ

n+m,i

eαλ [ΦSn ,S̃n,m (x)+ΦSn ,S̃n,m (y)]ZSn+m,i
λ

(dx)ZSn+m,i
λ

(dy). (3.72)

Since ZSn+m,i
λ

, i = 1, . . . ,4m, are independent of the field, we will now take conditional expectation
given these measures and invoking that

Eeαλ [ΦSn ,S̃n,m (x)+ΦSn ,S̃n,m (y)] = e
1
2 α2λ 2Var(ΦSn ,S̃n,m (x)+ΦSn ,S̃n,m (y))

≤ ce
1
2 α2λ 24g log(L) = cL8λ 2

(3.73)

for some constant c that arises from the uniform bound Var(ΦSn,S̃n,m(x)) ≤ c′+ g log(2m) valid
with the same constant c′ for all x ∈ S̃δ

n,m. The right-hand side of (3.72) is thus at most

c
‖ f‖2

ε
L8λ 2

L2

∑
i=1

E
(
ZSn+m,i

λ
(Sn+m,i)

2). (3.74)
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Under the condition λ ∈ (0,1/
√

2), Lemma 3.9 implies

E
(
ZSn+m,i

λ
(Sn+m,i)

2)≤ c
[
E
(
ZSn+m,i

λ
(Sn+m,i)

)]2 (3.75)

and a trivial scaling argument applied to (2.11) shows

E
(
ZSn+m,i

λ
(Sn+m,i)

)
≤ cL−(2+2λ 2) , (3.76)

where c depends on n, which is fixed throughout the proof. These observations yield

L2

∑
i=1

E(Xi ; Xi > ε)≤ c
ε
‖ f‖2 L8λ 2−2−4λ 2

=
c
ε
‖ f‖2 L−2(1−2λ 2). (3.77)

This tends to zero as m→ ∞ for all λ < (0,1/
√

2) as claimed. �

Proof of ≤ in (3.62). Consider the σ -algebra F := σ(ΦSn,S̃n,m(x) : x ∈ S̃n,m) and note that, for Xi

as in (3.70), we have 〈Y Sn
m , fδ 〉=∑

4m

i=1 E(Xi|F ). Fix ε > 0. The “reverse Jensen” inequality (3.66)
for the conditional expectation given F then yields

Ee−〈Z
Sn
λ
, f 〉 ≤ Ee−〈Z

Sn
λ
, fδ 〉 ≤ E

(
exp
{
−e−ε

[
〈Y Sn

m , fδ 〉−
4m

∑
i=1

E(Xi1{Xi>ε}|F )
]})

. (3.78)

Lemma 3.10 gives 〈Y Sn
m , fδ 〉 → 〈Y Sn

∞ , fδ 〉 almost surely, while Lemma 3.13 shows
4m

∑
i=1

E(Xi1{Xi>ε}|F ) −→
m→∞

0, in probability. (3.79)

Since the square bracket on the right-hand side of (3.78) is non-negative, taking m→ ∞ with the
help of the Bounded Convergence Theorem followed by ε ↓ 0 thus yields

Ee−〈Z
Sn
λ
, f 〉 ≤ Ee−〈Y

Sn
∞ , fδ 〉. (3.80)

From here ≤ in (3.62) follows in light of the observation (3.69). �

Proof of Proposition 3.11. Thanks to the fact that the Laplace transform determines the law for
non-negative random variables, (3.62) implies 〈ZSn

λ
, f 〉 law

= 〈Y Sn
∞ , f 〉 for each bounded, measur-

able f . This is what is represented by (3.61). �

We are now ready to summarize our conclusions in:

Theorem 3.14 For each λ ∈ (0,1/
√

2) and each D ∈D there is a random Borel measure ZD
λ

on D such that the following holds for each aN satisfying (1.5) and each sequence {DN} of lattice
domains satisfying (2.1–2.2): The family of measures {ηD

N : N ≥ 1} from (3.27) obeys

η
D
N

law−→
N→∞

ZD
λ
(dx)⊗ e−αλhdh. (3.81)

The measures {ZD
λ

: D∈D} obey conditions (1-7) from Theorem 2.3 and these identify their laws

uniquely. In particular, on dyadic squares we have ZSn
λ
(dx) law

= Y Sn
∞ (dx).

Proof. That subsequential limits of ηD
N take the form on the right of (3.81) has been shown in

Lemma 3.7 and that the resulting ZD
λ

measures obey properties (1-7) from Theorem 2.3 is the
content of Proposition 3.8. Thanks to the representation in Proposition 3.11, the law of ZD

λ
is
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determined for D being any dyadic square. In order to prove the theorem, it thus suffices to show
that the law of ZD

λ
is similarly determined for all D ∈D.

Let D ∈D. Since we may assume that D belongs to the distinguished set D0 of domains, the
properties (1-7) from Theorem 2.3 apply to D as well. Thus, in particular, ZD

λ
(DrDn)→ 0 for

any sequence of measurable sets Dn such that Dn ↑ D. Thanks to property (1) in Theorem 2.3,
the same holds even if we take Dn to be the union of all open dyadic squares Sn,i, i = 1, . . . ,m(n)
of side length 2−n whose closure is contained in D. However, in light of properties (4-5) in
Theorem 2.3, in this case we may write

1Dn(x)ZD
λ
(dx) law

= eαλΦD,Dn
(x)

m(n)

∑
i=1

Y Sn,i
∞ (dx), (3.82)

where {Y Sn,i
∞ : i = 1, . . . ,m(n)} are independent of ΦD,Dn

and of one another and are equidis-
tributed, modulo a shift, to Y Sn

∞ . The law of ZD
λ

is thus determined solely by those of {Y Sn
∞ : n≥ 1}

and the Gaussian fields {ΦD,Dn
: n ≥ 1}. We conclude that limit (3.81) exists for all D ∈D and

is the same regardless of the approximating sequence of lattice domains DN and/or the way aN
approaches the limit (1.5). �

4. BEYOND UNTRUNCATED SECOND MOMENTS

Our next goal is to eliminate the restriction to λ < 1/
√

2 assumed throughout the proofs in the
previous section. There were three specific steps where this restriction was crucially used: the
non-triviality of the subsequential limits of {ηD

N : N ≥ 1}, the factorization property in Lemma 3.6
and the estimate of expectations of integrals against Zλ -measures in Lemma 3.13 based on
Lemma 3.9. This is because all three rely on the second moment estimate on the size of the
level-set in Lemma 3.3 which fails when λ ≥ 1/

√
2. (Lemmas 3.1 and 3.2 hold for all λ ∈ (0,1).)

It turns out, and this is no surprise in this subject area, that the lack of the second moment
is remedied by introducing a suitable truncation. This will help us fix the above three second-
moment calculation while preserving the overall strategy of the proof.

4.1 Truncated measures.

Let us start with a truncated version of the measures in (3.27). Pick a sequence of domains {DN}
approximating, via (2.1–2.2), a given continuum domain D ∈ D. Recall our earlier notation
Λr(x) := {z ∈ Z2 : |z− x| ≤ r} and, for each N ≥ 1 and each x ∈ DN , let

n(x) := max
{

n≥ 0: Λen+1(x)⊆ DN
}
. (4.1)

Observe that logN− c ≤ n(x) ≤ logN + c′ for all x ∈ DN such that dist(x,Dc
N) > εN, with the

first constant depending only on the choice of ε > 0 and the second only on D. Define now the
sequence of domains

∆
k(x) :=


/0 for k = 0 ,
Λek(x) for k = 1, . . . ,n(x)−1 ,
DN for k = n(x) .

