Diagonalization of Quadratic Operators via Non-Autonomous Evolution Equations joint work with V. Bach

J.-B. Bru

University of the Basque Country - Ikerbasque Basque Foundation for Science

- 1 Quadratic Boson Operators
- 2 Brocket–Wegner Flow Equations
- Brocket–Wegner Flow Equations for Quadratic Operators
- 4 Concluding Remarks

One–Particle Hilbert Space

 h := L²(M, a) is a separable complex Hilbert space of square-integrable functions on a measure space (M, a). The scalar product on h is given by

$$\langle f|g\rangle := \int_{\mathcal{M}} \overline{f(x)}g(x) \mathrm{d}\mathfrak{a}(x) \; .$$

• For any operator X on \mathfrak{h} , we define its transpose X^{t} and its complex conjugate \overline{X} by $\langle f|X^{\mathrm{t}}g \rangle := \langle \overline{g}|X\overline{f} \rangle$ and $\langle f|\overline{X}g \rangle := \overline{\langle \overline{f}|X\overline{g} \rangle}$, for $f,g \in \mathfrak{h}$, respectively. Note that

$$X^* = \overline{X^t} = \overline{X}^t.$$

 B(h) is the Banach space of bounded operators acting on h and L²(h) is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$(X, Y)_2 := \text{trace}(X^*Y) \text{ with } ||X||_2 := \text{trace}(X^*X).$$

- Condition A1: Let $\Omega_0 = \Omega_0^* \ge 0$ be a positive (possibly unbounded) operator on \mathfrak{h} .
- Condition A2: Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

◆□> ◆圖> ◆臣> ◆臣> □臣

One–Particle Hilbert Space

 h := L²(M, a) is a separable complex Hilbert space of square-integrable functions on a measure space (M, a). The scalar product on h is given by

$$\langle f|g\rangle := \int_{\mathcal{M}} \overline{f(x)}g(x) \mathrm{d}\mathfrak{a}(x) \;.$$

• For any operator X on \mathfrak{h} , we define its transpose X^{t} and its complex conjugate \overline{X} by $\langle f|X^{\mathrm{t}}g \rangle := \langle \overline{g}|X\overline{f} \rangle$ and $\langle f|\overline{X}g \rangle := \overline{\langle \overline{f}|X\overline{g} \rangle}$, for $f,g \in \mathfrak{h}$, respectively. Note that

$$X^* = \overline{X^t} = \overline{X}^t.$$

 B(h) is the Banach space of bounded operators acting on h and L²(h) is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$(X, Y)_2 := \text{trace}(X^*Y) \text{ with } ||X||_2 := \text{trace}(X^*X).$$

- Condition A1: Let $\Omega_0 = \Omega_0^* \ge 0$ be a positive (possibly unbounded) operator on \mathfrak{h} .
- Condition A2: Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

◆□> ◆圖> ◆臣> ◆臣> □臣

One–Particle Hilbert Space

 h := L²(M, a) is a separable complex Hilbert space of square-integrable functions on a measure space (M, a). The scalar product on h is given by

$$\langle f|g\rangle := \int_{\mathcal{M}} \overline{f(x)}g(x) \mathrm{d}\mathfrak{a}(x) \;.$$

• For any operator X on \mathfrak{h} , we define its transpose X^{t} and its complex conjugate \overline{X} by $\langle f|X^{\mathrm{t}}g \rangle := \langle \overline{g}|X\overline{f} \rangle$ and $\langle f|\overline{X}g \rangle := \overline{\langle \overline{f}|X\overline{g} \rangle}$, for $f,g \in \mathfrak{h}$, respectively. Note that

$$X^* = \overline{X^t} = \overline{X}^t.$$

 B(h) is the Banach space of bounded operators acting on h and L²(h) is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$(X, Y)_2 := \text{trace}(X^*Y) \text{ with } ||X||_2 := \text{trace}(X^*X).$$

- Condition A1: Let $\Omega_0 = \Omega_0^* \ge 0$ be a positive (possibly unbounded) operator on \mathfrak{h} .
- Condition A2: Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Quadratic Boson Operators

Many-particle Hilbert Space: The Boson Fock Space

• The boson Fock space is the Hilbert space

$$\mathcal{F}_b := \bigoplus_{n=0}^{\infty} \mathcal{S}_n \left(\mathfrak{h}^{\otimes n} \right).$$

Here, S_n is the orthogonal projection onto the subspace of totally symmetric *n*-particle wave functions in $\mathfrak{h}^{\otimes n}$, the *n*-fold tensor product of \mathfrak{h} .

