
1 / 30

Hydrodynamic limit for the Ginzburg-Landau ∇φ interface

model with a conservation law and the Dirichlet boundary

condition

Takao Nishikawa (Nihon Univ.)

May 31, 2011

Workshop “Gradient Random Fields”



Model

Model

• Microscopic interface

• Energy of

miscroscopic interface

• Dynamics - Langevin

equation

• Hydrodynamic scaling

limit (LLN)

• Total surface tension

• Dynamics with a

conservation law

• Hydrodynamic scaling

limit on the periodic

torus

• Problem

Main Result

Rough sketch of the

proof

2 / 30



Microscopic interface

Model

• Microscopic interface

• Energy of

miscroscopic interface

• Dynamics - Langevin

equation

• Hydrodynamic scaling

limit (LLN)

• Total surface tension

• Dynamics with a

conservation law

• Hydrodynamic scaling

limit on the periodic

torus

• Problem

Main Result

Rough sketch of the

proof

3 / 30

Interface φ = {φ(x) ∈ R; x ∈ Z
d}

Zd( )Rd

Á( )x

x

φ(x): the height at position x
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Energy of the microscopic interface φ = {φ(x) ∈ R; x ∈ Z
d}

H(φ) =
1

2

∑

x,y∈Zd,|x−y|=1

V (φ(x) − φ(y))

(V : R → R is C2, symm., ‖V ′′‖∞ <∞)
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Langevin eq.

dφt(x) = − ∂H

∂φ(x)
(φt)dt+

√
2dwt(x), (1)

for

x ∈ ΓN = (Z/NZ)d
with periodic b.c.

x ∈ DN = ND ∩ Z
d

with Dirichlet b.c.

• w = {wt(x);x ∈ ΓN}: independent 1D B.m.’s

• ∂H

∂φ(x)
=

∑

y:|x−y|=1

V ′(φ(x) − φ(y))
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Macroscopic interface hN (t, θ)
(t ∈ [0, t], θ ∈ [0, 1)d =: T

d or θ ∈ D)

hN (t, x/N) = N−1φN2t(x), x ∈ ΓN

Theorem 1 (Funaki-Spohn for ΓN , N. for DN with Dirichlet

b.c.). If V is strictly convex, i.e., there exist c−, c+ > 0 such

that

c− ≤ V ′′(η) ≤ c+, η ∈ R

we have

hN −→ h :
∂h

∂t
= div∇σ(∇h) (2)

where σ : R
d → R is the surface tension introduced via

thermodynamic limit.
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The equation (2) is the gradient flow with respect to the energy

functional

Σ(h) =

∫

σ(∇h(θ)) dθ (3)

in L2-space. The functional Σ is called ”total surface tension,”

which gives the total energy of the interface h.

Remark 1. The assumption “V is strictly convex” can be

relaxed. If we have the convexity of σ (see

Cotar-Deuschel-Müller and Cotar-Deuschel) and the

characterization of Gibbs measures for gradient fields, we can

show the hydrodynamic limit. (joint work with J.-D. Deuschel

and I. Vignard)
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Let us consider

dφt(x) = ∆

{

∂H

∂φ(·)(φt)

}

(x)dt+
√

2dw̃t(x), (4)

for

x ∈ ΓN = (Z/NZ)d
with periodic b.c.

x ∈ DN = ND ∩ Z
d

with Dirichlet b.c.

• w̃ = {w̃t(x);x ∈ ΓN}: Gaussian process with covariance

structure

E[w̃s(x)w̃t(y)] = −∆(x, y)s ∧ t
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• ∆: (discrete) Laplacian

∆f(x) =
∑

y∈ΓN ,|x−y|=1

(f(y) − f(x)), x ∈ ΓN

Remark 2. By Itô’s formula, it is easy to see

∑

x∈ΓN

φt(x) ≡
∑

x∈ΓN

φ0(x) (= const.), t ≥ 0, (5)

that is, the total sum of the height variable (; number of

particle) is conserved by this time evolution.
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Macroscopic interface hN (t, θ)(t ∈ [0, t], θ ∈ [0, 1)d =: T
d)

hN (t, x/N) = N−1φN4t(x), x ∈ ΓN

Theorem 2 (N. 2002). If V is strictly convex, i.e., there exist

c−, c+ > 0 such that

c− ≤ V ′′(η) ≤ c+, η ∈ R

we have

hN −→ h :
∂h

∂t
= −∆ div∇σ(∇h)

where σ : R
d → R is the surface tension introduced via

thermodynamic limit.
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What happen in the case with Dirichlet b.c.?
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Theorem 3. Let D be a finite, convex domain with Lipschitz

boundary. We assume that there exists h0 ∈ H−1(D) such

that

sup
N≥1

E
[

‖hN (0)‖2
H−1(D)

]

<∞,

lim
N→∞

E‖hN (0) − h0‖2
H−1(D) = 0.

