Hydrodynamic limit for the Ginzburg-Landau $\nabla \phi$ interface model with a conservation law and the Dirichlet boundary condition

Takao Nishikawa (Nihon Univ.)

May 31, 2011 Workshop "Gradient Random Fields"

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation

• Hydrodynamic scaling limit (LLN)

- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Model

Microscopic interface

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Energy of miscroscopic interface

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Energy of the microscopic interface $\phi = \{\phi(x) \in \mathbb{R}; x \in \mathbb{Z}^d\}$

$$H(\phi) = \frac{1}{2} \sum_{x,y \in \mathbb{Z}^d, |x-y|=1} V(\phi(x) - \phi(y))$$

(
$$V:\mathbb{R} o\mathbb{R}$$
 is C^2 , symm., $\|V''\|_\infty<\infty$)

Dynamics - Langevin equation

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Langevin eq.

for

$$d\phi_t(x) = -\frac{\partial H}{\partial \phi(x)}(\phi_t)dt + \sqrt{2}dw_t(x), \tag{1}$$

 $x \in \Gamma_N = (\mathbb{Z}/N\mathbb{Z})^d$ with periodic b.c. $x \in D_N = ND \cap \mathbb{Z}^d$ with Dirichlet b.c.

• $w = \{w_t(x); x \in \Gamma_N\}$: independent 1D B.m.'s • $\frac{\partial H}{\partial \phi(x)} = \sum_{y:|x-y|=1} V'(\phi(x) - \phi(y))$

Dynamics - Langevin equation

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Langevin eq.

for

$$d\phi_t(x) = -\frac{\partial H}{\partial \phi(x)}(\phi_t)dt + \sqrt{2}dw_t(x), \tag{1}$$

 $x \in \Gamma_N = (\mathbb{Z}/N\mathbb{Z})^d$ with periodic b.c. $x \in D_N = ND \cap \mathbb{Z}^d$ with Dirichlet b.c.

• $w = \{w_t(x); x \in \Gamma_N\}$: independent 1D B.m.'s • $\frac{\partial H}{\partial \phi(x)} = \sum_{y:|x-y|=1} V'(\phi(x) - \phi(y))$

Hydrodynamic scaling limit (LLN)

Model

- Microscopic interface
- Energy of

miscroscopic interface

- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Macroscopic interface $h^N(t, \theta)$ $(t \in [0, t], \theta \in [0, 1)^d =: \mathbb{T}^d \text{ or } \theta \in D)$

$$a^N(t, x/N) = N^{-1} \phi_{N^2 t}(x), \quad x \in \Gamma_N$$

Theorem 1 (Funaki-Spohn for Γ_N , N. for D_N with Dirichlet b.c.). If V is strictly convex, i.e., there exist $c_-, c_+ > 0$ such that

$$c_{-} \leq V''(\eta) \leq c_{+}, \quad \eta \in \mathbb{R}$$

we have

$$h^N \longrightarrow h: \frac{\partial h}{\partial t} = \operatorname{div} \nabla \sigma(\nabla h)$$
 (2)

where $\sigma : \mathbb{R}^d \to \mathbb{R}$ is the surface tension introduced via thermodynamic limit.

Total surface tension

Model

- Microscopic interface
- Energy of

miscroscopic interface

• Dynamics - Langevin equation

• Hydrodynamic scaling limit (LLN)

- Total surface tension
- Dynamics with a

conservation law

• Hydrodynamic scaling limit on the periodic torus

• Problem

Main Result

Rough sketch of the proof

The equation (2) is the gradient flow with respect to the energy functional

$$\Sigma(h) = \int \sigma(\nabla h(\theta)) \, d\theta \tag{3}$$

in L^2 -space. The functional Σ is called "total surface tension," which gives the total energy of the interface h.

Remark 1. The assumption "V is strictly convex" can be relaxed. If we have the convexity of σ (see Cotar-Deuschel-Müller and Cotar-Deuschel) and the characterization of Gibbs measures for gradient fields, we can show the hydrodynamic limit. (joint work with J.-D. Deuschel and I. Vignard)

Let us consider

for

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a

conservation law

- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

$d\phi_t(x) = \Delta \left\{ \frac{\partial H}{\partial \phi(\cdot)}(\phi_t) \right\} (x) dt + \sqrt{2} d\tilde{w}_t(x), \quad (4)$

 $x \in \Gamma_N = (\mathbb{Z}/N\mathbb{Z})^d$ with periodic b.c. $x \in D_N = ND \cap \mathbb{Z}^d$ with Dirichlet b.c.