Annihilation/Creation operators {a(f), a* (f)} are unbounded operators on F_b defined for f ∈ h by

$$\begin{array}{ll} (a(f) \Psi)^{(n)}(x_1, \ldots, x_n) & := & \sqrt{n+1} \left\langle f \middle| (\Psi)^{(n+1)}(\cdot, x_1, \ldots, x_n) \right\rangle \\ (a^*(f) \Psi)^{(n)}(x_1, \ldots, x_n) & := & \mathcal{S}_n \left(f(x) (\Psi)^{(n-1)}(x_1, \ldots, x_{n-1}) \right) \end{array}$$

They satisfy the Canonical Commutation Relation (CCR):

$$[a(f), a(g)] = [a^*(f), a^*(g)] = 0 \quad \text{whereas} \quad [a(f), a^*(g)] = \langle f | g \rangle$$

Here

$$[A,B] := AB - BA.$$

Quadratic Boson Operators

- Condition A1: Let $\Omega_0 = \Omega_0^* \ge 0$ with domain $\mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$.
- Condition A2: Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
- Take some orthonormal basis $\{\varphi_k\}_{k=1}^{\infty} \subset \mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$ and let $a_k := a(\varphi_k)$.
- Then, for any fixed $C_0 \in \mathbb{R}$, the quadratic boson operator is defined by

$$\mathbf{H}_{0} := \sum_{k,\ell} \left\{ \Omega_{0} \right\}_{k,\ell} \mathbf{a}_{k}^{*} \mathbf{a}_{\ell} + \left\{ B_{0} \right\}_{k,\ell} \mathbf{a}_{k}^{*} \mathbf{a}_{\ell}^{*} + \left\{ \bar{B}_{0} \right\}_{k,\ell} \mathbf{a}_{k} \mathbf{a}_{\ell} + C_{0}$$

with $\{X\}_{k,\ell} := \langle \varphi_k | X \varphi_\ell \rangle$. $(\int \mathrm{d}k \, \mathrm{d}\ell \text{ could also replace } \sum_{k,\ell})$

Proposition (Berezin (66) – Bruneau-Derezinski (07))

Under Conditions A1–A2, H_0 is essentially self-adjoint on the domain

$$\mathcal{D}\left(\mathrm{H}_{0}
ight):=igcup_{N=1}^{\infty}\left(igoplus_{n=0}^{N}\mathcal{S}_{n}\left(\mathcal{D}\left(\Omega_{0}
ight)^{\otimes n}
ight)
ight)\subset\mathcal{F}_{b}\;.$$

Quadratic Boson Operators

- Condition A1: Let $\Omega_0 = \Omega_0^* \ge 0$ with domain $\mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$.
- Condition A2: Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
- Take some orthonormal basis $\{\varphi_k\}_{k=1}^{\infty} \subset \mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$ and let $a_k := a(\varphi_k)$.
- Then, for any fixed $C_0 \in \mathbb{R}$, the quadratic boson operator is defined by

$$\mathbf{H}_{0} := \sum_{k,\ell} \left\{ \Omega_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{0} \right\}_{k,\ell} a_{k} a_{\ell} + C_{0}$$

with $\{X\}_{k,\ell} := \langle \varphi_k | X \varphi_\ell \rangle$. $(\int \mathrm{d}k \, \mathrm{d}\ell \text{ could also replace } \sum_{k,\ell})$

Proposition (Berezin (66) – Bruneau-Derezinski (07))