We then have

lim
N→∞

E‖hN (t) − h(t)‖2
H−1(D) = 0,

where h is the weak solution of nonlinear PDE

∂h

∂t
= ∆ div∇σ(∇h). (6)
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h ∈ C([0, T ], H−1(D)) ∩ L2([0, T ], H1
0 (D)) and for test

functions J1 ∈ C∞([0, T ] ×D) and J2 ∈ C1
0(D),

∫

D
h(t, θ)J1(t, θ) dθ

=

∫

D
h0(θ)J1(t, θ) dθ +

∫ t

0

∫

D
h(s, θ)

d

ds
J1(s, θ) dθ ds

+

∫ t

0

∫

D
∇u(s, θ) · ∇J1(s, θ) dθ ds,

∫

D
u(t, θ)J2(θ) dθ = −

∫

D
∇σ(∇h(t)) · ∇J2(θ) dθ
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The proof is by H−1-method in

• Funaki-Spohn, Commun. Math. Phys. (’97)

• N., Probab. J. Math. Univ. Tokyo (’02)

• N., Probab. Theory Relat. Fields (’03)
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Following the results stated befote, we have the conclusion

once we have

• a priori bounds for stochastic dynamics

• a priori bounds for discretized equation corresponding to

(6)

• uniqueness of ergodic stationary measure

(In [N. 03] this property plays a key role.)

• establish local equilibrium

• derive PDE (6)
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• (Zd)∗: all oriented bonds in Z
d, i.e.

(Zd)∗ = {(x, y) ∈ Z
d × Z

d; |x− y| = 1}

• Γ∗
N : all oriented bonds in ΓN

• X : all η ∈ R
(Zd)∗ satisfying the following conditions:

1. η(b) = −η(−b),
where −b = (y, x) for b = (x, y).

2. For every closed loops C
∑

b∈C

η(b) = 0

holds.
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• ∇: discrete gradient

∇φ(b) = φ(x) − φ(y), b = (x, y)

• Λl = {x ∈ Z
d; max |xi| ≤ l}

• Λ∗
l = {(x, y) ∈ (Zd)∗; x, y ∈ Λl}

• Λ∗
l = {(x, y) ∈ (Zd)∗; x ∈ Λl or y ∈ Λl}

• XΛ∗ = {(∇φ(b); b ∈ Λ∗); φ ∈ R
Λ}

• XΛ∗,ξ = {η ∈ R
Λ∗

; η ∨ ξ ∈ X}
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• ∇: discrete gradient

∇φ(b) = φ(x) − φ(y), b = (x, y)

• Λl = {x ∈ Z
d; max |xi| ≤ l}

• Λ∗
l = {(x, y) ∈ (Zd)∗; x, y ∈ Λl}

• Λ∗
l = {(x, y) ∈ (Zd)∗; x ∈ Λl or y ∈ Λl}

• XΛ∗ = {(∇φ(b); b ∈ Λ∗); φ ∈ R
Λ}

• XΛ∗,ξ = {η ∈ R
Λ∗

; η ∨ ξ ∈ X}
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Proposition 4. There exists constants K1,K2 > 0 such that

E‖hN (t)‖2
H−1 +K1N

−dE

∫ t

0

∑

b∈D∗

N

(

∇φN
s (b)

)2
ds

≤ E‖hN (0)‖2
H−1 +K2(1 + t), t > 0

holds, where

‖hN‖2
−1,N := N−d−4

∑

x∈DN

(φN (x) − 〈φN 〉)

× (−∆DN
)−1(φN (x) − 〈φN〉)

+N−2d−2〈φN 〉2.
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Let us consider a system of ODEs















∂

∂t
h̄N (t, x/N) = −∆NuN(x/N), x ∈ DN

uN = divN

{

(∇σ)(∇N h̄N (t))
}

(x/N), x ∈ DN

h̄N (t, x/N) = 0, x 6∈ DN .
(7)

and we extend h̄N to the function from [0, T ] × R
d by

interpolation as follows:

h̄N (t, θ) = h̄N(t, x/N), x ∈ Z
d.