• $\tilde{w} = {\tilde{w}_t(x); x \in \Gamma_N}$: Gaussian process with covariance structure

 $E[\tilde{w}_s(x)\tilde{w}_t(y)] = -\Delta(x,y)s \wedge t$

Let us consider

for

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a

conservation law

- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

$$d\phi_t(x) = \Delta \left\{ \frac{\partial H}{\partial \phi(\cdot)}(\phi_t) \right\} (x) dt + \sqrt{2} d\tilde{w}_t(x), \quad (4)$$

 $x \in \Gamma_N = (\mathbb{Z}/N\mathbb{Z})^d$ with periodic b.c. $x \in D_N = ND \cap \mathbb{Z}^d$ with Dirichlet b.c.

• $\tilde{w} = {\tilde{w}_t(x); x \in \Gamma_N}$: Gaussian process with covariance structure

 $E[\tilde{w}_s(x)\tilde{w}_t(y)] = -\Delta(x,y)s \wedge t$

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law

```
• Hydrodynamic scaling
limit on the periodic
torus
```

• Problem

Main Result

Rough sketch of the proof

 Δ : (discrete) Laplacian

$$\Delta f(x) = \sum_{y \in \Gamma_N, |x-y|=1} (f(y) - f(x)), \quad x \in \Gamma_N$$

Remark 2. By Itô's formula, it is easy to see

$$\sum_{x \in \Gamma_N} \phi_t(x) \equiv \sum_{x \in \Gamma_N} \phi_0(x) (= \text{const.}), \quad t \ge 0,$$
 (5)

that is, the total sum of the height variable (\equiv number of particle) is conserved by this time evolution.

Model

- Microscopic interface
- Energy of
- miscroscopic interface
- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Δ : (discrete) Laplacian

$$\Delta f(x) = \sum_{y \in \Gamma_N, |x-y|=1} (f(y) - f(x)), \quad x \in \Gamma_N$$

Remark 2. By Itô's formula, it is easy to see

$$\sum_{x \in \Gamma_N} \phi_t(x) \equiv \sum_{x \in \Gamma_N} \phi_0(x) (= \text{const.}), \quad t \ge 0,$$
 (5)

that is, the total sum of the height variable (= number of particle) is conserved by this time evolution.

Hydrodynamic scaling limit on the periodic torus

Model

- Microscopic interface
- Energy of

miscroscopic interface

- Dynamics Langevin equation
- Hydrodynamic scaling limit (LLN)
- Total surface tension
- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

Macroscopic interface $h^N(t,\theta)(t\in[0,t],\theta\in[0,1)^d=:\mathbb{T}^d)$

$$h^N(t, x/N) = N^{-1} \phi_{N^4 t}(x), \quad x \in \Gamma_N$$

Theorem 2 (N. 2002). If V is strictly convex, i.e., there exist $c_-, c_+ > 0$ such that

$$c_{-} \leq V''(\eta) \leq c_{+}, \quad \eta \in \mathbb{R}$$

we have

$$h^N \longrightarrow h: \frac{\partial h}{\partial t} = -\Delta \operatorname{div} \nabla \sigma(\nabla h)$$

where $\sigma : \mathbb{R}^d \to \mathbb{R}$ is the surface tension introduced via thermodynamic limit.

Problem

Model

- Microscopic interface
- Energy of

miscroscopic interface

• Dynamics - Langevin equation

• Hydrodynamic scaling limit (LLN)

• Total surface tension

- Dynamics with a
- conservation law
- Hydrodynamic scaling limit on the periodic torus
- Problem

Main Result

Rough sketch of the proof

What happen in the case with Dirichlet b.c.?