Under Conditions A1–A2, ${\rm H}_0$ is essentially self–adjoint on the domain

$$\mathcal{D}\left(\mathrm{H}_{0}
ight):=igcup_{N=1}^{\infty}\left(igoplus_{n=0}^{N}\mathcal{S}_{n}\left(\mathcal{D}\left(\Omega_{0}
ight)^{\otimes n}
ight)
ight)\subset\mathcal{F}_{b}\;.$$

$$\mathbf{H}_{0} := \sum_{k,\ell} \left\{ \Omega_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{0} \right\}_{k,\ell} a_{k} a_{\ell} + C_{0}$$

A1 Let $\Omega_0 = \Omega_0^* \ge 0$ with domain $\mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$.

A2 Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non–zero) Hilbert–Schmidt operator.

A3
$$\Omega_0 \geq 4B_0(\Omega_0^t)^{-1}\overline{B}_0$$
.
B4 $\Omega_0^{-1-\varepsilon}B_0 \in \mathcal{L}^2(\mathfrak{h})$ and $\mathbf{1} \geq (4+r) B_0(\Omega_0^t)^{-2}\overline{B}_0$ for some constant $r, \varepsilon > 0$.
B5 $\Omega_0 \geq 4B_0(\Omega_0^t)^{-1}\overline{B}_0 + \mu \mathbf{1}$ for some constant $\mu > 0$.

Theorem (Bach-B (11))

Under A1–A3 and either B4 or B5, there are $\Omega_{\infty} = \Omega_{\infty}^* \ge 0$ on \mathfrak{h} , $C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_b such that

$$\mathrm{U}_{\infty}\mathrm{H}_{0}\mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{\textit{k},\ell}\left\{\Omega_{\infty}\right\}_{\textit{k},\ell}\textit{a}_{\textit{k}}^{*}\textit{a}_{\ell}+\textit{C}_{\infty}$$

Then ${\rm H}_\infty$ can be diagonalized by a unitary operator acting on ${\mathfrak h},$ only.

$$\mathbf{H}_{0} := \sum_{k,\ell} \left\{ \Omega_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{0} \right\}_{k,\ell} a_{k} a_{\ell} + C_{0}$$

A1 Let $\Omega_0 = \Omega_0^* \ge 0$ with domain $\mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$.

A2 Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert–Schmidt operator.

A3
$$\Omega_0 \geq 4B_0(\Omega_0^{\mathrm{t}})^{-1}ar{B}_0$$
 .

B4 $\Omega_0^{-1-\varepsilon}B_0 \in \mathcal{L}^2(\mathfrak{h})$ and $1 \ge (4+r) B_0(\Omega_0^t)^{-2}\overline{B}_0$ for some constant $r, \varepsilon > 0$.

B5 $\Omega_0 \geq 4B_0(\Omega_0^t)^{-1}\overline{B}_0 + \mu \mathbf{1}$ for some constant $\mu > 0$.

Theorem (Bach-B (11))

Under A1–A3 and either B4 or B5, there are $\Omega_{\infty} = \Omega_{\infty}^* \ge 0$ on \mathfrak{h} , $C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_b such that

$$\mathrm{U}_{\infty}\mathrm{H}_{0}\mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{\textit{k},\ell}\left\{\Omega_{\infty}\right\}_{\textit{k},\ell}\textit{a}_{\textit{k}}^{*}\textit{a}_{\ell}+\textit{C}_{\infty}$$

Then ${\rm H}_\infty$ can be diagonalized by a unitary operator acting on ${\mathfrak h},$ only.

$$\mathbf{H}_{0} := \sum_{k,\ell} \left\{ \Omega_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{0} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{0} \right\}_{k,\ell} a_{k} a_{\ell} + C_{0}$$

A1 Let $\Omega_0 = \Omega_0^* \ge 0$ with domain $\mathcal{D}(\Omega_0) \subseteq \mathfrak{h}$.

A2 Let $B_0 = B_0^t \in \mathcal{L}^2(\mathfrak{h})$ be a (non-zero) Hilbert–Schmidt operator.

