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Quadratic Boson Operators

One–Particle Hilbert Space

h := L2(M, a) is a separable complex Hilbert space of square–integrable functions
on a measure space (M, a). The scalar product on h is given by

〈f |g〉 :=

∫
M

f (x)g (x)da (x) .

For any operator X on h, we define its transpose X t and its complex conjugate X̄

by 〈f |X tg〉 := 〈ḡ |X f̄ 〉 and 〈f |X̄ g〉 := 〈f̄ |X ḡ〉, for f , g ∈ h, respectively. Note that

X ∗ = X t = X
t
.

B(h) is the Banach space of bounded operators acting on h and L2(h) is the
Hilbert spaces of Hilbert–Schmidt operators defined from the scalar product

(X ,Y )2 := trace(X ∗Y ) with ‖X‖2 := trace(X ∗X ).

Condition A1: Let Ω0 = Ω∗0 ≥ 0 be a positive (possibly unbounded) operator on h.

Condition A2: Let B0 = Bt
0 ∈ L2(h) be a (non–zero) Hilbert–Schmidt operator.
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Quadratic Boson Operators

Many–particle Hilbert Space: The Boson Fock Space

The boson Fock space is the Hilbert space

Fb :=
∞⊕
n=0

Sn
(
h⊗n) .

Here, Sn is the orthogonal projection onto the subspace of totally symmetric
n–particle wave functions in h⊗n, the n–fold tensor product of h.

Annihilation/Creation operators {a (f ) , a∗ (f )} are unbounded operators on Fb

defined for f ∈ h by

(a (f ) Ψ)(n) (x1, . . . , xn) :=
√

n + 1
〈

f
∣∣∣ (Ψ)(n+1) (·, x1, . . . , xn)

〉
(a∗ (f ) Ψ)

(n)
(x1, . . . , xn) := Sn

(
f (x) (Ψ)(n−1) (x1, . . . , xn−1)

)
They satisfy the Canonical Commutation Relation (CCR):

[a (f ) , a (g)] = [a∗ (f ) , a∗ (g)] = 0 whereas [a (f ) , a∗ (g)] = 〈f |g〉 .

Here
[A,B] := AB − BA.
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Quadratic Boson Operators

Quadratic Boson Operators

Condition A1: Let Ω0 = Ω∗0 ≥ 0 with domain D (Ω0) ⊆ h.

Condition A2: Let B0 = Bt
0 ∈ L2(h) be a (non–zero) Hilbert–Schmidt operator.

Take some orthonormal basis {ϕk}∞k=1 ⊂ D (Ω0) ⊆ h and let ak := a (ϕk).

Then, for any fixed C0 ∈ R, the quadratic boson operator is defined by

H0 :=
∑
k,`

{Ω0}k,` a∗k a` + {B0}k,` a∗k a∗` +
{

B̄0

}
k,`

aka` + C0

with {X}k,` := 〈ϕk |Xϕ`〉. (
∫
dk d` could also replace

∑
k,`.)

Proposition (Berezin (66) – Bruneau-Derezinski (07))

Under Conditions A1–A2, H0 is essentially self–adjoint on the domain

D (H0) :=
∞⋃
N=1

(
N⊕

n=0

Sn
(
D (Ω0)⊗n)) ⊂ Fb .
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Quadratic Boson Operators

Diagonalization of Quadratic Operators

H0 :=
∑
k,`

{Ω0}k,` a∗k a` + {B0}k,` a∗k a∗` +
{

B̄0

}
k,`

aka` + C0

A1 Let Ω0 = Ω∗0 ≥ 0 with domain D (Ω0) ⊆ h.

A2 Let B0 = Bt
0 ∈ L2(h) be a (non–zero) Hilbert–Schmidt operator.

A3 Ω0 ≥ 4B0(Ωt
0)−1B̄0 .

B4 Ω−1−ε
0 B0 ∈ L2(h) and 1 ≥ (4 + r) B0(Ωt

0)−2B̄0 for some constant r, ε > 0.

