Hydrodynamic limit for the Ginzburg-Landau $\nabla \phi$ interface

 model with a conservation law and the Dirichlet boundary conditionTakao Nishikawa (Nihon Univ.)

May 31, 2011
Workshop "Gradient Random Fields"

Microscopic interface

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling
limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling
limit on the periodic
torus
- Problem

Main Result
Rough sketch of the proof

Interface $\phi=\left\{\phi(x) \in \mathbb{R} ; x \in \mathbb{Z}^{d}\right\}$

$\phi(x)$: the height at position x

Energy of miscroscopic interface

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling
limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Energy of the microscopic interface $\phi=\left\{\phi(x) \in \mathbb{R} ; x \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& H(\phi)=\frac{1}{2} \sum_{x, y \in \mathbb{Z}^{d},|x-y|=1} V(\phi(x)-\phi(y)) \\
& \quad\left(V: \mathbb{R} \rightarrow \mathbb{R} \text { is } C^{2}, \text { symm., }\left\|V^{\prime \prime}\right\|_{\infty}<\infty\right)
\end{aligned}
$$

Dynamics - Langevin equation

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Langevin eq.

$$
\begin{equation*}
d \phi_{t}(x)=-\frac{\partial H}{\partial \phi(x)}\left(\phi_{t}\right) d t+\sqrt{2} d w_{t}(x) \tag{1}
\end{equation*}
$$

for

$$
\begin{aligned}
& x \in \Gamma_{N}=(\mathbb{Z} / N \mathbb{Z})^{d} \text { with periodic b.c. } \\
& x \in D_{N}=N D \cap \mathbb{Z}^{d} \text { with Dirichlet b.c. }
\end{aligned}
$$

- $w=\left\{w_{t}(x) ; x \in \Gamma_{N}\right\}$: independent 1D B.m.'s

Dynamics - Langevin equation

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Langevin eq.

$$
\begin{equation*}
d \phi_{t}(x)=-\frac{\partial H}{\partial \phi(x)}\left(\phi_{t}\right) d t+\sqrt{2} d w_{t}(x) \tag{1}
\end{equation*}
$$

for

$$
\begin{aligned}
& x \in \Gamma_{N}=(\mathbb{Z} / N \mathbb{Z})^{d} \text { with periodic b.c. } \\
& x \in D_{N}=N D \cap \mathbb{Z}^{d} \text { with Dirichlet b.c. }
\end{aligned}
$$

- $w=\left\{w_{t}(x) ; x \in \Gamma_{N}\right\}$: independent 1D B.m.'s
- $\frac{\partial H}{\partial \phi(x)}=\sum_{y:|x-y|=1} V^{\prime}(\phi(x)-\phi(y))$

Hydrodynamic scaling limit (LLN)

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Macroscopic interface $h^{N}(t, \theta)$

$$
\begin{aligned}
\left(t \in[0, t], \theta \in[0,1)^{d}\right. & \left.=: \mathbb{T}^{d} \text { or } \theta \in D\right) \\
h^{N}(t, x / N) & =N^{-1} \phi_{N^{2} t}(x), \quad x \in \Gamma_{N}
\end{aligned}
$$

Theorem 1 (Funaki-Spohn for Γ_{N}, N. for D_{N} with Dirichlet b.c.). If V is strictly convex, i.e., there exist $c_{-}, c_{+}>0$ such that

$$
c_{-} \leq V^{\prime \prime}(\eta) \leq c_{+}, \quad \eta \in \mathbb{R}
$$

we have

$$
\begin{equation*}
h^{N} \longrightarrow h: \frac{\partial h}{\partial t}=\operatorname{div} \nabla \sigma(\nabla h) \tag{2}
\end{equation*}
$$

where $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the surface tension introduced via thermodynamic limit.

Total surface tension

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

The equation (2) is the gradient flow with respect to the energy functional

$$
\begin{equation*}
\Sigma(h)=\int \sigma(\nabla h(\theta)) d \theta \tag{3}
\end{equation*}
$$

in L^{2}-space. The functional Σ is called "total surface tension," which gives the total energy of the interface h.