(4.2)
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In accord with (A.6), for V ⊆U let us write ϕU,V for the conditional field E(hU |σ(hU(z) : z ∈
U rV )). We now set

Sk(x) := ϕ
DN ,∆

k(x)(x), k = 0, . . . ,n(x). (4.3)

Observe that, by definition, S0(x) = hDN (x) while Sn(x)(x) = 0.
Next, for a given sequence aN such that (1.5) holds for some λ ∈ (0,1) and M > 0, define the

truncation event

TN,M(x) :=
n(x)⋂

k=kN

{∣∣∣Sk(x)−aN
n(x)− k

n(x)

∣∣∣≤M(n(x)− k)3/4
}

(4.4)

where

kN :=
1
8

log(KN) =
1
4
[
(1−λ

2)+o(1)
]

log(N) . (4.5)

Consider the point measure

η̂
D,M
N :=

1
KN

∑
x∈DN

1TN,M(x) δx/N⊗δhDN (x)−aN
(4.6)

Obviously, 〈η̂D,M
N , f 〉 ≤ 〈ηD

N , f 〉 for any measurable f ≥ 0. Let us now re-run the arguments from
the previous section replacing the key second-moment lemmas with their truncated versions. Our
first point to note is that the difference between the measures η̂

D,M
N and ηD

N disappears when the
truncation is removed by taking M→ ∞. For this we introduce the truncated level set

Γ̂
D,M
N (b) :=

{
x ∈ DN : hDN (x)≥ aN +b, TN,M(x) occurs

}
. (4.7)

Then we have:

Lemma 4.1 For each λ ∈ (0,1) and each b0 > 0 there are constants c, c̃ ∈ (0,∞) such that for
all D ∈D, all b ∈ [−b0,b0], all M ≥ 1 and all N sufficiently large,∣∣ΓD

N(b)r Γ̂
D,M
N (b)

∣∣≤ ce−c̃M2
(diamD)2+2λ 2

KN . (4.8)

Using this lemma we immediately get that for any bounded, measurable f : D×R→ R,

lim
M→∞

limsup
N→∞

∣∣〈η̂D,M
N , f 〉−〈ηD

N , f 〉
∣∣= 0. (4.9)

Since Lemma 3.1 and the aforementioned domination of η̂
D,M
N by ηD

N show that the family of
measures {η̂D,M

N : N ≥ 1} is tight in the topology of vague convergence, we can extract a subse-
quential weak limit η̂D,M and study its properties.

The first and foremost question is non-triviality of the limit. Here we need an analogue of
Lemma 3.3, now without restrictions on λ . For b,b′ ∈ R with b < b′, abbreviate

Γ̂
D,M
N (b,b′) := Γ̂

D,M
N (b)r Γ̂

D,M
N (b′) . (4.10)

Then we have:

Lemma 4.2 Let λ ∈ (0,1). For all ε > 0, all M ≥ 0 and all b,b′ ∈ R with b < b′, there is
c = c(M,b,b′,ε) ∈ (1,∞) such that for all D ∈D and all N large enough,

E
(
|Γ̂D,M

N (b,b′)∩Dε
N |2
)
≤ c(diamD)4+4λ 2

K2
N (4.11)
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The second moment calculation spelled out in the proof of Corollary 3.4 together with Lemma 4.1
then show that every subsequential weak limit η̂D,M of measures {η̂D,M

N : N ≥ 1} has positive total
mass with positive probability, provided M is chosen large enough. In light of the domination
of η̂

D,M
N by ηD

N , the same applies to any subsequential limit of the measures {ηD
N : N ≥ 1}.

The hardest point to be addressed is factorization. This is the subject of the following lemma
which effectively replaces Lemma 3.6:

Lemma 4.3 Let λ ∈ (0,1). Using the notation AN := {x ∈ Z2 : x/N ∈ A}, for each open A⊆ D
and each b ∈ R, we have

lim
N→∞

1
KN

E
∣∣∣∣∣Γ̂D,M

N (0)∩AN
∣∣− eαλb

∣∣Γ̂D,M
N (b)∩AN

∣∣∣∣∣= 0. (4.12)

Lastly, we will need one more lemma dealing with the maximum of the field ΦSn,S̃n,m , where Sn
is a dyadic square of side-length 2−n and Sn,m is the disjoint union of 4m dyadic squares of side-
length 2−(n+m) that just barely fit into Sn. Recall that S̃δ

n+m is the union of “shrunk” dyadic
squares Sδ

n,m centered at the same points as Sn,m, respectively. See the paragraph before (3.69).

Lemma 4.4 For each δ > 0 there is a constant c = c(δ ) such that

P
(

sup
x∈S̃δ

n,m

Φ
Sn,S̃n,m(x)> 2

√
g log(2m)+ c

√
log(2m)

)
−→
m→∞

0. (4.13)

Deferring the proofs of these lemmas to the next subsection, we use them to prove:

Theorem 4.5 The statement of Theorem 3.14 applies to all λ ∈ (0,1).

Proof. Consider a countable family D0 of domains in D which include all dyadic squares. A
diagonal argument permits us to to extract a subsequence along which η̂

D,M
N tends in law to a

limit η̂D,M for every D ∈ D0 and every integer M ≥ 1. Applying monotonicity in M, we can
then define ηD := limM→∞ η̂D,M. By (4.9), ηD is the limit of ηD

N along the chosen subsequence.
Lemma 4.3 implies that ηD obeys (3.31) for every f of the stated form. By Lemma 3.7 we then
have

η
D(dxdh) = ZD

λ
(dx)⊗ e−αλhdh (4.14)

for some a.s.-finite random Borel measure ZD
λ

which has positive mass with positive probability.
By the same reasoning as in the proof of Proposition 3.8, the measures {ZD

λ
: D ∈ D0} obey

properties (1-7) in Theorem 2.3. In particular, ZD
λ

charges every non-empty open set a.s.
In order to determine the law of ZD

λ
uniquely, and thus prove the existence of the limit, we

claim that, on the dyadic square Sn, we have the representation

ZSn
λ
(dx) law

= Y Sn
∞ (dx), (4.15)

where Y Sn
∞ is the measure constructed in Lemma 3.10. As the Gibbs-Markov property for ZD

λ

was already proved as part of the properties of Theorem 2.3 above, the starting equation (3.63)
is valid and the argument thereafter applies. We just need to replace Lemma 3.13 with a suitable
analogue that does not rely on the existence of the second moment of ZSn

λ
(Sn).
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The idea is to reintroduce the truncation while sticking with the N→∞ limit measures. Indeed,
using the above subsequential limit point η̂D,M of {η̂D,M

N : N ≥ 1}, we define

ẐD,M
λ

(A) := αλ η̂
D,M(A× [0,∞)

)
(4.16)

for each Borel measurable A. These measures are not expected to obey most of the properties in
Theorem 2.3. Notwithstanding, we have

ẐD,M
λ

(A)≤ ZD
λ
(A) and ẐD,M

λ
(A) ↑ ZD

λ
(A) as M→ ∞. (4.17)

We will refer to ẐD,M
λ

as a “truncated measure” although this not very accurate.

Remark 4.6 Note that Lemma 4.3 gives us a factorization property (4.14) for η̂D,M as well;
just replace ZD

λ
by ẐD,M

λ
. One might thus be tempted to think that η̂D,M also satisfies the Gibbs-

Markov property. However, this is false because the addition of the “binding field” ΦD,D̃ changes
the truncation events on the subdomain D̃. In any case, if the properties (1-7) of Theorem 2.3
were true for ẐD,M

λ
, our argument from the previous section would represent this measure using a

derivative martingale and, later, by the LQG measure. This would lead to a contradiction because
the LQG measure is known to lack the second moment for all λ ∈ [1/

√
2,1) yet (by Fatou) ẐD,M

λ

is square integrable for all λ ∈ (0,1).