B5 Ω0 ≥ 4B0(Ωt
0)−1B̄0 + µ1 for some constant µ > 0.

Theorem (Bach-B (11))

Under A1–A3 and either B4 or B5, there are Ω∞ = Ω∗∞ ≥ 0 on h, C∞ ∈ R and a
unitary operator U∞ on Fb such that

U∞H0U
∗
∞ = H∞ :=

∑
k,`

{Ω∞}k,` a∗k a` + C∞

Then H∞ can be diagonalized by a unitary operator acting on h, only.
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Quadratic Boson Operators

Historical Overview on Diagonalization of Such Operators

1947, Bogoliubov: Ω0 and B0 are 2× 2 real matrices satisfying A1–A2, B5 and

Ω0B0 = B0Ω0 .

Ω∞ and C∞ are explicitly known. Assumptions stronger than A1, A2, and B5.

1953, Friedrichs - 1966, Berezin: Ω0 ∈ B(h) and B0 ∈ L2(h) are both real
symmetric operators satisfying Ω0 ± 2B0 ≥ µ1, µ > 0.

Ω∞ and C∞ not explicitly known. Assumptions stronger than A1-A3 and B5.

1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow
Ω0 = ±2B0 on some finite dimensional subspace of h.

Ω∞ and C∞ not explicitly known and Ω0,Ω
−1
0 ∈ B(h) are bounded operators.

2011, Bach-B: Ω0 and B0 satisfy A1–A3 and either B4 or B5: Ω0,Ω
−1
0 /∈ B(h).

Ω∞ and C∞ are generally not known, but we have proven that:

trace
(

Ω2
∞ − Ω2

0 + 4B0B̄0

)
= 0 and C∞ = C0 +

1

2
trace (Ω0 − Ω∞) .

Furthermore, if Ω0B0 = B0Ωt
0 then

Ω∞ = {Ω2
0 − 4B0B̄0}1/2 and C∞ = C0 +

1

2
trace

(
Ω0 − {Ω2

0 − 4B0B̄0}1/2
)
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Quadratic Boson Operators

Strategy of the Proof

We use a (quadratically) nonlinear first–order differential equation:

∀t ≥ 0 : ∂tHt = [Ht , [Ht ,A]] , Ht=0 := H0, A = N :=
∑
k

a∗k ak .

Then explicit computations using the CCR to study the commutators show
formally that

Ht :=
∑
k,`

{Ωt}k,` a∗k a` + {Bt}k,` a∗k a∗` +
{

B̄t

}
k,`

aka` + C0 + 8

∫ t

0

‖Bτ‖22 dτ,

where the operators Ωt = Ω∗t and Bt = Bt
t satisfy a system of (quadratically)

nonlinear first–order differential equations

∀t ≥ 0 :

{
∂tΩt = −16BtB̄t , Ωt=0 := Ω0,
∂tBt = −2

(
ΩtBt + BtΩ

t
t

)
, Bt=0 := B0,

The map t 7→ ‖Bt‖2 must be, at least, square–integrable on [0,∞). Then in the
strong resolvent sense,

H∞ :=
∑
k,`

{Ω∞}k,` a∗k a` + C∞ = lim
t→∞

Ht
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Brocket–Wegner Flow Equations

Flow Equations for Operators

1 Let the unitary operator Ut,s on a Hilbert space h be the solution of the
non-autonomous evolution equation

∀t ≥ s ≥ 0 : ∂tUt,s = −iGtUt,s , Us,s := 1,

with self-adjoint (s.a.) generator Gt . Here Ut := Ut,0.

Remark: There is no unified theory of such Cauchy problem for unbounded generators
Gt in spite of its long history starting 60 years ago.

2 Let H0 = H∗0 acting on h. Then Ht := UtH0U∗t satisfies

∀t ≥ 0 : ∂tHt = i [Ht ,Gt ] := i(HtGt − GtHt), Ht=0 := H0.