Remark 1. The assumption " V is strictly convex" can be relaxed. If we have the convexity of σ (see Cotar-Deuschel-Müller and Cotar-Deuschel) and the characterization of Gibbs measures for gradient fields, we can show the hydrodynamic limit. (joint work with J.-D. Deuschel and I. Vignard)

Dynamics with a conservation law

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Let us consider

$$
\begin{equation*}
d \phi_{t}(x)=\Delta\left\{\frac{\partial H}{\partial \phi(\cdot)}\left(\phi_{t}\right)\right\}(x) d t+\sqrt{2} d \tilde{w}_{t}(x) \tag{4}
\end{equation*}
$$

for

$$
\begin{aligned}
& x \in \Gamma_{N}=(\mathbb{Z} / N \mathbb{Z})^{d} \text { with periodic b.c. } \\
& x \in D_{N}=N D \cap \mathbb{Z}^{d} \text { with Dirichlet b.c. }
\end{aligned}
$$

- $\tilde{w}=\left\{\tilde{w}_{t}(x) ; x \in \Gamma_{N}\right\}:$ Gaussian process with covariance

structure

Dynamics with a conservation law

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling
limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling
limit on the periodic
torus
- Problem

Main Result
Rough sketch of the proof

Let us consider

$$
\begin{equation*}
d \phi_{t}(x)=\Delta\left\{\frac{\partial H}{\partial \phi(\cdot)}\left(\phi_{t}\right)\right\}(x) d t+\sqrt{2} d \tilde{w}_{t}(x) \tag{4}
\end{equation*}
$$

for

$$
\begin{aligned}
& x \in \Gamma_{N}=(\mathbb{Z} / N \mathbb{Z})^{d} \text { with periodic b.c. } \\
& x \in D_{N}=N D \cap \mathbb{Z}^{d} \text { with Dirichlet b.c. }
\end{aligned}
$$

- $\tilde{w}=\left\{\tilde{w}_{t}(x) ; x \in \Gamma_{N}\right\}:$ Gaussian process with covariance structure

$$
E\left[\tilde{w}_{s}(x) \tilde{w}_{t}(y)\right]=-\Delta(x, y) s \wedge t
$$

Dynamics with a conservation law

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

- Δ : (discrete) Laplacian

$$
\Delta f(x)=\sum_{y \in \Gamma_{N},|x-y|=1}(f(y)-f(x)), \quad x \in \Gamma_{N}
$$

Remark 2. By Itô's formula, it is easy to see

$$
\begin{equation*}
\sum_{x \in \Gamma_{N}} \phi_{t}(x) \equiv \sum_{x \in \Gamma_{N}} \phi_{0}(x)(=\text { const. }), \quad t \geq 0 \tag{5}
\end{equation*}
$$

that is, the total sum of the height variable (\because number of particle) is conserved by this time evolution.

Dynamics with a conservation law

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling
limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

- Δ : (discrete) Laplacian

$$
\Delta f(x)=\sum_{y \in \Gamma_{N},|x-y|=1}(f(y)-f(x)), \quad x \in \Gamma_{N}
$$

Remark 2. By Itô's formula, it is easy to see

$$
\begin{equation*}
\sum_{x \in \Gamma_{N}} \phi_{t}(x) \equiv \sum_{x \in \Gamma_{N}} \phi_{0}(x)(=\text { const. }), \quad t \geq 0 \tag{5}
\end{equation*}
$$

that is, the total sum of the height variable ($=$ number of particle) is conserved by this time evolution.