Model

Main Result

• Hydrodynamic scaling limit on finite domain

• Limit equation

Rough sketch of the proof

Main Result

Hydrodynamic scaling limit on finite domain

Model

Main Result

• Hydrodynamic scaling limit on finite domain

• Limit equation

Rough sketch of the proof

Theorem 3. Let *D* be a finite, convex domain with Lipschitz boundary. We assume that there exists $h_0 \in H^{-1}(D)$ such that

$$\sup_{N \ge 1} E\left[\|h^N(0)\|_{H^{-1}(D)}^2 \right] < \infty,$$
$$\lim_{N \to \infty} E\|h^N(0) - h_0\|_{H^{-1}(D)}^2 = 0$$

We then have

$$\lim_{N \to \infty} E \|h^N(t) - h(t)\|_{H^{-1}(D)}^2 = 0,$$

where h is the weak solution of nonlinear PDE

$$\frac{\partial h}{\partial t} = \Delta \operatorname{div} \nabla \sigma(\nabla h).$$
 (6)

Limit equation

Model

Main Result

• Hydrodynamic scaling limit on finite domain

• Limit equation

Rough sketch of the proof

 $h \in C([0,T], H^{-1}(D)) \cap L^2([0,T], H^1_0(D))$ and for test functions $J_1 \in C^{\infty}([0,T] \times D)$ and $J_2 \in C^1_0(D)$,

$$\int_{D} h(t,\theta) J_{1}(t,\theta) d\theta$$

$$= \int_{D} h_{0}(\theta) J_{1}(t,\theta) d\theta + \int_{0}^{t} \int_{D} h(s,\theta) \frac{d}{ds} J_{1}(s,\theta) d\theta ds$$

$$+ \int_{0}^{t} \int_{D} \nabla u(s,\theta) \cdot \nabla J_{1}(s,\theta) d\theta ds,$$

$$\int_{D} u(t,\theta) J_{2}(\theta) d\theta = - \int_{D} \nabla \sigma (\nabla h(t)) \cdot \nabla J_{2}(\theta) d\theta$$

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field

• Dynamics on the gradient field

 \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$

• Stationary measures and Gibbs measures

Connection to the

large deviation problem

• Proof of Theorem 6

(1)

Proof of Theorem 6(2)

(2)

• Proof of Theorem 6

(3)

Rough sketch of the proof

How to show

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE

• Gibbs measures on the gradient field

- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$

• Stationary measures and Gibbs measures

Connection to the

- large deviation problem
- Proof of Theorem 6

(1)

• Proof of Theorem 6

(2)

• Proof of Theorem 6

(3)

The proof is by H^{-1} -method in

- Funaki-Spohn, Commun. Math. Phys. ('97)
 - N., Probab. J. Math. Univ. Tokyo ('02)
- N., Probab. Theory Relat. Fields ('03)

Model

Main Result

- Rough sketch of the proof
- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

- Rough sketch of the proof
- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

Following the results stated befote, we have the conclusion once we have

• a priori bounds for stochastic dynamics

- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

- Rough sketch of the proof
- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

- Rough sketch of the proof
- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures

Connection to the

- large deviation problem
- Proof of Theorem 6

(1)

- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures

Connection to the

- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

- a priori bounds for stochastic dynamics
- a priori bounds for discretized equation corresponding to
 (6)
- uniqueness of ergodic stationary measure (In [N. 03] this property plays a key role.)
- establish local equilibrium
- derive PDE (6)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6(1)
- Proof of Theorem 6
 (2)
- Proof of Theorem 6

(3)

• $(\mathbb{Z}^d)^*$: all oriented bonds in \mathbb{Z}^d , i.e.

$$\mathbb{Z}^d)^* = \{(x, y) \in \mathbb{Z}^d \times \mathbb{Z}^d; |x - y| = 1\}$$

Γ_N^{*}: all oriented bonds in Γ_N
X: all η ∈ ℝ^{(Z^d)^{*}} satisfying the following conditions:

$$\begin{array}{ll} \eta(b) = -\eta(-b), \\ \text{where } -b = (y,x) \text{ for } b = (x,y). \end{array} \end{array}$$

2. For every closed loops C

holds.

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6(1)
- Proof of Theorem 6
 (2)
- Proof of Theorem 6

(3)

• $(\mathbb{Z}^d)^*$: all oriented bonds in \mathbb{Z}^d , i.e.

 $(\mathbb{Z}^d)^* = \{(x, y) \in \mathbb{Z}^d \times \mathbb{Z}^d; |x - y| = 1\}$

• Γ_N^* : all oriented bonds in Γ_N • \mathcal{X} : all $\eta \in \mathbb{R}^{(\mathbb{Z}^d)^*}$ satisfying the following conditions:

1.
$$\eta(b) = -\eta(-b)$$
,
where $-b = (y, x)$ for $b = (x, y)$.