Moving back to the proof of Theorem 4.5, we now define a measure Z̃Sn,M
m by (3.63) with

the ZSn+m,i
λ

on the right-hand side now replaced by their truncated analogues,

Z̃Sn,M
λ

(dx) :=
4m

∑
i=1

eαλΦSn ,S̃n,m (x)1Sn+m,i(x)Ẑ
Sn+m,i,M
λ

(dx). (4.18)

For each bounded, measurable f : D 7→ [0,∞) and each δ > 0 we then have

E
(
e−〈Z

Sn
λ
, f 〉)≤ E

(
e−〈Z̃

Sn ,M
λ

, f 〉)≤ E
(
e−〈Z̃

Sn ,M
λ

, fδ 〉
)
, (4.19)

where we fδ is as defined just before (3.69). Let ΦSn,S̃n,m be independent of the truncated measures
{ẐSn+m,i,M

λ
: i = 1, . . . ,4m}, which are themselves regarded as independent, and set

X̃i :=
∫

Sn+m,i

eαλΦSn ,S̃n,m (x) fδ (x)Z̃
Sn+m,i,M
λ

(dx). (4.20)

Noting that 〈Z̃Sn,M
λ

, fδ 〉= ∑
4m

i=1 X̃i, we then get for each ε > 0,

E
(
e−〈Z̃

Sn ,M
λ

, fδ 〉
)
≤ E

(
exp
{
−e−ε

4m

∑
i=1

E
(
X̃i1{X̃i≤ε}

∣∣ΦSn,S̃n,m
)})

(4.21)

from the “reverse Jensen” inequality in Lemma 3.12.
To replace Lemma 3.13, we claim that, for each ε > 0,

4m

∑
i=1

E
(
X̃i1{X̃i>ε}

∣∣ΦSn,S̃n,m
)
−→
m→∞

0 (4.22)
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in probability. For this let An,m denote the event in (4.13) and note that, on An,m, we can use
straightforward calculations to bound

4m

∑
i=1

E
(
X̃i1{X̃i>ε}

∣∣ΦSn,S̃n,m
)
≤ 1

ε
e4αλ

√
g log(2m)+c(δ )

√
log(2m)

4m

∑
i=1

E
(
ẐSn+m,i,M

λ
(Sδ

n+m,i)
2). (4.23)

Here we will finally benefit from using the truncated measures ẐSn+m,i,M
λ

. Indeed, Lemma 4.2,
monotonicity and Lemma 3.2 together with the scaling of the integral in (3.6) ensure that, for
some c,c′ ∈ (0,∞) depending on M and n,

E
(
Z̃Sn+m,i,M

λ
(Sδ

n+m,i)
2)≤ c

[
E(ZSn+m,i

λ
(Sn+m,i))

]2 ≤ c′(2m)−2(2+2λ 2) (4.24)

where the last inequality follows from (3.76). Since 4αλ
√

g = 8λ , this yields

4m

∑
i=1

E
(
X̃i1{X̃i>ε}

∣∣ΦSn,S̃n,m
)
≤ c′

ε
(2m)−4(1−λ )2

ec̃
√

m on An,m (4.25)

and so (4.22) follows from (4.13).
Plugging (4.22) into (4.21) then gives

limsup
m→∞

E
(
e−〈Z̃

Sn ,M
λ

, fδ 〉
)
≤ limsup

m→∞

E
(
e−e−ε E(〈Z̃Sn ,M

λ
, fδ 〉|ΦSn ,S̃n,m )

)
(4.26)

Our next task is to prove

E
(
〈ZSn

λ
, fδ 〉

∣∣ΦSn,S̃n,m
)
−E

(
〈Z̃Sn,M

λ
, fδ 〉

∣∣ΦSn,S̃n,m
)
−→ 0 (4.27)

in probability in the limit as m→ ∞ followed by M → ∞. Since the left hand side above is
non-negative, it thus suffices to show the convergence to 0 in the mean.

Since Var(ΦSn,S̃n,m(x))≤ g log(2m)+c uniformly on S̃δ
n,m, the expectation on the left-hand side

of (4.27) is at most

l.h.s. of (4.27)≤ c(2m)2λ 2
4m‖ f‖∞

[
E
(
ZSn+m

λ
(Sn+m)

)
−E

(
ẐSn+m,M

λ
(Sn+m)

)]
. (4.28)

Lemma 4.1 now implies

E
(
ZSn+m

λ
(Sn+m)

)
−E

(
ẐSn+m,M

λ
(Sn+m)

)
≤ ce−c̃M2

(2m)−2−2λ 2
. (4.29)

This bounds the expectation of (4.27) by ce−c̃M2‖ f‖∞ which tends to zero as M→ ∞.
Combining (4.19) with (4.26–4.27), using (3.64), Lemma 3.10 and the limits ε ↓ 0 and δ ↓ 0

(with (3.69)) thus show
E
(
e−〈Z

Sn
λ
, f 〉)≤ E

(
e−〈Y

Sn
∞ , f 〉). (4.30)

Jointly with (3.65), we then get (4.15). The same argument as in the proof of Theorem 3.14 now
gives uniqueness of the law of ZD

λ
for all D ∈D. �

4.2 Truncated moment calculations.

We now move to the technical statements (Lemmas 4.1–4.3) in the proof of Theorem 4.5 whose
proof was deferred from the previous subsection to here. For ε > 0, we write Dε

N := {x ∈
DN : dist(x,Dc

N) > εN}. We will need some observations concerning the law of the random
variables Sk defined in (4.3).
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Lemma 4.7 Recall that g := 2/π . For each ε > 0 and each r > 0, there is c = c(ε,r) ∈ (0,∞)
such that for all D ∈D with diamD≤ r and all N large enough, we have:
(1) For all x ∈ DN and all kN ≤ k ≤ m < n(x),

Var
(
Sk(x)−Sm(x)

)
= (m− k)g+o(1) (4.31)

where o(1)→ 0 when N→ ∞ uniformly in k.
(2) For all x ∈ Dε

N and all k with kN ≤ k ≤ n(x),

Var
(
Sk(x)

)
− (n(x)− k)g ∈ [0,c] (4.32)

Moreover, for all `≥ 1 there is c′ = c′(ε, `)> 0 such that for all x ∈Dε
N , all k with kN ≤ k≤ n(x),

all m satisfying k− `≤ m≤ k and all y ∈ DN such that ∆m+1(y)⊆ ∆k(x)\{x}, we have

E
(
Sk(x)Sm(y)

)
≤ (n(x)− k)g+ c′ and Var

(
Sm(y)−Sk(x)

)
∈ [g/2,c] . (4.33)

Proof. Fix r > 0 and consider any domain D∈D with diamD≤ r. By the Gibbs-Markov property,
translation invariance and Green function asymptotics (A.5),

Var(Sk(x)−Sm(x)) = Var
(

ϕ
Λem (0),Λek (0)(0)

)
= GΛem (0)(0,0)−GΛek (0)(0,0) = g(m− k)+o(1) .

(4.34)

This gives the first statement. For the second, we assume that k < n(x) since otherwise it is
trivially true. Then, since n(x) ≥ logN− c for c = c(ε) > 0, we may find c̃ = c̃(ε,r) > 0 such
that DN ⊆ Λen(x)+c̃(x). Monotonicity of the Green function with respect to inclusion and similar
considerations as above now show

Var
(
Sk(x)

)
≤ GΛ

en(x)+c̃ (0)(0,0)−GΛek (0)(0,0)≤ (n(x)− k)g+gc̃+o(1) . (4.35)

On the other hand, by definition DN ⊇ Λen(x)+1(x) and consequently

Var
(
Sk(x)

)
≥ GΛ

en(x)+1 (0)(0,0)−GΛek (0)(0,0)≥ (n(x)− k)g+g/2+o(1) . (4.36)

This completes the second statement.
Turning to the third statement, observe that the expectation there can be written explicitly as

EϕDN ,∆
k(x)(x)ϕDN ,∆

k(x)(y). By the Gibbs-Markov property, this expectation equals

E
(
hDN (x)hDN (y)

)
−E

(
h∆k(x)(x)h∆k(x)(y)

)
≤ (n(x)− k)g+ c′ , (4.37)

where we have used the Green function asymptotics again. The constant c′ > 0 above depends
on the distance of y to the boundary of ∆k(x) relative to its diameter. This in turn is governed by
the choice of `.