A3
$$\Omega_0 \ge 4B_0(\Omega_0^t)^{-1}\overline{B}_0$$
.
P4 $\Omega^{-1-\varepsilon}B_{-\varepsilon} \subset C^2(t)$ and $1 \ge (A+v)B_{-\varepsilon}(\Omega^t)^{-1}$.

B4 $\Omega_0^{-1-\varepsilon}B_0 \in \mathcal{L}^2(\mathfrak{h})$ and $\mathbf{1} \ge (4+\mathrm{r}) B_0(\Omega_0^{\mathrm{t}})^{-2}\overline{B}_0$ for some constant $\mathrm{r}, \varepsilon > 0$.

B5 $\Omega_0 \geq 4B_0(\Omega_0^t)^{-1}\bar{B}_0 + \mu \mathbf{1}$ for some constant $\mu > 0$.

Theorem (Bach-B (11))

Under A1–A3 and either B4 or B5, there are $\Omega_{\infty} = \Omega_{\infty}^* \ge 0$ on \mathfrak{h} , $C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_b such that

$$\mathrm{U}_{\infty}\mathrm{H}_{0}\mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{\textit{k},\ell}\left\{\Omega_{\infty}\right\}_{\textit{k},\ell}\textit{a}_{\textit{k}}^{*}\textit{a}_{\ell}+\textit{C}_{\infty}$$

Then ${\rm H}_\infty$ can be diagonalized by a unitary operator acting on ${\mathfrak h},$ only.

• 1947, Bogoliubov: Ω_0 and B_0 are 2 \times 2 real matrices satisfying A1–A2, B5 and

 $\Omega_0 B_0 = B_0 \Omega_0 \ .$

 Ω_∞ and ${\it C}_\infty$ are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs 1966, Berezin: Ω₀ ∈ B(h) and B₀ ∈ L²(h) are both real symmetric operators satisfying Ω₀ ± 2B₀ ≥ μ1, μ > 0.
 Ω_∞ and C_∞ not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_0 = \pm 2B_0$ on some finite dimensional subspace of \mathfrak{h} . Ω_∞ and C_∞ not explicitly known and $\Omega_0, \Omega_0^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_0 and B_0 satisfy A1–A3 and either B4 or B5: $\Omega_0, \Omega_0^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$\operatorname{trace}\left(\Omega_{\infty}^2-\Omega_0^2+4B_0\bar{B}_0\right)=0\quad\text{and}\quad C_{\infty}=C_0+\frac{1}{2}\operatorname{trace}\left(\Omega_0-\Omega_{\infty}\right).$$

$$\Omega_{\infty} = \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2} \text{ and } C_{\infty} = C_0 + \frac{1}{2}\text{trace}\left(\Omega_0 - \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}\right)$$

• 1947, Bogoliubov: Ω_0 and B_0 are 2 \times 2 real matrices satisfying A1–A2, B5 and

 $\Omega_0 B_0 = B_0 \Omega_0 \ .$

 Ω_∞ and C_∞ are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs 1966, Berezin: Ω₀ ∈ B(h) and B₀ ∈ L²(h) are both real symmetric operators satisfying Ω₀ ± 2B₀ ≥ μ1, μ > 0.
 Ω_∞ and C_∞ not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_0 = \pm 2B_0$ on some finite dimensional subspace of \mathfrak{h} . Ω_∞ and C_∞ not explicitly known and $\Omega_0, \Omega_0^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_0 and B_0 satisfy A1–A3 and either B4 or B5: $\Omega_0, \Omega_0^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_∞ and C_∞ are generally not known, but we have proven that:

$$\operatorname{trace}\left(\Omega_{\infty}^2-\Omega_0^2+4B_0\bar{B}_0\right)=0\quad\text{and}\quad C_{\infty}=C_0+\frac{1}{2}\operatorname{trace}\left(\Omega_0-\Omega_{\infty}\right).$$

$$\Omega_{\infty} = \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}$$
 and $C_{\infty} = C_0 + \frac{1}{2}\mathrm{trace}\left(\Omega_0 - \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}
ight)$

• 1947, Bogoliubov: Ω_0 and B_0 are 2 imes 2 real matrices satisfying A1–A2, B5 and

 $\Omega_0 B_0 = B_0 \Omega_0 \ .$

 Ω_∞ and C_∞ are explicitly known. Assumptions stronger than A1, A2, and B5.