2. For every closed loops C

 $\sum \eta(b) = 0$ $b \in C$

holds.

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6(1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6

(3)

• $(\mathbb{Z}^d)^*$: all oriented bonds in \mathbb{Z}^d , i.e.

$$\mathbb{Z}^d)^* = \{(x, y) \in \mathbb{Z}^d \times \mathbb{Z}^d; |x - y| = 1\}$$

Γ_N^{*}: all oriented bonds in Γ_N
X: all η ∈ ℝ^{(Z^d)*} satisfying the following conditions:

1.
$$\eta(b) = -\eta(-b),$$

where $-b = (y, x)$ for $b = (x, y).$

2. For every closed loops C

holds.

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

 $\nabla \phi(b) = \phi(x) - \phi(y), \quad b = (x, y)$

• $\Lambda_{l} = \{x \in \mathbb{Z}^{d}; \max |x_{i}| \leq l\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x, y \in \Lambda_{l}\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x \in \Lambda_{l} \text{ or } y \in \Lambda_{l}\}$ • $\mathcal{X}_{\Lambda^{*}} = \{(\nabla \phi(b); b \in \Lambda^{*}); \phi \in \mathbb{R}^{\Lambda}\}$ • $\mathcal{X}_{\overline{\Lambda^{*}}, \xi} = \{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}}; \eta \lor \xi \in \mathcal{X}\}$

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- (2)
- Proof of Theorem 6

- $\nabla \phi(b) = \phi(x) \phi(y), \quad b = (x, y)$
- $\Lambda_{l} = \{x \in \mathbb{Z}^{d}; \max |x_{i}| \leq l\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x, y \in \Lambda_{l}\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x \in \Lambda_{l} \text{ or } y \in \Lambda_{l}\}$ • $\mathcal{X}_{\Lambda^{*}} = \{(\nabla \phi(b); b \in \Lambda^{*}); \phi \in \mathbb{R}^{\Lambda}\}$ • $\mathcal{X}_{\overline{\Lambda^{*}}, \xi} = \{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}}; \eta \lor \xi \in \mathcal{X}\}$

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

- $\nabla \phi(b) = \phi(x) \phi(y), \quad b = (x, y)$
- $\Lambda_l = \{x \in \mathbb{Z}^d; \max |x_i| \leq l\}$ • $\Lambda_l^* = \{(x, y) \in (\mathbb{Z}^d)^*; x, y \in \Lambda_l\}$ • $\overline{\Lambda}_l^* = \{(x, y) \in (\mathbb{Z}^d)^*; x \in \Lambda_l \text{ or } y \in \Lambda_l\}$ • $\mathcal{X}_{\Lambda^*} = \{(\nabla \phi(b); b \in \Lambda^*); \phi \in \mathbb{R}^\Lambda\}$ • $\mathcal{X}_{\overline{\Lambda^*},\xi} = \{\eta \in \mathbb{R}^{\overline{\Lambda^*}}; \eta \lor \xi \in \mathcal{X}\}$

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

- $\nabla \phi(b) = \phi(x) \phi(y), \quad b = (x, y)$
- $\Lambda_{l} = \{x \in \mathbb{Z}^{d}; \max |x_{i}| \leq l\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x, y \in \Lambda_{l}\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x \in \Lambda_{l} \text{ or } y \in \Lambda_{l}\}$ • $\mathcal{X}_{\Lambda^{*}} = \{(\nabla \phi(b); b \in \Lambda^{*}); \phi \in \mathbb{R}^{\Lambda}\}$ • $\mathcal{X}_{\overline{\Lambda^{*}}, \xi} = \{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}}; \eta \lor \xi \in \mathcal{X}\}$

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

- $\nabla \phi(b) = \phi(x) \phi(y), \quad b = (x, y)$
- $\Lambda_{l} = \{x \in \mathbb{Z}^{d}; \max |x_{i}| \leq l\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x, y \in \Lambda_{l}\}$ • $\Lambda_{l}^{*} = \{(x, y) \in (\mathbb{Z}^{d})^{*}; x \in \Lambda_{l} \text{ or } y \in \Lambda_{l}\}$ • $\mathcal{X}_{\Lambda^{*}} = \{(\nabla \phi(b); b \in \Lambda^{*}); \phi \in \mathbb{R}^{\Lambda}\}$ • $\mathcal{X}_{\overline{\Lambda^{*}}, \xi} = \{\eta \in \mathbb{R}^{\overline{\Lambda^{*}}}; \eta \lor \xi \in \mathcal{X}\}$