Finally, the upper bound on the variance follows from the above bounds together with

Var
(
Sm(y)−Sk(x)

)
= Var

(
Sm(y)

)
+Var

(
Sk(x)

)
−2E

(
Sm(y)Sk(x)

)
(4.38)

and the relation between m and k. As for the lower bound,

Var
(
Sm(y)−Sk(x)

)
= Var

(
ϕ

D,∆k(x)(y)−ϕ
D,∆k(x)(x)+ϕ

∆k(x),∆m(y)(y)
)

≥ Var
(
ϕ

∆k(x),∆m(y)(y)
)
≥ Var

(
ϕ

∆m+1(x),∆m(y)(y)
)
≥ g+o(1) (4.39)

thus proving the third statement as well. �

The next lemma notes that the dependency structure of the process (Sk(x))k,x is tree-like.
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Lemma 4.8 If x,y ∈ DN and 0 ≤ k1 < k2 ≤ n(x), 0 ≤ m1 < m2 ≤ n(y) are such that ∆k2(x) ⊆
∆m1(y), then the increments Sk1(x)− Sk2(x) and Sm1(y)− Sm2(y) are independent. In particular,
for any x ∈ DN , the process

(
Sk(x)

)n
k=0(x) has independent increments.

Proof. This is a direct consequence of the definition and the Gibbs-Markov property. �

Finally, we will also need the following simple fact:

Lemma 4.9 Suppose X law
= N (0,σ2

X) and Y law
= N (0,σ2

Y ) are independent. Then (X |X +Y ),
i.e., X conditional on X +Y , obeys

(X |X +Y ) law
= N

(
σ2

X

σ2
X +σ2

Y
(X +Y ),

σ2
X σ2

Y

σ2
X +σ2

Y

)
. (4.40)

Proof. A simple algebra shows

X =
σ2

X

σ2
X +σ2

Y
(X +Y )+

σ2
Y X−σ2

XY
σ2

X +σ2
Y

. (4.41)

The second expression on the right is a Gaussian random variable that is independent of X +Y ,
has mean zero and variance as the random variable on the right of (4.40). �

We are now ready to control the defect to the level set size caused by the truncation:
Proof of Lemma 4.1. Pick b,b′ ∈ R with b < b′. Let ε > 0 and note that

E
∣∣ΓD

N(b)r Γ̂
D,M
N (b)

∣∣≤ E
∣∣ΓD

N(b)rDε
N

∣∣+E
∣∣ΓD

N(b
′)
∣∣

+ ∑
x∈Dε

N

n(x)

∑
k=kN

P
(

hDN (x)−aN ∈ [b,b′) ,
∣∣Sk(x)−aN

n(x)−k
n(x)

∣∣> M(n(x)− k)3/4
)
. (4.42)

By Lemma 3.1, the first two expectations are bounded desired estimate provided we take ε small
and b′ sufficiently large (depending on diamD). We thus have to show the bound for the double
sum regardless of ε > 0 and b′ ∈ [b,∞).

Fix x ∈ Dε
N and let k ∈ {0, . . . ,n(x)}. We will estimate the probability on the right-hand side

of (4.42) by conditioning on the value of hDN (x). For this we note that, by Lemma 4.8, hDN (x)
is the sum of independent random variables Sk(x) and S0(x)− Sk(x). Applying Lemma 4.9 for
X := Sk(x) and Y := S0(x)−Sk(x), we thus get for s ∈ [b,b′](

Sk(x)
∣∣hDN (x) = aN + s

)
law
= N

(
Var(Sk(x))
Var(S0(x))

(aN + s),
Var(Sk(x))Var(S0(x)−Sk(x))

Var(S0(x))

)
. (4.43)

Invoking the variance estimates in Lemma 4.7, we obtain∣∣∣Var(Sk(x))
Var(S0(x))

− n(x)− k
n(x)

∣∣∣≤ c1

n(x)
(4.44)

and
Var(Sk(x))Var(S0(x)−Sk(x))

Var(S0(x))
≤ c2(n(x)− k) (4.45)
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where the constants c1 and c2 are independent of k, x and n(x) as chosen above. Plugging these
in (4.43) and using that aN is proportional to n(x), a standard Gaussian estimate yields

P
(∣∣Sk(x)−aN

n(x)−k
n(x)

∣∣> M(n(x)− k)3/4
∣∣∣hDN (x) = aN + s

)
≤ ce−c̃M2(n(x)−k)1/2

, (4.46)

Thanks to the uniformity in s of (4.46), the last term in (4.42) is bounded by

c ∑
x∈Dε

N

∞

∑
k=1

e−c̃M2k1/2
P
(
hDN (x)−aN ∈ [b,b′)

)
≤ c′e−c̃M2

E
∣∣ΓD

N(b)
∣∣. (4.47)

By Lemma 3.2, this obeys the desired bound as soon as N is sufficiently large. �

Next we move to the proof of the second moment estimate for truncated level sets:
Proof of Lemma 4.2. Pick b,b′ ∈ R with b < b′ and fix ε > 0 and M > 0. Given N ≥ 1 and
x,y ∈ Dε

N , we will first estimate the probability that x,y ∈ Γ̂D
N(b,b

′) for |x− y|> K1/4
N . Denote

k :=
(
dlog+ |x− y|e+1

)
∧n(x) , (4.48)

and let `≥ 1 be the minimal such that

∆
k−`(x)∩∆

k−`(y) = /0 and ∆
k−`+1(x)∪∆

k−`+1(y)⊆ ∆
k(x) . (4.49)

Observe that since n(x)≤ logN + c and n(y)≥ logN− c′ for c = c(D)> 0 and c′ = c(ε)> 0 we
must have `≤ c̃ with c̃ = c̃(ε,D)> 0. Also note that

hDN (x) = Sk(x)+
(
Sk−`(x)−Sk(x)

)
+
(
S0(x)−Sk−`(x)

)
(4.50)

and
hDN (y) = Sk(x)+

(
Sk−`(y)−Sk(x)

)
+
(
S0(y)−Sk−`(y)

)
. (4.51)

By (4.49) and Lemma 4.8, the three terms on the right of (4.50) are independent of each other,
while for the terms on the right of (4.51) we get that the last one is independent of the first two as
well as of of the last term on the right of (4.50). For any t ∈ [−M(n(x)− k)3/4,M(n(x)− k)3/4],
s1,s2 ∈ [b,b′) and any u1,u2 ∈ [−n(x)3/4,n(x)3/4], we then write

P
(

h(x)−aN ∈ ds1, h(y)−aN ∈ ds2

∣∣∣Sk(x)−aN
n(x)−k

n(x) = t,

Sk−`(x)−Sk(x) = u1, Sk−`(y)−Sk(x) = u2

)
= P

(
S0(x)−Sk−`(x)−aN

k
n(x) + t +u1 ∈ ds1

)
×P
(

S0(y)−Sk−`(y)−aN
k

n(x) + t +u2 ∈ ds2

)
≤ c

k
exp
{
−
(aN

n (x)k− t−u1 + s1
)2

+
(aN

n (x)k− t−u2 + s2
)2

2gk

}
ds1ds2

≤ c
k

exp
{
− a2

N

gn2 k+
aN

gn
(2t +u1 +u2− s1− s2)

}
ds1ds2 .