• 1953, Friedrichs - 1966, Berezin: $\Omega_0 \in \mathcal{B}(\mathfrak{h})$ and $B_0 \in \mathcal{L}^2(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_0 \pm 2B_0 \ge \mu \mathbf{1}, \ \mu > 0$.

 Ω_∞ and ${\it C}_\infty$ not explicitly known. Assumptions stronger than A1-A3 and B5.

• 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_0 = \pm 2B_0$ on some finite dimensional subspace of \mathfrak{h} .

 Ω_{∞} and C_{∞} not explicitly known and $\Omega_0, \Omega_0^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.

• 2011, Bach-B: Ω_0 and B_0 satisfy A1–A3 and either B4 or B5: $\Omega_0, \Omega_0^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_∞ and C_∞ are generally not known, but we have proven that:

$$\operatorname{trace}\left(\Omega_{\infty}^2-\Omega_0^2+4B_0\bar{B}_0\right)=0\quad\text{and}\quad C_{\infty}=C_0+\frac{1}{2}\operatorname{trace}\left(\Omega_0-\Omega_{\infty}\right).$$

$$\Omega_{\infty} = \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}$$
 and $C_{\infty} = C_0 + \frac{1}{2}\mathrm{trace}\left(\Omega_0 - \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}
ight)$

• 1947, Bogoliubov: Ω_0 and B_0 are 2×2 real matrices satisfying A1–A2, B5 and

 $\Omega_0 B_0 = B_0 \Omega_0 \ .$

 Ω_∞ and C_∞ are explicitly known. Assumptions stronger than A1, A2, and B5.

• 1953, Friedrichs - 1966, Berezin: $\Omega_0 \in \mathcal{B}(\mathfrak{h})$ and $B_0 \in \mathcal{L}^2(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_0 \pm 2B_0 \ge \mu \mathbf{1}, \ \mu > 0$.

 Ω_∞ and ${\it C}_\infty$ not explicitly known. Assumptions stronger than A1-A3 and B5.

• 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_0 = \pm 2B_0$ on some finite dimensional subspace of \mathfrak{h} .

 Ω_{∞} and C_{∞} not explicitly known and $\Omega_0, \Omega_0^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.

• 2011, Bach-B: Ω_0 and B_0 satisfy A1–A3 and either B4 or B5: $\Omega_0, \Omega_0^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_∞ and C_∞ are generally not known, but we have proven that:

$$\operatorname{trace}\left(\Omega_{\infty}^2-\Omega_0^2+4B_0ar{B}_0
ight)=0 \quad \text{and} \quad C_{\infty}=C_0+rac{1}{2}\operatorname{trace}\left(\Omega_0-\Omega_{\infty}
ight).$$

$$\Omega_{\infty} = \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}$$
 and $C_{\infty} = C_0 + \frac{1}{2}\mathrm{trace}\left(\Omega_0 - \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}\right)$

• 1947, Bogoliubov: Ω_0 and B_0 are 2×2 real matrices satisfying A1–A2, B5 and

 $\Omega_0 B_0 = B_0 \Omega_0 \ .$

 Ω_∞ and C_∞ are explicitly known. Assumptions stronger than A1, A2, and B5.

• 1953, Friedrichs - 1966, Berezin: $\Omega_0 \in \mathcal{B}(\mathfrak{h})$ and $B_0 \in \mathcal{L}^2(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_0 \pm 2B_0 \ge \mu \mathbf{1}, \ \mu > 0$.

 Ω_∞ and ${\it C}_\infty$ not explicitly known. Assumptions stronger than A1-A3 and B5.

• 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_0 = \pm 2B_0$ on some finite dimensional subspace of \mathfrak{h} .

 Ω_{∞} and C_{∞} not explicitly known and $\Omega_0, \Omega_0^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.