Question: find Gt depending on a fixed operator A such that in the limit t →∞,

H∞ = U∞H0U∗∞ with [A,H∞] := AH∞ − H∞A = 0.
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H∞ = U∞H0U∗∞ with [A,H∞] := AH∞ − H∞A = 0.

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations 9 / 16



Brocket–Wegner Flow Equations

Assume that H0 = H∗0 and A = A∗ are two self-adjoint matrices.

Let
∀t ≥ 0 : f (t) := trace((Ht − A)2) = ‖Ht − A‖22 ≥ 0

and observe that

∂t f (t) = ∂t
{
trace

(
H2

t − 2HtA + A2
)}

= ∂t {trace (−2HtA)}

= −2trace (i [Ht ,Gt ] A) = −2trace (i [A,Ht ] Gt) ,

by using ∂tHt = i [Ht ,Gt ] and the cocyclicity of the trace.

Choice of the generator: Gt := i [A,Ht ] := i (AHt − HtA).

1 We then obtain

∀t ≥ 0 : ∂t f (t) = −2trace (GtG
∗
t ) = −2‖Gt‖22 ≤ 0 .

2 This suggests that ∂t f (t)→ 0 as t →∞, which implies i [A,Ht ]→ 0 and that

Ht = UtH0U∗t → H∞ = U∞H0U∗∞ with [A,H∞] = 0 .
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Brocket–Wegner Flow Equations

Brocket–Wegner Flow for Operators

It is the (quadratically) nonlinear first–order differential equation:

∀t ≥ 0 : ∂tHt = [Ht , [Ht ,A]] , Ht=0 := H0.

R. W. Brockett, Linear Algebra Appl. (’91). F. Wegner, Ann. Phys. Leipzig (’94).

The Brocket–Wegner flow has successfully been applied to various

problems in Condensed Matter Physics including:

Electron-phonon coupling

Dissipative quantum systems

Interacting fermions, Hubbard model

Impurity problems

Non-equilibrium systems

A similar idea is also used in quantum chromodynamics and

quantum electrodynamics.

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations 11 / 16



Brocket–Wegner Flow Equations

Brocket–Wegner Flow for Operators

It is the (quadratically) nonlinear first–order differential equation:

∀t ≥ 0 : ∂tHt = [Ht , [Ht ,A]] , Ht=0 := H0.

R. W. Brockett, Linear Algebra Appl. (’91). F. Wegner, Ann. Phys. Leipzig (’94).

Mathematical difficulties of this idea:

1 Proof of the existence of (Ht)t≥0 solution of the flow ?

2 Problem of the existence of (Ut)t≥0 such that Ht = UtH0U−1
t which means that

∀t ≥ 0 : ∂tUt = [A,Ht ] Ut := −iGtUt , Ut := 1 .

3 Proof of the existence of H∞ = lim
t→∞

Ht ?

4 Proof of the existence of U∞ = lim
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Brocket–Wegner Flow Equations

Well-posedness of Brocket–Wegner Flow Equations

Theorem (Bach-B (’10 - ’11))

Let h be any separable Hilbert space.

Bounded operators: Global existence. Take H0 = H∗0 ,A = A∗ ∈ B (h). Then
there are two unique solutions (Ht)t≥0, (Ut)t≥0 ∈ C∞[R+

0 ;B (h)] respectively of

∀t ≥ 0 : ∂tHt = [Ht , [Ht ,A]] , Ht=0 := H0 ; ∂tUt = [A,Ht ] Ut , U0 := 1,

and satisfying
Ht = UtH0U∗t , U∗t Ut = UtU

∗
t = 1.

Unbounded operators: Local existence. The flow has a unique, smooth local
unbounded solution (Ht = UtH0U∗t )t∈[0,Tmax) under some restricted conditions on
iterated commutators.