(4.52)

Here in the first inequality we used Lemma 4.7 to replace variances of the random variables
S0(x)− Sk−`(x) and S0(y)− Sk−`(y) by gk. This causes only a change in the multiplicative con-
stant because, by our assumptions on t, u1, u2, s1 and s2, the quantities in the squares in the
exponent are both at most order k. In the second inequality we opened up the squares and re-
tained, through a bound, only the quantities that depend on aN .
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Our next step is to integrate the above conditional probability with respect to the conditional
law of Sk−`(y)− Sk(x) and Sk−`(x)− Sk(x) given Sk(x). For this we will need to examine the
dependency of Sk−`(y)−Sk(x) on Sk(x). By Lemma 4.7, there are c > 0 and c′′ > c′ > 0 such that
E
(
(Sk−`(y)− Sk(x))Sk(x)

)
≤ c and Var

(
Sk−`(y)− Sk(x)

)
∈ [c′,c′′]. Consequently for all t with

|t| ≤M(n(x)− k)3/4,∣∣∣E(Sk−`(y)−Sk(x)
∣∣Sk(x)−aN

n(x)−k
n(x) = t

)∣∣∣≤ ct/(n(x)− k+1) ≤ cM (4.53)

and
Var
(
Sk−`(y)−Sk(x)

∣∣Sk(x)
)
≤ Var

(
Sk−`(y)−Sk(x)

)
≤ c′′ , (4.54)

with the conditional expectation vanishing and the conditional variance bounded similarly for
Sk−`(x)−Sk(x). Since aN/n(x) is bounded, the Cauchy-Schwarz inequality shows

E
(

e
aN
gn (Sk−`(y)−Sk(x))+

aN
gn (Sk−`(x)−Sk(x))

∣∣∣Sk(x)−aN
n(x)−k

n(x) = t
)
≤ c̃ , (4.55)

uniformly in t as above. In conjunction with (4.52), this yields

P
(

hDN (x)−aN ∈ [b,b′), hDN (y)−aN ∈ [b,b′)
∣∣∣Sk(x)−aN

n(x)−k
n(x) = t

)
≤ P

(
|Sk−l(x)−Sk(x)|∨ |Sk−l(y)−Sk(x)|> n3/4

∣∣∣Sk(x)−aN
n(x)−k

n(x) = t
)

+
c
k

∫
[b,b′)

ds1

∫
[b,b′)

ds2 exp
{
− a2

N

gn2 k+
aN

gn
(2t− s1− s2)

}
≤ c′

k
exp
{
− a2

N

gn2 k+2
aN

gn
t
}

(4.56)
uniformly in above t above, where c′ depends on b, b′ and M and we have used the fact that the
right hand side is at least e−cn for some c > 0.

Now if k= n(x) then Sk(x)= t = 0 and therefore the right hand side above is also a bound on the
unconditional probability. Otherwise, we integrate the left-hand side of (4.56) with respect to the
distribution of the random variable Sk(x)−aN

n(x)−k
n(x) to get (abbreviating θn(k) := (n(x)− k)3/4)

P
(

x,y ∈ Γ̂
D,M
N (b,b′)

)
≤ P

(
hDN (x)−aN ∈ [b,b′), hDN (y)−aN ∈ [b,b′),

∣∣Sk(x)−aN
n(x)−k

n(x)

∣∣≤Mθn(k)
)

≤ c
k(n(x)− k)1/2 e

− a2
N

gn2 k
∫
|t|≤Mθn(k)

exp
{

2
aN

gn
t−

(aN
n(x)−k

n (x)+ t)2

2g(n(x)− k)

}
dt

≤ c
k(n(x)− k)1/2 e

− a2
N

gn2 k− a2
N

2gn2 (n(x)−k)
∫
|t|≤Mθn(k)

e+
aN
gn tdt

≤ c′

k(n(x)− k)1/2 e
− a2

N
2gn2 k− a2

N
2gn2 n(x)+c̃Mθn(k)

≤ c′′
KN

N2
n(x)1/2

k(n(x)− k+1)1/2 e
− a2

N
2gn2 k+c̃Mθn(k)

(4.57)

for some constants c,c′,c′′, c̃ ∈ (0,∞). The latter bound applies also to the case k = n(x).
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The desired expectation is now obtained by summing over x,y ∈ Dε
N . This yields

E
∣∣Γ̂D,M

N (b,b′)∩Dε
n

∣∣2 = ∑
x,y∈Dε

N

P
(

x,y ∈ Γ̂
ε,M
N (b,b′)

)
≤ ∑

x,y∈Dε
N

|x−y|≤K1/4
N

P
(

x ∈ Γ̂
ε,M
N (b,b′)

)
+ ∑

x,y∈Dε
N

|x−y|>K1/4
N

P
(

x,y ∈ Γ̂
ε,M
N (b,b′)

)
. (4.58)

The first term on the right-hand side is bounded by K1/2
N E|Γ̂D,M

N (b,b′)|= O(K3/2
N ). For the second

term we partition the pairs (x,y) further depending on which annulus ∆k(x)r∆k−1(x) the vertex y
belongs to. As there are order N2e2k such pairs for a given k, the bound (4.57) gives

∑
x,y∈Dε

N

|x−y|>K1/4
N

P
(

x,y ∈ Γ̂
ε,M
N (b,b′)

)
≤ c′

KN

N2

n

∑
k=kN

n1/2

k(n− k+1)1/2 N2e
2k− a2

N
2gn2 k+c̃M(n(x)−k)3/4

, (4.59)

where we set n to be the maximum of n(x) over all x ∈ Dε
N (Here we note that a change in n by a

additive constant changes (4.57) only by a multiplicative constant.)
Now a2

N
2gn2 is asymptotic to 2λ 2 < 2 in the limit as N→ ∞ and so the exponent on the right of

(4.59) grows linearly with k. The sum is thus dominated by the k = n term. Since n = logN +
O(1), simple algebra shows that the expression on the right of (4.59) is O(K2

N). Since all bounds
above were uniform in D ∈D with a given diameter, say, diamD≤ 1, we only need to show how
to get the diameter dependence explicitly.

A key point is that the bounds were also independent of the approximating sequence of do-
mains DN , nor of the centering sequence aN as long as it obeyed (2.21) and not even much on
the sequence kN in the cutoff for the event TN,M as long as N is large enough. Fix D ∈ D with
r := diamD ≤ 1, let DN be a sequence of approximating domains obeying (2.1–2.2) and set
D′ := r−1D. Fix j ∈ {0,1, . . . ,br−1c} and set

D′N := DbN/rc− j, a′N := abN/rc− j and k′N := kbN/rc− j. (4.60)

Then {D′N} is a sequence of domains approximating, in the sense of (2.1–2.2), domain D′. Us-
ing a′N as the centering sequence and k′N as the cutoff in the event TN,M in the definition of
Γ̂

D′,M
N (b), we then get

Γ̂
D,M
bN/rc− j(b) = Γ̂

D′,M
N (b) (4.61)

A calculation now shows that the normalizing sequence K′N defined using a′N above obeys

K′N =
(
r2+2λ 2

+o(1)
)
KbN/rc− j (4.62)

Since every integer can be cast to the form bN/rc− j for some N and some j as above, the claim
for D follows from the claim for D′. �

Our final task is the proof of the factorization property for the truncated level sets:
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Proof of Lemma 4.3. Using the Cauchy-Schwarz inequality, we bound the expression inside the
limit in (4.12) by the square root of

1
K2

N
∑

x,y∈AN

E
((

1{hDN (x)≥aN}− eαλb1{hDN (x)≥aN+b}
)
1TN,M(x)

×
(
1{hDN (y)≥aN}− eαλb1{hDN (y)≥aN+b}

)
1TN,M(y)

)
.