We consider the solution with initial datum

h̄N
0 (x/N) = Nd

∫

B(x/N,1/N)

h0(θ
′) dθ′, h0 ∈ C2

0(D).
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Proposition 5. If initial data is smooth enough, then there

exists a constant C := C(T, h0) such that

sup
N

sup
0≤t≤T

(

‖h̄N(t)‖2
−1,N + ‖∇NhN (t)‖2

L2

)

≤ C,

sup
N

sup
0≤t≤T

∥

∥

∥

∥

d

dt
h̄N (t)

∥

∥

∥

∥

2

−1,N

≤ C,

sup
N

∫ T

0

‖uN(t)‖p
Lp dt ≤ C,

sup
N

∫ T

0

‖∇NuN(t)‖p
Lp dt ≤ C

holds.
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• µΛ,ξ: finite volume Gibbs measure on XΛ,ξ, i.e.,

µΛ,ξ(dη) =
1

ZΛ,ξ
exp(−H(η))dηΛ,ξ,

where ZΛ,ξ is a normalizing constant.

• µ: Grandcanonical Gibbs measure on X iff µ satisfies DLR

equation

µ(·|F(Zd)∗rΛ∗)(ξ) = µΛ,ξ(·), µ-a.s. ξ,

holds for every finite set Λ ⊂ Z
d.

• µu: shift-invariant ergodic Gibbs meas. on gradient field X
with mean u ∈ R

d, i.e.,

Eµu [η((ei, 0))] = ui, 1 ≤ i ≤ d
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For the solution φt of SDE (1), ηt = ∇φt satisfies

dηt(b) = −∇∆U·(ηt)(b) dt+
√

2d∇w̃t(b), (8)

where

Ux(η) :=
∑

b:xb=x

V ′(η(b))
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The generator for (8) is given by

L =
∑

x∈Zd

Lx,

Lx = −∂x∆∂(x) + ∆U·(x)∂x,

∂x = 2
∑

b:xb=x

∂

∂η(b)
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Theorem 6. Let a measure µ on X be invariant under spatial

shift and tempered, that is,

Eµ[η(b)2] <∞, b ∈
(

Z
d
)∗
.

holds. If µ is a stationary measure corresponding L , i.e.,

∫

X

L f(η)µ(dη) = 0

holds for every f ∈ C2
loc(X ), µ is then a grandcanonical

Gibbs measure.
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If d ≤ 3, the large deviation problem can be shown (it is

reported at the workshop held at Warwick). The restriction

“d ≤ 3” is from the luck of infomation on the stationary

measures. Once we have Theorem 6, the result can be

extened to arbitrary cases.
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We shall apply the same method in [Deuschel-N.-Vignard, in

preparation], which is based on [Fritz, 1982]. Our goal is the

following:

lim
n→∞

n−dIΛn
(µ|Λn

) = 0,

where

• IΛn
(ν) = EΛn

(
√

f,
√

f), f =
dν

dµΛn

• µΛn
: finite volume Gibbs measure on Λn with free

boundary condition

• EΛn
: Dirichlet form for the time evolution with free

boundary condition

Once we have the above, we obtain that µ is canonical Gibbs

measure. However, in this setting, the canonical Gibbs

measure is also grandcanonical, thus we have the conclusion.
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From stationarity, we have

∫

L ψn(·, ξ)(η)µ(dη) = 0,

where ψn(η, ξ) ∈ C2
loc(X × X ).

Multiplying F ∈ C2
loc(X ) and integrating in ξ, we obtain

∫∫

F (ξ)Lψn(·, ξ)(η)µ(dη)νΛ∗

n
(dξ) = 0. (9)
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Roughly saying, if we can take F as

F (ξ) = log

(

dµ|Λn

dµΛn

(ξ)

)

and suitable ψn, we can obtain the entropy production and

error terms from LHS of (9).


	Model
	Microscopic interface
	Energy of miscroscopic interface
	Dynamics - Langevin equation
	Hydrodynamic scaling limit (LLN)
	Total surface tension
	Dynamics with a conservation law
	Dynamics with a conservation law
	Hydrodynamic scaling limit on the periodic torus
	Problem

	Main Result
	Hydrodynamic scaling limit on finite domain
	Limit equation

	Rough sketch of the proof
	How to show
	What we need to do
	Notations (1)
	Notations (2)
	A priori bounds for the SDEs
	Discretization for PDE
	A priori bound for the discretized PDE
	Gibbs measures on the gradient field
	Dynamics on the gradient field
	Generator for the SDE on (Zd)*
	Stationary measures and Gibbs measures
	Connection to the large deviation problem
	Proof of Theorem 6 (1)
	Proof of Theorem 6 (2)
	Proof of Theorem 6 (3)