Hydrodynamic scaling limit on the periodic torus

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result
Rough sketch of the proof

Macroscopic interface $h^{N}(t, \theta)\left(t \in[0, t], \theta \in[0,1)^{d}=: \mathbb{T}^{d}\right)$

$$
h^{N}(t, x / N)=N^{-1} \phi_{N^{4} t}(x), \quad x \in \Gamma_{N}
$$

Theorem 2 (N .2002). If V is strictly convex, i.e., there exist
$c_{-}, c_{+}>0$ such that

$$
c_{-} \leq V^{\prime \prime}(\eta) \leq c_{+}, \quad \eta \in \mathbb{R}
$$

we have

$$
h^{N} \longrightarrow h: \frac{\partial h}{\partial t}=-\Delta \operatorname{div} \nabla \sigma(\nabla h)
$$

where $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the surface tension introduced via thermodynamic limit.

Model

- Microscopic interface
- Energy of
miscroscopic interface
- Dynamics - Langevin
equation
- Hydrodynamic scaling
limit (LLN)
- Total surface tension
- Dynamics with a

> What happen in the case with Dirichlet b.c.?
conservation law

- Hydrodynamic scaling
limit on the periodic
torus
- Problem

Main Result
Rough sketch of the proof

Model
Main Result

- Hydrodynamic scaling
limit on finite domain
- Limit equation

Rough sketch of the proof

Main Result

Hydrodynamic scaling limit on finite domain

Model
Main Result

- Hydrodynamic scaling limit on finite domain
- Limit equation

Rough sketch of the proof

Theorem 3. Let D be a finite, convex domain with Lipschitz boundary. We assume that there exists $h_{0} \in H^{-1}(D)$ such that

$$
\begin{aligned}
& \sup _{N \geq 1} E\left[\left\|h^{N}(0)\right\|_{H^{-1}(D)}^{2}\right]<\infty \\
& \lim _{N \rightarrow \infty} E\left\|h^{N}(0)-h_{0}\right\|_{H^{-1}(D)}^{2}=0 .
\end{aligned}
$$

We then have

$$
\lim _{N \rightarrow \infty} E\left\|h^{N}(t)-h(t)\right\|_{H^{-1}(D)}^{2}=0
$$

where h is the weak solution of nonlinear PDE

$$
\begin{equation*}
\frac{\partial h}{\partial t}=\Delta \operatorname{div} \nabla \sigma(\nabla h) \tag{6}
\end{equation*}
$$

Limit equation

Model
Main Result

- Hydrodynamic scaling limit on finite domain
- Limit equation

Rough sketch of the proof
$h \in C\left([0, T], H^{-1}(D)\right) \cap L^{2}\left([0, T], H_{0}^{1}(D)\right)$ and for test functions $J_{1} \in C^{\infty}([0, T] \times D)$ and $J_{2} \in C_{0}^{1}(D)$,

$$
\begin{aligned}
& \int_{D} h(t, \theta) J_{1}(t, \theta) d \theta \\
& \quad=\int_{D} h_{0}(\theta) J_{1}(t, \theta) d \theta+\int_{0}^{t} \int_{D} h(s, \theta) \frac{d}{d s} J_{1}(s, \theta) d \theta d s \\
& \quad+\int_{0}^{t} \int_{D} \nabla u(s, \theta) \cdot \nabla J_{1}(s, \theta) d \theta d s \\
& \int_{D} u(t, \theta) J_{2}(\theta) d \theta=-\int_{D} \nabla \sigma(\nabla h(t)) \cdot \nabla J_{2}(\theta) d \theta
\end{aligned}
$$

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field
- Generator for the

SDE on $\left(\mathbb{Z}^{d}\right)^{*}$

- Stationary measures
and Gibbs measures
- Connection to the
large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Rough sketch of the proof

How to show

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

The proof is by H^{-1}-method in

- Funaki-Spohn, Commun. Math. Phys. ('97)
- N., Probab. J. Math. Univ. Tokyo ('02)
- N., Probab. Theory Relat. Fields ('03)

What we need to do

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure
(In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

What we need to do

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure
(In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

What we need to do

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure
(In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

What we need to do

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

What we need to do

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

What we need to do

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the
discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Following the results stated befote, we have the conclusion once we have