 ∇ : discrete gradient

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

- $\nabla \phi(b) = \phi(x) \phi(y), \quad b = (x, y)$
- Λ_l = {x ∈ Z^d; max |x_i| ≤ l}
 Λ_l^{*} = {(x, y) ∈ (Z^d)^{*}; x, y ∈ Λ_l}
 Λ_l^{*} = {(x, y) ∈ (Z^d)^{*}; x ∈ Λ_l or y ∈ Λ_l}
 ℋ_{Λ*} = {(∇φ(b); b ∈ Λ^{*}); φ ∈ ℝ^Λ}
 ℋ_{Λ* ε} = {η ∈ ℝ^{Λ*}; η ∨ ξ ∈ X}

A priori bounds for the SDEs

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field

• Dynamics on the gradient field

 \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$

• Stationary measures and Gibbs measures

• Connection to the

- large deviation problem
- Proof of Theorem 6

(1)

- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

Proposition 4. There exists constants $K_1, K_2 > 0$ such that

$$E \|h^{N}(t)\|_{H^{-1}}^{2} + K_{1}N^{-d}E \int_{0}^{t} \sum_{b \in \overline{D}_{N}^{*}} \left(\nabla \phi_{s}^{N}(b)\right)^{2} ds$$
$$\leq E \|h^{N}(0)\|_{H^{-1}}^{2} + K_{2}(1+t), \quad t > 0$$

holds, where

$$h^{N} \|_{-1,N}^{2} := N^{-d-4} \sum_{x \in D_{N}} (\phi^{N}(x) - \langle \phi^{N} \rangle)$$
$$\times (-\Delta_{D_{N}})^{-1} (\phi^{N}(x) - \langle \phi^{N} \rangle)$$
$$+ N^{-2d-2} \langle \phi^{N} \rangle^{2}.$$

Discretization for PDE

Let us consider a system of ODEs

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the large deviation problem
- Proof of Theorem 6
 (1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6(3)

 $\begin{cases} \frac{\partial}{\partial t}\bar{h}^{N}(t,x/N) = -\Delta_{N}u_{N}(x/N), & x \in D_{N} \\ u_{N} = \operatorname{div}_{N}\left\{(\nabla\sigma)(\nabla^{N}\bar{h}^{N}(t))\right\}(x/N), & x \in D_{N} \\ \bar{h}^{N}(t,x/N) = 0, & x \notin D_{N}. \end{cases}$ (7)

and we extend \bar{h}^N to the function from $[0,T] \times \mathbb{R}^d$ by interpolation as follows:

$$\bar{h}^N(t,\theta) = \bar{h}^N(t,x/N), \quad x \in \mathbb{Z}^d.$$

We consider the solution with initial datum

$$\bar{h}_0^N(x/N) = N^d \int_{B(x/N, 1/N)} h_0(\theta') \, d\theta', \quad h_0 \in C_0^2(D).$$

A priori bound for the discretized PDE

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures

Connection to the

- large deviation problem
- Proof of Theorem 6(1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6

(3)

Proposition 5. If initial data is smooth enough, then there exists a constant $C := C(T, h_0)$ such that

 $\sup_{N} \sup_{0 \le t \le T} \left(\|\bar{h}^{N}(t)\|_{-1,N}^{2} + \|\nabla^{N}h^{N}(t)\|_{L^{2}}^{2} \right) \le C,$ $\sup_{N} \sup_{0 \le t \le T} \left\| \frac{d}{dt} \bar{h}^{N}(t) \right\|_{-1,N}^{2} \le C,$ $\sup_{N} \int_{0}^{T} \|u^{N}(t)\|_{L^{p}}^{p} dt \le C,$ $\sup_{N} \int_{0}^{T} \|\nabla^{N}u^{N}(t)\|_{L^{p}}^{p} dt \le C$

holds.

Gibbs measures on the gradient field

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the large deviation problem
- Proof of Theorem 6 (1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6
- (3)

 $\mu_{\Lambda,\xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda,\xi}$, i.e.,

$$u_{\Lambda,\xi}(d\eta) = \frac{1}{Z_{\Lambda,\xi}} \exp(-H(\eta)) d\eta_{\Lambda,\xi}$$

where $Z_{\Lambda,\xi}$ is a normalizing constant.