• 2011, Bach-B: Ω_0 and B_0 satisfy A1–A3 and either B4 or B5: $\Omega_0, \Omega_0^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

 $\operatorname{trace}\left(\Omega_{\infty}^2-\Omega_0^2+4B_0\bar{B}_0\right)=0\quad\text{and}\quad C_{\infty}=C_0+\frac{1}{2}\operatorname{trace}\left(\Omega_0-\Omega_{\infty}\right).$

$$\Omega_{\infty} = \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2} \text{ and } C_{\infty} = C_0 + \frac{1}{2}\text{trace}\left(\Omega_0 - \{\Omega_0^2 - 4B_0\bar{B}_0\}^{1/2}\right)$$

Strategy of the Proof

• We use a (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t \mathbf{H}_t = [\mathbf{H}_t, [\mathbf{H}_t, A]], \quad \mathbf{H}_{t=0} := \mathbf{H}_0, \quad A = \mathbf{N} := \sum_k a_k^* a_k.$$

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

Strategy of the Proof

• We use a (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t \mathbf{H}_t = [\mathbf{H}_t, [\mathbf{H}_t, A]], \quad \mathbf{H}_{t=0} := \mathbf{H}_0, \quad A = \mathbf{N} := \sum_k a_k^* a_k.$$

• Then explicit computations using the CCR to study the commutators show formally that

$$H_t := \sum_{k,\ell} \{\Omega_t\}_{k,\ell} a_k^* a_\ell + \{B_t\}_{k,\ell} a_k^* a_\ell^* + \{\bar{B}_t\}_{k,\ell} a_k a_\ell + C_0 + 8 \int_0^\tau \|B_\tau\|_2^2 d\tau,$$

where the operators $\Omega_t = \Omega_t^*$ and $B_t = B_t^t$ satisfy a system of (quadratically) nonlinear first-order differential equations

$$\forall t \geq 0: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t, & \Omega_{t=0} := \Omega_0, \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right), & B_{t=0} := B_0, \end{array} \right.$$

Strategy of the Proof

• We use a (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t \mathbf{H}_t = [\mathbf{H}_t, [\mathbf{H}_t, A]], \quad \mathbf{H}_{t=0} := \mathbf{H}_0, \quad A = \mathbf{N} := \sum_k a_k^* a_k.$$

• Then explicit computations using the CCR to study the commutators show formally that

$$H_t := \sum_{k,\ell} \{\Omega_t\}_{k,\ell} a_k^* a_\ell + \{B_t\}_{k,\ell} a_k^* a_\ell^* + \{\bar{B}_t\}_{k,\ell} a_k a_\ell + C_0 + 8 \int_0^t \|B_\tau\|_2^2 d\tau,$$

where the operators $\Omega_t = \Omega_t^*$ and $B_t = B_t^t$ satisfy a system of (quadratically) nonlinear first-order differential equations

$$\forall t \geq 0: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t, & \Omega_{t=0} := \Omega_0, \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right), & B_{t=0} := B_0, \end{array} \right.$$

• The map $t \mapsto ||B_t||_2$ must be, at least, square-integrable on $[0, \infty)$. Then in the strong resolvent sense,

$$\mathbf{H}_{\infty} := \sum_{k,\ell} \left\{ \Omega_{\infty} \right\}_{k,\ell} a_k^* a_\ell + C_{\infty} = \lim_{t \to \infty} \mathbf{H}_t$$

・ロト ・聞ト ・ヨト ・ヨト

Flow Equations for Operators

(a) Let the unitary operator $U_{t,s}$ on a Hilbert space \mathfrak{h} be the solution of the non-autonomous evolution equation

$$\forall t \geq s \geq 0: \quad \partial_t U_{t,s} = -iG_t U_{t,s}, \quad U_{s,s} := \mathbf{1},$$

with self-adjoint (s.a.) generator G_t . Here $U_t := U_{t,0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_t in spite of its long history starting 60 years ago.