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the
large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Notations (1)

- $\left(\mathbb{Z}^{d}\right)^{*}$: all oriented bonds in \mathbb{Z}^{d}, i.e.

$$
\left(\mathbb{Z}^{d}\right)^{*}=\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d} ;|x-y|=1\right\}
$$

- Γ_{N}^{*} : all oriented bonds in Γ_{N}
- \mathcal{X} : all $\eta \in \mathbb{R}^{\left(\mathbb{Z}^{d}\right)^{*}}$ satisfying the following conditions:

1. $\eta(b)=-\eta(-b)$,
where $-b=(y, x)$ for $b=(x, y)$.
2. For every closed loops \mathcal{C}

$$
\sum_{b \in C} \eta(b)=0
$$

holds.

Notations (1)

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the
large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- $\left(\mathbb{Z}^{d}\right)^{*}$: all oriented bonds in \mathbb{Z}^{d}, i.e.

$$
\left(\mathbb{Z}^{d}\right)^{*}=\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d} ;|x-y|=1\right\}
$$

- Γ_{N}^{*} : all oriented bonds in Γ_{N}
- \mathcal{X} : all $\eta \in \mathbb{R}^{\left(\mathbb{Z}^{d}\right)^{*}}$ satisfying the following conditions:

1. $\eta(b)=-\eta(-b)$,
where $-b=(y, x)$ for $b=(x, y)$.
2. For every closed loops \mathcal{C}

Notations (1)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- $\left(\mathbb{Z}^{d}\right)^{*}$: all oriented bonds in \mathbb{Z}^{d}, i.e.

$$
\left(\mathbb{Z}^{d}\right)^{*}=\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d} ;|x-y|=1\right\}
$$

- Γ_{N}^{*} : all oriented bonds in Γ_{N}
- \mathcal{X} : all $\eta \in \mathbb{R}^{\left(\mathbb{Z}^{d}\right)^{*}}$ satisfying the following conditions:

1. $\eta(b)=-\eta(-b)$,
where $-b=(y, x)$ for $b=(x, y)$.
2. For every closed loops \mathcal{C}

$$
\sum_{b \in \mathcal{C}} \eta(b)=0
$$

holds.

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Notations (2)

- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\underline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}}, \xi}=\left\{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}} ; \eta \vee \xi \in \mathcal{X}\right\}$

Notations (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\Lambda_{l}^{*}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}, \xi}}=\left\{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}} ; \eta \vee \xi \in \mathcal{X}\right\}$

Notations (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\Lambda_{l}^{*}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}, \xi}}=\left\{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}} ; \eta \vee \xi \in \mathcal{X}\right\}$

Notations (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\Lambda_{l}^{*}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}}, \xi}=\left\{\eta \in \mathbb{R}^{\Lambda^{*}} ; \eta \vee \xi \in \mathcal{X}\right\}$

Notations (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\Lambda_{l}^{*}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}}, \xi}=\left\{\eta \in \mathbb{R}^{\Lambda^{*}} ; \eta \vee \xi \in \mathcal{X}\right\}$

Notations (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- ∇ : discrete gradient

$$
\nabla \phi(b)=\phi(x)-\phi(y), \quad b=(x, y)
$$

- $\Lambda_{l}=\left\{x \in \mathbb{Z}^{d} ; \max \left|x_{i}\right| \leq l\right\}$
- $\Lambda_{l}^{*}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x, y \in \Lambda_{l}\right\}$
- $\overline{\Lambda_{l}^{*}}=\left\{(x, y) \in\left(\mathbb{Z}^{d}\right)^{*} ; x \in \Lambda_{l}\right.$ or $\left.y \in \Lambda_{l}\right\}$
- $\mathcal{X}_{\Lambda^{*}}=\left\{\left(\nabla \phi(b) ; b \in \Lambda^{*}\right) ; \phi \in \mathbb{R}^{\Lambda}\right\}$
- $\mathcal{X}_{\overline{\Lambda^{*}, \xi}}=\left\{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}} ; \eta \vee \xi \in \mathcal{X}\right\}$