 μ : Grandcanonical Gibbs measure on ${\mathcal X}$ iff μ satisfies DLR equation

$$\mu(\cdot|\mathscr{F}_{(\mathbb{Z}^d)^*\smallsetminus\overline{\Lambda^*}})(\xi) = \mu_{\Lambda,\xi}(\cdot), \quad \mu\text{-a.s. } \xi,$$

holds for every finite set $\Lambda \subset \mathbb{Z}^d$.

 μ_u : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^d$, i.e.,

$$E^{\mu_u}[\eta((e_i, 0))] = u_i, \quad 1 \le i \le d$$

Gibbs measures on the gradient field

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the large deviation problem
- Proof of Theorem 6 (1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6

(3)

 $\mu_{\Lambda,\xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda,\xi}$, i.e.,

$$u_{\Lambda,\xi}(d\eta) = \frac{1}{Z_{\Lambda,\xi}} \exp(-H(\eta)) d\eta_{\Lambda,\xi}$$

where $Z_{\Lambda,\xi}$ is a normalizing constant.

• μ : Grandcanonical Gibbs measure on \mathcal{X} iff μ satisfies DLR equation

$$\mu(\cdot|\mathscr{F}_{(\mathbb{Z}^d)^*\smallsetminus\overline{\Lambda^*}})(\xi) = \mu_{\Lambda,\xi}(\cdot), \quad \mu\text{-a.s. } \xi,$$

holds for every finite set $\Lambda \subset \mathbb{Z}^d$.

 μ_u : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^d$, i.e.,

 $E^{\mu_u}[\eta((e_i, 0))] = u_i, \quad 1 \le i \le d$

Gibbs measures on the gradient field

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the large deviation problem
- Proof of Theorem 6 (1)
- Proof of Theorem 6 (2)
- Proof of Theorem 6

(3)

• $\mu_{\Lambda,\xi}$: finite volume Gibbs measure on $\mathcal{X}_{\Lambda,\xi}$, i.e.,

$$u_{\Lambda,\xi}(d\eta) = \frac{1}{Z_{\Lambda,\xi}} \exp(-H(\eta)) d\eta_{\Lambda,\xi}$$

where $Z_{\Lambda,\xi}$ is a normalizing constant.

 μ : Grandcanonical Gibbs measure on ${\mathcal X}$ iff μ satisfies DLR equation

$$\mu(\cdot|\mathscr{F}_{(\mathbb{Z}^d)^*\smallsetminus\overline{\Lambda^*}})(\xi) = \mu_{\Lambda,\xi}(\cdot), \quad \mu\text{-a.s. } \xi,$$

holds for every finite set $\Lambda \subset \mathbb{Z}^d$.

 μ_u : shift-invariant ergodic Gibbs meas. on gradient field \mathcal{X} with mean $u \in \mathbb{R}^d$, i.e.,

$$E^{\mu_u}[\eta((e_i, 0))] = u_i, \quad 1 \le i \le d$$

Dynamics on the gradient field

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do

where

- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE

• Gibbs measures on the gradient field

- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6
- (2)
- Proof of Theorem 6
- (3)

For the solution ϕ_t of SDE (1), $\eta_t = \nabla \phi_t$ satisfies $d\eta_t(b) = -\nabla \Delta U_{\cdot}(\eta_t)(b) dt + \sqrt{2}d\nabla \tilde{w}_t(b),$ (8)

$$U_x(\eta) := \sum_{b:x_b=x} V'(\eta(b))$$

Generator for the SDE on $(\mathbb{Z}^d)^*$

Model

The generator for (8) is given by

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE

• Gibbs measures on the gradient field

- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6
- (2)
- Proof of Theorem 6
- (3)

 $\mathscr{L} = \sum_{x \in \mathbb{Z}^d} \mathscr{L}_x,$ $\mathscr{L}_x = -\partial_x \Delta \partial(x) + \Delta U_{\cdot}(x) \partial_x,$ $\partial_x = 2 \sum_{b:x_b=x} \frac{\partial}{\partial \eta(b)}$

Stationary measures and Gibbs measures

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$

• Stationary measures and Gibbs measures

- Connection to the large deviation problem
- Proof of Theorem 6

(1)

- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

Theorem 6. Let a measure μ on \mathscr{X} be invariant under spatial shift and tempered, that is,

$$E^{\mu}[\eta(b)^2] < \infty, \quad b \in \left(\mathbb{Z}^d\right)^*.$$

holds. If μ is a stationary measure corresponding \mathscr{L} , i.e.,

$$\int_{\mathcal{X}} \mathscr{L} f(\eta) \mu(d\eta) = 0$$

holds for every $f \in C^2_{\text{loc}}(\mathcal{X})$, μ is then a grandcanonical Gibbs measure.