(4.63)

To bound the sum above, we first consider pairs x,y for which m =
⌊

log‖x− y‖∞c obeys

m≥ 3
2

kN and ‖x− y‖∞ ∈
[
em +2ekN ,em+1−2ekN

]
. (4.64)

For such x,y, we have
∆

k(x)∩∆
kN (y) = /0, k = kN , . . . ,n(x), (4.65)

and similarly
∆

k(y)∩∆
kN (x) = /0, k = kN , . . . ,n(y). (4.66)

Consequently, letting F := σ(hDN(x)
z : z ∈ DN r (∆kN (x)∪ ∆kN (y))) the term corresponding to

such x and y in (4.63) can be written as

E
[(

P
(
hDN (x)≥ aN

∣∣F)− eαλbP
(
hDN (x)≥ aN +b

∣∣F))1TN,M(x)(
P
(
hDN (y)≥ aN

∣∣F)− eαλbP
(
hDN (y)≥ aN +b

∣∣F))1TN,M(y)

]
. (4.67)

We now write hD
N(x) as hD

N(x) = (S0(x)−SkN (x))+SkN (x) and note that the quantity in the paren-
thesis is independent of SkN (x), due to the fact that this term is F -measurable. Using a similar
decomposition for hDN (y), the expectation in (4.67) is bounded by

E
[

1TN,M(x)F
(

SkN (x)−aN
logN−kN

logN

)
1TN,M(y)F

(
SkN (y)−aN

logN−kN
logN

)]
, (4.68)

where

F(u) =
∣∣∣∣P(h̃(0)≥ aN

kN
logN −u

)
− eαλbP

(
h̃(0)≥ aN

kN
logN −u+b

)∣∣∣∣ . (4.69)

with h̃ denoting the DGFF on ΛekN .
Since aNkN/ logN ∼ 2

√
gλkN and Eh̃(0)2 = gkN +O(1), if we assume that |u|< (kN)

7/8 then
we can use tail asymptotics for the Gaussian density to estimate the quantities above. In particular,
P
(
h̃(0)≥ aN

kN
logN −u+b

)
/P
(
h̃(0)≥ aN

kN
logN −u

)
is asymptotic to

aN
kN

logN −u

aN
kN

logN −u+b
exp
{−2b

(
aN

kN
logN −u

)
−b2

2E[h̃(0)2]

}
∼ e−αλb, N→ ∞. (4.70)

It follows that
F(u) = o(1)P

(
h̃(0)≥ aN

kN
logN −u

)
(4.71)

with o(1)→ 0 as N→ ∞ uniformly in u satisfying |u|< (kN)
7/8. Since∣∣∣SkN (x)−aN

logN−kN
logN

∣∣∣< k7/8
N , on TN,M(x) (4.72)
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whenever N is large enough, with a similar condition holding for y under TN,M(y), we can apply
(4.71) in (4.68). Reversing the step (4.68), the expectation in (4.67) is thus bounded by

o(1)P
(

hDN (x)≥ aN , hDN (y)≥ aN , TN,M(x) , TN,M(y)
)
. (4.73)

Proceeding as in (4.59), the contribution to the sum in (4.63) from terms where (4.64) holds is
therefore at most o((KN)

2).
Turning to the remaining terms in the sum in (4.63), if x,y satisfy m < 3

2 kN , then we bound
the corresponding term by 4e2αλ (b∨0)P(hDN (x)≥ aN +b∧0). As in (3.20) the contribution to the
sum from all such terms is o(K2

N). For the pairs with m≥ 3
2 kN not satisfying the second restriction

in (4.64), we can bound by 4e2αλ (b∨0)P(hDN (x) ≥ aN − b∧ 0 , hDN (y) ≥ aN − b∧ 0). Observing
that the number of such pairs for a given m is at most order N2em+kN = o(1)N2e2m, the calculation
in (4.59) again shows that such terms contribute o((KN)

2) as well. The claim follows. �

5. PROOFS OF MAIN THEOREMS

The goal of this short section is to give formal proofs of our main theorems. Before we do that,
we still have to address one issue that has so been excluded from the discussion so far: the third
component of the point process that captures the local behavior of the field near a point of an
intermediate level set.

5.1 Local structure of intermediate level sets.

Henceforth, let ηD
N denote the full three-component process defined in (2.5) and let η̂

D,M
N be its

truncation to points x where TN,M(x) holds. In addition, define

η̃
D,M
N :=

1
KN

∑
x∈DN

δx/N⊗δhDN (x)−aN
⊗δ{hDN (x)−hDN (x+z) : z∈Z2}1T̃N,M(x) (5.1)

where

T̃N,M(x) := TN,M(x)∩
{

max
y∈∂∆kN (x)

∣∣hDN (x)−hDN (y)
∣∣≤ k2

N

}
. (5.2)

and ∆k(x), kN are defined in (4.2) and (4.5) respectively. Obviously, ηD
N dominates η̂

D,M
N which

dominates η̃
D,M
N . First we note that the truncations do not really matter as soon as proper limits

are taken:

Lemma 5.1 For any continuous, compactly-supported function f : D×R×RZ2 → R,

lim
M→∞

limsup
N→∞

∣∣〈η̃D,M
N , f 〉−〈ηD

N , f 〉
∣∣= 0. (5.3)

Proof. Thanks to Lemma 4.1, we have (4.9) for the three-component process as well. In light of
Lemma 3.1 it suffices to show that for any ε > 0, the probability that TN,M(x)r T̃N,M(x) occurs at
some x ∈ Dε

N goes to 0 as N→ ∞. By the Union Bound, this probability is at most

∑
x∈Dε

N

∑
y∈∂∆kN (x)

P
(
hDN (x)−hDN (y)> k2

N
)

(5.4)
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Since hDN (x)− hDN (y) has mean zero and variance bounded by a constant times kN uniformly
for all such pairs whenever N is large enough, the probability on the right is at most e−ck3

N . As
kN ∼ c′ logN and as the number of terms in the sum is only order N2ekN , the claim follows. �

The principal computation to be done in this section is now the content of:

Proposition 5.2 Let ν be the measure in (2.7) and, given any continuous, compactly-supported
function f : D×R×RZ2 → R, let

fν(x,h) := Eν

(
f (x,h,φ)

)
(5.5)

with the expectation over φ . Then for any M > 0,

lim
N→∞

E
∣∣∣〈η̃D,M

N , f 〉−〈η̃D,M
N , fν〉

∣∣∣= 0. (5.6)

For the proof we will need:

Lemma 5.3 Let ε > 0 and, for x∈Dε
N and a sample of hDN , let ϕN denote the discrete-harmonic

extension of the values of hDN on {x}∪∆kN (x)c. Recall the notation a for the potential kernel
associated with the simple symmetric random walk on Z2. Then

max
x∈Dε

N

max
z∈Λr(x)

sup
hDN∈T̃N,M(x)

|hDN (x)−aN |≤log logN

∣∣∣hDN (x)−ϕN(z)−
2
√

g
λa(z− x)

∣∣∣ −→
N→∞

0 (5.7)

Proof of Lemma 5.3. To show this, let HN(z,y) denote the probability that the simple random
walk started at z first returns to {x}∪∆kN (x)c at y. (Note that HN(x,x)> 0 in this case.) Then

hDN (x)−ϕN(z) = ∑
y∈∂∆kN (x)

HN(z,y)
[
hDN (x)−hDN (y)

]
. (5.8)

Recall the notation for Sk(x) and note that

SkN (x) ∑
y∈∂∆kN (x)

HN(x,y) = ∑
y∈∂∆kN (x)

HN(x,y)hDN (y). (5.9)

Swapping hDN (x) for SkN (x) on the right hand side of (5.8) then gives

hDN (x)−ϕN(z) =
(
1−HN(z,x)