A priori bounds for the SDEs

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)$ *
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6 (1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Proposition 4. There exists constants $K_{1}, K_{2}>0$ such that

$$
\begin{aligned}
E\left\|h^{N}(t)\right\|_{H^{-1}}^{2} & +K_{1} N^{-d} E \int_{0}^{t} \sum_{b \in \overline{D_{N}^{*}}}\left(\nabla \phi_{s}^{N}(b)\right)^{2} d s \\
& \leq E\left\|h^{N}(0)\right\|_{H^{-1}}^{2}+K_{2}(1+t), \quad t>0
\end{aligned}
$$

holds, where

$$
\begin{gathered}
\left\|h^{N}\right\|_{-1, N}^{2}:=N^{-d-4} \sum_{x \in D_{N}}\left(\phi^{N}(x)-\left\langle\phi^{N}\right\rangle\right) \\
\quad \times\left(-\Delta_{D_{N}}\right)^{-1}\left(\phi^{N}(x)-\left\langle\phi^{N}\right\rangle\right) \\
+N^{-2 d-2}\left\langle\phi^{N}\right\rangle^{2}
\end{gathered}
$$

Discretization for PDE

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Let us consider a system of ODEs

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} \bar{h}^{N}(t, x / N) & =-\Delta_{N} u_{N}(x / N), \quad x \in D_{N} \tag{7}\\
u_{N} & =\operatorname{div}_{N}\left\{(\nabla \sigma)\left(\nabla^{N} \bar{h}^{N}(t)\right)\right\}(x / N), \quad x \in D_{N} \\
\bar{h}^{N}(t, x / N) & =0, \quad x \notin D_{N}
\end{align*}\right.
$$

and we extend \bar{h}^{N} to the function from $[0, T] \times \mathbb{R}^{d}$ by interpolation as follows:

$$
\bar{h}^{N}(t, \theta)=\bar{h}^{N}(t, x / N), \quad x \in \mathbb{Z}^{d}
$$

We consider the solution with initial datum

$$
\bar{h}_{0}^{N}(x / N)=N^{d} \int_{B(x / N, 1 / N)} h_{0}\left(\theta^{\prime}\right) d \theta^{\prime}, \quad h_{0} \in C_{0}^{2}(D)
$$

A priori bound for the discretized PDE

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Proposition 5. If initial data is smooth enough, then there exists a constant $C:=C\left(T, h_{0}\right)$ such that

$$
\begin{aligned}
& \sup _{N} \sup _{0 \leq t \leq T}\left(\left\|\bar{h}^{N}(t)\right\|_{-1, N}^{2}+\left\|\nabla^{N} h^{N}(t)\right\|_{L^{2}}^{2}\right) \leq C \\
& \sup _{N} \sup _{0 \leq t \leq T}\left\|\frac{d}{d t} \bar{h}^{N}(t)\right\|_{-1, N}^{2} \leq C \\
& \sup _{N} \int_{0}^{T}\left\|u^{N}(t)\right\|_{L^{p}}^{p} d t \leq C \\
& \sup _{N} \int_{0}^{T}\left\|\nabla^{N} u^{N}(t)\right\|_{L^{p}}^{p} d t \leq C
\end{aligned}
$$

holds.

Gibbs measures on the gradient field

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field - Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- $\mu_{\Lambda, \xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda, \xi}$, i.e.,

$$
\mu_{\Lambda, \xi}(d \eta)=\frac{1}{Z_{\Lambda, \xi}} \exp (-H(\eta)) d \eta_{\Lambda, \xi},
$$

where $Z_{\Lambda, \xi}$ is a normalizing constant.