Blows up of the Brocket–Wegner flow. There are two unbounded self–adjoint
H0 = H∗0 ,A ≥ 0 such that the flow has a (unbounded) local solution
(Ht = UtH0U∗t )t∈[0,Tmax) which blows up on its domain at a finite time Tmax <∞.
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Brocket–Wegner Flow Equations for Quadratic Operators

Brocket–Wegner Flow Equations for Quadratic Operators

We use the Brocket–Wegner flow for any quadratic operators H0:

∀t ≥ 0 : ∂tHt = [Ht , [Ht ,A]] , Ht=0 := H0, A = N :=
∑
k

a∗k ak .

Then explicit computations using the CCR show formally that

Ht :=
∑
k,`

{Ωt}k,` a∗k a` + {Bt}k,` a∗k a∗` +
{

B̄t

}
k,`

aka` + C0 + 8

∫ t

0

‖Bτ‖22 dτ,

where the operators Ωt = Ω∗t and Bt = Bt
t must satisfy a system of (quadratically)

nonlinear first–order differential equations

∀t ≥ 0 :

{
∂tΩt = −16BtB̄t , Ωt=0 := Ω0,
∂tBt = −2

(
ΩtBt + BtΩ

t
t

)
, Bt=0 := B0,

A blows up of the Brocket–Wegner flow can then be seen by taking

Ω0 = 0 and B0 =

(
0 b
b 0

)
with b > 0.
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Brocket–Wegner Flow Equations for Quadratic Operators

Diagonalization of Quadratic Operators

1 Under Conditions A1–A3, there is (Ωt ,Bt)t∈[0,Tmax) solution of

∀t ∈ [0,Tmax) ⊆ R+
0 :

{
∂tΩt = −16BtB̄t , Ωt=0 := Ω0 ,
∂tBt = −2

(
ΩtBt + BtΩ

t
t

)
, Bt=0 := B0 .

The operators Ωt = Ω∗t ≥ 0 and Bt ∈ L2(h) satisfies:

∀t ∈ [0,Tmax) : trace
(

Ω2
t − 4BtB̄t − Ω2

0 + 4B0B̄0

)
= 0

and if Ω0B0 = B0Ωt
0 then

∀t ∈ [0,Tmax) : Ωt = {Ω2
0 − 4B0B̄0 + 4BtB̄t}1/2 .

This is possible to show because

∀t ∈ [0,Tmax) : Bt = Bt
t = WtB0W t

t ,

where Wt is a (bounded, positive) operator acting on h solution of

∀t ∈ [0,Tmax) : ∂tWt = −2ΩtWt , Wt := 1 .

So, one only has one equation solved by the contraction mapping principle.
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and if Ω0B0 = B0Ωt
0 then

∀t ∈ [0,Tmax) : Ωt = {Ω2
0 − 4B0B̄0 + 4BtB̄t}1/2 .

2 Existence of a unitary operator Ut as strong solution on D(N) ( Fb of

∀t ∈ [0,Tmax) : ∂tUt = [N,Ht ]Ut := −iGtUt , Ut := 1.

Indeed, denoting Y := B (D (N)), the generator Gt := i [N,Ht ] = G∗t satisfies

‖Gt‖Y ≤ 11‖B0‖2, ‖Gt −Gs‖Y ≤ 11‖Bt − Bs‖2, ‖ [N,Gt ] ‖Y ≤ 22 ‖B0‖2
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2 Existence of a unitary operator Ut as strong solution on D(N) ( Fb of

∀t ∈ [0,Tmax) : ∂tUt = [N,Ht ]Ut := −iGtUt , Ut := 1.

3 Using resolvents, show next that, for all t ∈ [0,Tmax),

Ht :=
∑
k,`

{Ωt}k,` a∗k a` + {Bt}k,` a∗k a∗` +
{

B̄t

}
k,`

aka` + Ct = UtH0U
∗
t .
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Brocket–Wegner Flow Equations for Quadratic Operators

4 Using an a priori estimate, the assumption Ω
−1/2
0 B0 ∈ L2(h) exclude blows up, i.e.,

Tmax =∞, and yields the convergence, in the strong resolvent sense, of the family
(Ht = UtH0U

∗
t )t≥0 of unbounded operators to

H∞ :=
∑
k,`

{Ω∞}k,` a∗k a` + C0 + 8

∫ ∞
0

‖Bτ‖22dτ .