)[
hDN (x)−SkN (x)

]
+ ∑

y∈∂∆kN (x)

(
HN(z,y)−HN(x,y)

)[
SkN (x)−hDN (y)

]
. (5.10)

We claim that the second term on the right vanishes in the stated limits. Indeed, on T̃N,M(x) we
have |hDN (x)−hDN (y)| ≤ k2

N for each y ∈ ∂∆kN (x) and so |hDN (y)−SkN (x)| ≤ 2k2
N . The standard

bounds on the regularity of the harmonic measure show |HN(z,y)−HN(x,y)| ≤ cre−2kN for all
z ∈ Λr(x). The second term is thus of order k2

Ne−kN .
Concerning the first term on the right of (5.10) we note that, on the event TN,M(x)∩{|hDN (x)−

aN | ≤ log logN} we have

hDN (x)−SkN (x) = aN
kN

n
(x)+O(k3/4

N ) (5.11)
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where n = logN +O(1), while

gkN(1−HN(z,x)) = a(z− x)+o(1) (5.12)

uniformly in z ∈ Λr(x). Using the asymptotic (1.5) for aN , we then get (5.7). �

Proof of Proposition 5.2. By way of limit arguments, we may assume that f depends only on a
finite number of coordinates of φ , say, those in Λr(0), and that f (x,h,φ) 6= 0 implies dist(x,∆c)>
ε and h ∈ [b,b′) for some ε > 0 and b < b′. Abbreviate

F(x,h,φ) := f (x,h,φ)− fν(x,h). (5.13)

We then bound the expression by the square root of

1
K2

N
∑

x,y∈Dε
N

E
(

F
(

x
N ,h

DN (x)−aN ,
(
hDN (x)−hDN (x+ z)

)
z∈Λr(0)

)
1T̃N,M(x)

×F
(

y
N ,h

DN (y)−aN ,
(
hDN (y)−hDN (y+ z)

)
z∈Λr(0)

)
1T̃N,M(y)

)
. (5.14)

The argument at the end of the proof of Lemma 4.3 permits us to assume that x,y are such that
(4.64) applies. We also assume that N is so large that ekN > r. Conditioning on the sigma algebra

F := σ
(
hDN (z) : z 6∈ ∆

kN (x)∪∆
kN (y)

)
(5.15)

then splits the expectation into a product of two parts, one for x and the other for y. Using the
Gibbs-Markov decomposition to write hDN on ∆kN (x)r {x} as ϕN + h̃N , where h̃N is the DGFF
on ∆kN (x)r{x} and ϕN is as in Lemma 5.3, we now write the term corresponding to x as

E
(

F̃N

(
x
N ,h

DN (x)−aN ,hDN (x)−ϕN(·− x)
)
1T̃N,M(x)

∣∣∣F), (5.16)

where
F̃N(x,h,φ) := EF(x,h,φ + h̃N) (5.17)

with the expectation with respect to h̃N . Our aim is to show that the random variable under
expectation in (5.16) is small uniformly in x ∈ Dε

N and the part of the configuration measurable
with respect to F .

Thanks to uniform continuity of f , the identity (5.7) permits us to replace hDN −ϕN(· − x)
in (5.16) by 2√

g λa with a cost that tends deterministically to zero. The random variable under

expectation then depends on the conditional field only through hDN (x). We now observe that, by
the weak convergence of the DGFF on ΛkN (0)r{0} to the DGFF on Z2 r{0}— which can be
verified, e.g., by comparing covariances — we get

EF̃N
(
x,h, 2√

g λa
)
−→
N→∞

0 (5.18)

uniformly in x and h. We conclude that the conditional expectation in (5.16) is bounded by

o(1)1{hDN (x)−an∈[b,b′)}1TN,M(x) (5.19)

with o(1)→ 0 uniformly in x ∈ Dε
N . In light of Lemma 4.3, the quantity in (5.14) tends to zero

as N→ ∞. The claim follows. �
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5.2 Proofs of main results.

We are now ready to give the proofs of our main theorems:

Proof of Theorem 2.1. Let f : D×R×RZ2 → R be continuous with compact support and let fν

be as in (5.5). Theorems 3.14 and 4.5 and ensure that 〈ηD
N , fν〉 tends in distribution to∫

ZD
λ
(dx)⊗ e−αλhdh fν(x,h) =

∫
ZD

λ
(dx)⊗ e−αλhdh⊗ν(dφ) f (x,h,φ). (5.20)

Lemma 5.1 and Proposition 5.2 then identify this with the distributional limit of 〈ηD
N , fν〉. As this

holds for all such f , the claim follows. �

Proof of Corollary 2.2. This follows from Theorem 2.1 with Lemma 3.1 used to reduce the
problem to level sets between two values of the form aN +b. �

Proof of Theorem 2.3. This was proved as part of the proofs of Theorems 3.14 and 4.5. �

Proof of Theorem 2.4. This is proved exactly as [6, Theorem 7.2]; one just needs to change the
exponent 4 into 2+ 2λ 2 in suitable places. We only verify the parts of this theorem where this
change shows up. First off, the independence of the limit (2.6) on the particular sequence aN

permits us to assume aN := 2
√

gλ logN for which we then have KrN/KN → r2+2λ 2
as N → ∞.

This implies the scaling relation (2.25). The representation of ZS
λ

law
= Y S

∞ for any square S then
yields rotation invariance. This is because, under a conformal map f : D→ f (D), we have

C f (D), f (D̃)
(

f (x), f (y)
)
=CD,D̃(x,y) (5.21)

for any admissible D̃⊂ D and thus

Φ
f (D), f (D̃) ◦ f law

= Φ
D,D̃. (5.22)

The rotation invariance of Y S
∞ then follows from the rotation invariance of the function ψD

λ
.

With these properties verified, the proof of [6, Proposition 7.2] can then be followed literally
to yield, for any u : D→ [0,∞) bounded and measurable,

E
(
e−〈Z

f (D)
λ

,u◦ f 〉)≥ E
(
e−〈Z

D
λ
,| f ′◦ f−1|2+2λ2

u〉) (5.23)

Iterating this with f replaced by f−1 then gives equality in (5.23). The claim follows. �

Proof of Theorem 2.5. Let D ∈ D be such that it D fits an open dyadic square of side r. For
any integer k ≥ 0, let Sk,i, i = 1, . . . ,n(k) be open dyadic squares of side r2−k that lie entirely
in S. Clearly, each Sk,i has a non-empty intersection and contains exactly 4 squares of the form
Sk+1, j although there may be squares of the latter form that do not belong to any square of the
form Sk,i. For each k ≥ 1, let Hk be the set of functions in H1

0(S) that are harmonic on each Sk,i,
i = 1, . . . ,n(k), and vanish on Dr

⋃n(k)
i=1 Sk,i. Then, as is checked by the Gauss-Green formula,

{Hk : k ≥ 0} are orthogonal subspaces of H1
0(S) with

H1
0(S) =

⊕
k≥0

Hk. (5.24)

A minor complication that arises in this setting is that each Hk is infinitely dimensional. Still, by
separability of H1

0(D), we can find an countable orthonormal basis {ϕ̃k, j : j ≥ 1} in each Hk.
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Let {Xk, j : k, j≥ 1} be i.i.d. standard normals and write S0 := D and Dk :=
⋃n(k)

i=1 Sk,i. A covari-
ance calculation shows

Φ
Dk−1,Dk law

= ∑
j≥1

Xk, jϕ̃k, j on Dk, k ≥ 1. (5.25)

We also have

Φ
D,Dm law

=
m

∑
k=1

Φ
Dk−1,Dk

(5.26)

with the fields on the right-hand side regarded as independent. Using a suitable coupling to realize
these distributional identities as almost sure equalities, letting