- μ : Grandcanonical Gibbs measure on \mathcal{X} iff μ satisfies DLR equation

$$
\mu\left(\cdot \mid \mathscr{F}_{\left(\mathbb{Z}^{d}\right)^{*}} \backslash \overline{\Lambda^{*}}\right)(\xi)=\mu_{\Lambda, \xi}(\cdot), \quad \mu \text {-a.s. } \xi
$$

holds for every finite set $\Lambda \subset \mathbb{Z}^{d}$.

- μ_{u} : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^{d}$, i.e.,

$$
E^{\mu_{u}}\left[\eta\left(\left(e_{i}, 0\right)\right)\right]=u_{i}, \quad 1 \leq i \leq d
$$

Gibbs measures on the gradient field

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- $\mu_{\Lambda, \xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda, \xi}$, i.e.,

$$
\mu_{\Lambda, \xi}(d \eta)=\frac{1}{Z_{\Lambda, \xi}} \exp (-H(\eta)) d \eta_{\Lambda, \xi},
$$

where $Z_{\Lambda, \xi}$ is a normalizing constant.

- μ : Grandcanonical Gibbs measure on \mathcal{X} iff μ satisfies DLR equation

$$
\mu\left(\cdot \mid \mathscr{F}_{\left.\left(\mathbb{Z}^{d}\right)^{*} \backslash \overline{\Lambda^{*}}\right)}\right)(\xi)=\mu_{\Lambda, \xi}(\cdot), \quad \mu \text {-a.s. } \xi
$$

holds for every finite set $\Lambda \subset \mathbb{Z}^{d}$.

- μ_{u} : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^{d}$, i.e.,

$$
E^{\mu_{u}}\left[\eta\left(\left(e_{i}, 0\right)\right)\right]=u_{i}, \quad 1 \leq i \leq d
$$

Gibbs measures on the gradient field

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)
- $\mu_{\Lambda, \xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda, \xi}$, i.e.,

$$
\mu_{\Lambda, \xi}(d \eta)=\frac{1}{Z_{\Lambda, \xi}} \exp (-H(\eta)) d \eta_{\Lambda, \xi},
$$

where $Z_{\Lambda, \xi}$ is a normalizing constant.

- μ : Grandcanonical Gibbs measure on \mathcal{X} iff μ satisfies DLR equation

$$
\mu\left(\cdot \mid \mathscr{F}_{\left.\left(\mathbb{Z}^{d}\right)^{*} \backslash \overline{\Lambda^{*}}\right)}\right)(\xi)=\mu_{\Lambda, \xi}(\cdot), \quad \mu \text {-a.s. } \xi,
$$

holds for every finite set $\Lambda \subset \mathbb{Z}^{d}$.

- μ_{u} : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^{d}$, i.e.,

$$
E^{\mu_{u}}\left[\eta\left(\left(e_{i}, 0\right)\right)\right]=u_{i}, \quad 1 \leq i \leq d
$$

Dynamics on the gradient field

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

For the solution ϕ_{t} of SDE (1), $\eta_{t}=\nabla \phi_{t}$ satisfies

$$
\begin{equation*}
d \eta_{t}(b)=-\nabla \Delta U \cdot\left(\eta_{t}\right)(b) d t+\sqrt{2} d \nabla \tilde{w}_{t}(b), \tag{8}
\end{equation*}
$$

where

$$
U_{x}(\eta):=\sum_{b: x_{b}=x} V^{\prime}(\eta(b))
$$

$\underline{\text { Generator for the SDE on }\left(\mathbb{Z}^{d}\right)^{*}}$

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

The generator for (8) is given by

$$
\begin{aligned}
\mathscr{L} & =\sum_{x \in \mathbb{Z}^{d}} \mathscr{L}_{x} \\
\mathscr{L}_{x} & =-\partial_{x} \Delta \partial(x)+\Delta U \cdot(x) \partial_{x}, \\
\partial_{x} & =2 \sum_{b: x_{b}=x} \frac{\partial}{\partial \eta(b)}
\end{aligned}
$$

Stationary measures and Gibbs measures

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on
the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Theorem 6. Let a measure μ on \mathscr{X} be invariant under spatial shift and tempered, that is,

$$
E^{\mu}\left[\eta(b)^{2}\right]<\infty, \quad b \in\left(\mathbb{Z}^{d}\right)^{*}
$$

holds. If μ is a stationary measure corresponding \mathscr{L}, i.e.,

$$
\int_{\mathcal{X}} \mathscr{L} f(\eta) \mu(d \eta)=0
$$

holds for every $f \in C_{\text {loc }}^{2}(\mathcal{X}), \mu$ is then a grandcanonical Gibbs measure.