In particular, one shows that

trace
(

Ω2
t − Ω2

0 + 4B0B̄0

)
= 4‖Bt‖22 =⇒ trace

(
Ω2
∞ − Ω2

0 + 4B0B̄0

)
= 0

and if Ω0B0 = B0Ωt
0 then

Ωt = {Ω2
0 − 4B0B̄0 + 4BtB̄t}1/2 =⇒ Ω∞ =

{
Ω2

0 − 4B0B̄0

}1/2

.

Indeed, Ω
−1/2
0 B0 ∈ L2(h) yields the integrability of t 7→ ‖Bt‖22 on [0,∞) whereas

Ωt = Ω0 − 16

∫ t

0

Bτ B̄τdτ =⇒ Ω∞ = Ω0 − 16

∫ ∞
0

Bτ B̄τdτ

and∥∥∥{(H∞ + iλ1)−1 − (Ht + iλ1)−1}(N + 1)−1
∥∥∥
op
≤ C

(∫ ∞
t

‖Bτ‖22dτ + ‖Bt‖2
)
.
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{
Ω2

0 − 4B0B̄0

}1/2

.

5 Use Conditions B4 or B5 to obtain the strong convergence of (Ut)t≥0 to U∞ as
well as

H∞ = U∞H0U
∗
∞ .

Indeed, B4 (or B5), which yields Ω
−1/2
0 B0 ∈ L2(h), implies the integrability of

t 7→ ‖Bt‖2 on [0,∞) whereas

‖(U∞ −Ut)(N + 1)−1‖op ≤ C̃

∫ ∞
t

‖Bτ‖2 dτ . (1)
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(Ht = UtH0U

∗
t )t≥0 of unbounded operators to

H∞ :=
∑
k,`

{Ω∞}k,` a∗k a` + C0 + 8

∫ ∞
0

‖Bτ‖22dτ .

In particular, one shows that

trace
(

Ω2
t − Ω2

0 + 4B0B̄0

)
= 4‖Bt‖22 =⇒ trace

(
Ω2
∞ − Ω2

0 + 4B0B̄0

)
= 0

and if Ω0B0 = B0Ωt
0 then

Ωt = {Ω2
0 − 4B0B̄0 + 4BtB̄t}1/2 =⇒ Ω∞ =

{
Ω2

0 − 4B0B̄0

}1/2

.

5 Use Conditions B4 or B5 to obtain the strong convergence of (Ut)t≥0 to U∞ as
well as

H∞ = U∞H0U
∗
∞ .

6 Then H∞ can be diagonalized by a unitary operator acting on h, using a
diagonalization of Ω∞ to have

{Ω∞}k,` := 〈ϕk |Ω∞ϕ`〉 = δk,`λk .
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Concluding Remarks

Concluding Remarks

The Brocket–Wegner flow ∂tHt =
[
Ht , [Ht ,A]

]
can be a powerful technique as

seen on quadratic operators.

Easy to describe, but mathematically involved due to unboundedness of operators.
See, e.g., [Bach-B (’11)] which has 122 pages !

3 sources of unboundedness in the quadratic operators H0:

i. Unboundedness of creation/annihilation operators. Easily controlled.
Not a problem either for all previous works on diagonalization of H0.

ii. Unboundedness of Ω0 /∈ B(h). Controlled with the flow.
Out of the scope of previous works.

iii. Unboundedness of Ω−1
0 /∈ B(h). Controlled but absolutely nontrivial.

Out of the scope of previous works.

This example is the first mathematical use of the Brocket–Wegner flow to

diagonalize (unbounded) operators.
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