Connection to the large deviation problem

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE

• Gibbs measures on the gradient field

- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$

• Stationary measures and Gibbs measures

• Connection to the large deviation problem

• Proof of Theorem 6

(1)

• Proof of Theorem 6

(2)

Proof of Theorem 6

(3)

If $d \leq 3$, the large deviation problem can be shown (it is reported at the workshop held at Warwick). The restriction " $d \leq 3$ " is from the luck of infomation on the stationary measures. Once we have Theorem 6, the result can be extended to arbitrary cases.

Proof of Theorem 6 (1)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)

```
 Proof of Theorem 6(3)
```

We shall apply the same method in [Deuschel-N.-Vignard, in preparation], which is based on [Fritz, 1982]. Our goal is the following:

$$\lim_{n \to \infty} n^{-d} I_{\Lambda_n}(\mu|_{\Lambda_n}) = 0,$$

where

•
$$I_{\Lambda_n}(\nu) = \mathscr{E}_{\Lambda_n}(\sqrt{f}, \sqrt{f}), \quad f = \frac{d\nu}{d\mu_{\Lambda_n}}$$

- μ_{Λ_n} : finite volume Gibbs measure on Λ_n with free boundary condition
- \mathscr{E}_{Λ_n} : Dirichlet form for the time evolution with free boundary condition

Once we have the above, we obtain that μ is canonical Gibbs measure. However, in this setting, the canonical Gibbs measure is also grandcanonical, thus we have the conclusion.

Proof of Theorem 6 (2)

Model

From stationarity, we have

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problemProof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

$$\int \mathscr{L}\psi_n(\cdot,\xi)(\eta)\mu(d\eta) = 0,$$

where
$$\psi_n(\eta, \xi) \in C^2_{\text{loc}}(\mathcal{X} \times \mathcal{X}).$$

Multiplying $F \in C^2_{\text{loc}}(\mathcal{X})$ and integrating in ξ , we obtain

$$\iint F(\xi) \mathscr{L}\psi_n(\cdot,\xi)(\eta)\mu(d\eta)\nu_{\Lambda_n^*}(d\xi) = 0.$$
(9)

Proof of Theorem 6 (2)

Model

From stationarity, we have

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- \bullet Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures

• Connection to the large deviation problem

Proof of Theorem 6

(1)

- Proof of Theorem 6(2)
- Proof of Theorem 6

(3)

$$\int \mathscr{L}\psi_n(\cdot,\xi)(\eta)\mu(d\eta) = 0,$$

where
$$\psi_n(\eta,\xi) \in C^2_{\text{loc}}(\mathcal{X} \times \mathcal{X}).$$

Multiplying $F \in C^2_{\text{loc}}(\mathcal{X})$ and integrating in ξ , we obtain

$$\iint F(\xi) \mathscr{L}\psi_n(\cdot,\xi)(\eta)\mu(d\eta)\nu_{\Lambda_n^*}(d\xi) = 0.$$
 (9)

Proof of Theorem 6 (3)

Model

Main Result

Rough sketch of the proof

- How to show
- What we need to do
- Notations (1)
- Notations (2)
- A priori bounds for the SDEs
- Discretization for PDE
- A priori bound for the discretized PDE
- Gibbs measures on the gradient field
- Dynamics on the gradient field
- Generator for the SDE on $(\mathbb{Z}^d)^*$
- Stationary measures and Gibbs measures
- Connection to the
- large deviation problem
- Proof of Theorem 6
- (1)
- Proof of Theorem 6(2)
- Proof of Theorem 6
- (3)

Roughly saying, if we can take F as

$$F(\xi) = \log\left(\frac{d\mu|_{\Lambda_n}}{d\mu_{\Lambda_n}}(\xi)\right)$$

and suitable ψ_n , we can obtain the entropy production and error terms from LHS of (9).