Connection to the large deviation problem

Model
Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE - Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

If $d \leq 3$, the large deviation problem can be shown (it is reported at the workshop held at Warwick). The restriction " $d \leq 3$ " is from the luck of infomation on the stationary measures. Once we have Theorem 6, the result can be extened to arbitrary cases.

Proof of Theorem 6 (1)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem - Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

We shall apply the same method in [Deuschel-N.-Vignard, in preparation], which is based on [Fritz, 1982]. Our goal is the following:

$$
\lim _{n \rightarrow \infty} n^{-d} I_{\Lambda_{n}}\left(\left.\mu\right|_{\Lambda_{n}}\right)=0
$$

where

- $I_{\Lambda_{n}}(\nu)=\mathscr{E}_{\Lambda_{n}}(\sqrt{f}, \sqrt{f}), \quad f=\frac{d \nu}{d \mu_{\Lambda_{n}}}$
- $\mu_{\Lambda_{n}}$: finite volume Gibbs measure on Λ_{n} with free boundary condition
- $\mathscr{E}_{\Lambda_{n}}$: Dirichlet form for the time evolution with free boundary condition

Once we have the above, we obtain that μ is canonical Gibbs measure. However, in this setting, the canonical Gibbs measure is also grandcanonical, thus we have the conclusion.

Proof of Theorem 6 (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

From stationarity, we have

$$
\int \mathscr{L} \psi_{n}(\cdot, \xi)(\eta) \mu(d \eta)=0
$$

where $\psi_{n}(\eta, \xi) \in C_{\mathrm{loc}}^{2}(\mathcal{X} \times \mathcal{X})$.
Multiplying $F \in C_{\text {loc }}^{2}(\mathcal{X})$ and integrating in ξ, we obtain

$$
\begin{equation*}
\iint F(\xi) \mathscr{L} \psi_{n}(\cdot, \xi)(\eta) \mu(d \eta) \nu_{\Lambda_{n}^{*}}(d \xi)=0 \tag{9}
\end{equation*}
$$

Proof of Theorem 6 (2)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

From stationarity, we have

$$
\int \mathscr{L} \psi_{n}(\cdot, \xi)(\eta) \mu(d \eta)=0
$$

where $\psi_{n}(\eta, \xi) \in C_{\text {loc }}^{2}(\mathcal{X} \times \mathcal{X})$.
Multiplying $F \in C_{\text {loc }}^{2}(\mathcal{X})$ and integrating in ξ, we obtain

$$
\begin{equation*}
\iint F(\xi) \mathscr{L} \psi_{n}(\cdot, \xi)(\eta) \mu(d \eta) \nu_{\Lambda_{n}^{*}}(d \xi)=0 . \tag{9}
\end{equation*}
$$

Proof of Theorem 6 (3)

Model

Main Result
Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field - Generator for the SDE on $\left(\mathbb{Z}^{d}\right)^{*}$
- Stationary measures and Gibbs measures - Connection to the large deviation problem
- Proof of Theorem 6
(1)
- Proof of Theorem 6
(2)
- Proof of Theorem 6 (3)

Roughly saying, if we can take F as

$$
F(\xi)=\log \left(\frac{\left.d \mu\right|_{\Lambda_{n}}}{d \mu_{\Lambda_{n}}}(\xi)\right)
$$

and suitable ψ_{n}, we can obtain the entropy production and error terms from LHS of (9).