Y D
k (dx) := cψ

D
λ
(x)

n(k)

∑
i=1

eαλΦD,Dk
(x)− 1

2 α2λ 2E[ΦD,Dk
(x)2]1Sk,i(x)dx (5.27)

and setting Fk := σ
(
X`, j : `+ j ≤ k}, then for any measurable A⊂ D,

E
(
Y D

m (A)
∣∣Fk

)
=
∫

A
cψ

D
λ
(x)µD,αλ

k(k−1)/2(dx), m≥ k, (5.28)

where µ
D,β
n is the measure defined in (2.16) for the basis {ϕn : n≥ 1} in H1

0(D) which is obtained
by reordering {ϕ̃k, j : j ≥ 1} according to the complete order

(k, j)� (k′, j′) ⇔ k+ j < k′+ j′ or k+ j = k′+ j′ & j ≤ j′. (5.29)

Since λ < 1 and thus αλ < βc, it is known (cf a remark after Rhodes and Vargas [25, Theo-
rem 5.5]) that µ

D,β
n converges to a non-trivial measure µ

D,β
∞ almost surely and in L1. It follows

that {Y D
k (A),Fk : k≥ 1} is a uniformly integrable martingale. The Martingale Convergence The-

orem then gives
Y D

k (A)−→
k→∞

Y D
∞ (A) a.s. and in L1. (5.30)

Using this in (5.28) shows

E
(
Y D

∞ (A)
∣∣Fk

)
=
∫

A
cψ

D
λ
(x)µD,αλ

k(k−1)/2(dx), k ≥ 1. (5.31)

The Levy Backward Theorem and the convergence µ
D,β
n → µ

D,β
∞ along with the fact that

⋂
k≥1 Fk

is trivial now identify Y D
∞ with the LQG measure on the right of (2.18).

To link this to the law of ZD
λ

we note that, as part of the proofs of Theorems 3.14 and 4.5,

we showed that ZD
λ

law
= Y D

∞ for D being a dyadic square. The Gibbs-Markov property and the
construction (5.27) then readily extend this to all D. �

APPENDIX

Here we will review some of the needed facts concerning the DGFF as well as the Green function
of the simple symmetric random walk on Z2. We begin with the latter.

Given D ( Z2, the Green function GD(x,y) is the expected number of visits to y of the simple
random walk started at x before the walk exits D. Denoting V ′N := (−N,N)2 ∩Z2, the potential
kernel can be defined by the limit

a(x) := lim
N→∞

[
GV ′N (0,0)−GV ′N (0,x)

]
(A.1)
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The potential kernel admits the asymptotic form

a(x) = g log |x|+ c0 +O(|x|−2), |x| → ∞. (A.2)

with c0 a numerical constant. For D finite, the fact that a is discrete harmonic away from 0 while
x 7→ GD(x,y) is harmonic on Dr{y}, we have

GD(x,y) =−a(x− y)+ ∑
z∈∂D

HD(x,z)a(y− z), (A.3)

where HD(x,z) is the probability that the simple random walk started at x exits D at z. As shown
in [6, Lemma A.2], the class of domains D is such that, for any D ∈ D and any sequence DN
approximating D in the sense of (2.1–2.2), we have

∑
z∈∂DN

HDN
(
bxNc,z

)
δz/N(·)

vaguely−→
N→∞

Π
D(x, ·), x ∈ D, (A.4)

where ΠD(x, ·) is the harmonic measure on (i.e., the hitting probability of the Brownian motion
started from x to) the boundary ∂D of the continuum domain D. Using this in conjunction with
(A.2), for x,y ∈ D with x 6= y we then get

GDN
(
bxNc,byNc

)
=−g log |x− y|+g

∫
∂D

Π
D(x,dz) log |x− z|+o(1). (A.5)

For x = y we instead get (3.7) effectively replacing −g log |x− y| by g logN + c0.
Moving to the properties of the DGFF, one that is most fundamental is the Gibbs-Markov

decomposition. If V ⊂U ⊂ Z2 are finite domains and hU and hV the DGFFs on U , resp., V , then

hU law
= hV +ϕ

U,V (A.6)

with ϕU,V independent of hV and having sample paths that are discrete harmonic on V and
equidistributed to hU on U rV . The law of ϕU,V can be alternatively prescribed by its covariance
structure, which turns out to be the difference GU −GV . It is now easy to check from (A.3–A.4),
this difference admits a scaling limit in the sense that, for any D, D̃ ∈D with D̃ ⊂ D and locally
uniformly in x,y ∈ D̃

GDN
(
bxNc,byNc

)
−GD̃N

(
bxNc,byNc

)
−→
N→∞

CD,D̃(x,y), (A.7)

with CD,D̃ as in (2.9). Letting ΦD,D̃ be the Gaussian process with covariance CD,D̃, for each N ≥ 1
and each δ > 0, there is a coupling of ϕDN ,D̃N with ΦD,D̃ such that

lim
N→∞

P
(

sup
x∈D̃

dist(x,D̃c)>δ

∣∣ϕDN ,D̃N (bxNc)−Φ
D,D̃(x)

∣∣> δ

)
= 0, (A.8)

see [7, Lemma B.14].
As our final item of business, we will prove a lemma that was used in the proof of Theorem 4.5.

The proof is standard; we include it merely for completeness of exposition.
Proof of Lemma 4.4. To lighten the notation suppose S is an open square of side r and let Si,
i = 1, . . . ,L2 be disjoint open squares of side r/L that just barely fit into S. Denote S̃ :=

⋃L2

i=1 Si



40 BISKUP AND LOUIDOR

and let xi be the center point of Si, for each i. Then Var(ΦS,S̃(xi))≤ g logL+c for some constant c
and so, by a straightforward union bound,

P
(

max
i=1,...,L2

Φ
S,S̃(xi)> 2

√
g logL

)
≤ c′√

logL
. (A.9)

Next let Sδ
i := {z ∈ Si : dist(z,Sc

i )> δ} and note that

max
i=1,...,L2

sup
z∈Sδ

i

Var
(
Φ

S,S̃(z)−Φ
S,S̃(xi)

)
≤ c (A.10)

with c independent of L. Letting

M?
L := max

i=1,...,L2
sup
z∈Sδ

i

(
Φ

S,S̃(z)−Φ
S,S̃(xi)

)
(A.11)

the Borell-Tsirelson inequality (see Adler [2, Theorem 2.1]) shows that M?
L has a uniform Gauss-

ian tail and so
P
(
M?

L−EM?
L >

√
logL

)
≤ L−c (A.12)

for some c > 0 independent of L. It thus remains to control the growth rate of EM?
L. For this

we consider the pseudometric space (X ,ρ), where X := {(i,z) : i = 1, . . . ,L2, z ∈ Sδ
i } and

ρ((i,z),(i′,z′)) := E[ΦS,S̃(z)−ΦS,S̃(z′)
]

when z ∈ Sδ
i and z′ ∈ Sδ

i′ . Writing Bρ((i,z),r) for the
closed ball in X of radius r centered at (i,z) and using m for the normalized Lebesgue measure
on
⋃L2

i=1 Sδ
i , the Fernique criterion (cf Adler [2, Theorem 4.1]) then gives

EM?
L ≤ c

∫
∞

0

√
log

1
m(Bρ(x,r))

dr (A.13)

for some universal constant c. The fact that (x,y) 7→CS,S̃(x,y) is uniformly Lipschitz on each Sδ
i

gives m(Bρ((i,z),r)) ≥ c′(r ∧ L−1)4 with c′ > 0 independent of L as soon as δ is sufficiently
small. Plugging this into (A.13), we get EM?

L ≤ c′′
√

logL. Combining this with (A.12) and (A.9),
the claim follows. �
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