Flow Equations for Operators

(a) Let the unitary operator $U_{t,s}$ on a Hilbert space \mathfrak{h} be the solution of the non-autonomous evolution equation

$$\forall t \geq s \geq 0: \quad \partial_t U_{t,s} = -iG_t U_{t,s}, \quad U_{s,s} := \mathbf{1},$$

with self-adjoint (s.a.) generator G_t . Here $U_t := U_{t,0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_t in spite of its long history starting 60 years ago.

2 Let
$$H_0 = H_0^*$$
 acting on \mathfrak{h} . Then $H_t := U_t H_0 U_t^*$ satisfies

$$\forall t \geq 0: \quad \partial_t H_t = i \left[H_t, G_t \right] := i \left(H_t G_t - G_t H_t \right), \quad H_{t=0} := H_0.$$

Flow Equations for Operators

Let the unitary operator U_{t,s} on a Hilbert space h be the solution of the non-autonomous evolution equation

$$\forall t \geq s \geq 0: \quad \partial_t U_{t,s} = -iG_t U_{t,s}, \quad U_{s,s} := \mathbf{1},$$

with self-adjoint (s.a.) generator G_t . Here $U_t := U_{t,0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_t in spite of its long history starting 60 years ago.

2 Let $H_0 = H_0^*$ acting on \mathfrak{h} . Then $H_t := U_t H_0 U_t^*$ satisfies

$$\forall t \geq 0: \quad \partial_t H_t = i \left[H_t, G_t \right] := i \left(H_t G_t - G_t H_t \right), \quad H_{t=0} := H_0.$$

Question: find G_t depending on a fixed operator A such that in the limit $t \to \infty$,

$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
 with $[A, H_{\infty}] := AH_{\infty} - H_{\infty}A = 0.$

Let

$$\forall t \ge 0: \quad f(t) := \operatorname{trace}((H_t - A)^2) = \|H_t - A\|_2^2 \ge 0$$

and observe that

$$\begin{aligned} \partial_t f(t) &= \partial_t \left\{ \operatorname{trace} \left(H_t^2 - 2H_t A + A^2 \right) \right\} = \partial_t \left\{ \operatorname{trace} \left(-2H_t A \right) \right\} \\ &= -2 \operatorname{trace} \left(i \left[H_t, G_t \right] A \right) = -2 \operatorname{trace} \left(i \left[A, H_t \right] G_t \right), \end{aligned}$$

by using $\partial_t H_t = i [H_t, G_t]$ and the cocyclicity of the trace.

æ

イロト 不得下 イヨト イヨト

Let

$$\forall t \geq 0: \quad f(t) := \operatorname{trace}((H_t - A)^2) = \|H_t - A\|_2^2 \geq 0$$

and observe that

$$\begin{aligned} \partial_t f(t) &= \partial_t \left\{ \operatorname{trace} \left(H_t^2 - 2H_t A + A^2 \right) \right\} = \partial_t \left\{ \operatorname{trace} \left(-2H_t A \right) \right\} \\ &= -2 \operatorname{trace} \left(i \left[H_t, G_t \right] A \right) = -2 \operatorname{trace} \left(i \left[A, H_t \right] G_t \right), \end{aligned}$$

by using $\partial_t H_t = i [H_t, G_t]$ and the cocyclicity of the trace.

Choice of the generator: $G_t := i [A, H_t] := i (AH_t - H_tA).$

- 4 週 ト - 4 三 ト - 4 三 ト

Let

$$\forall t \geq 0: \quad f(t) := \operatorname{trace}((H_t - A)^2) = \|H_t - A\|_2^2 \geq 0$$

and observe that

$$\begin{aligned} \partial_t f(t) &= \partial_t \left\{ \operatorname{trace} \left(H_t^2 - 2H_t A + A^2 \right) \right\} = \partial_t \left\{ \operatorname{trace} \left(-2H_t A \right) \right\} \\ &= -2 \operatorname{trace} \left(i \left[H_t, G_t \right] A \right) = -2 \operatorname{trace} \left(i \left[A, H_t \right] G_t \right), \end{aligned}$$

by using $\partial_t H_t = i [H_t, G_t]$ and the cocyclicity of the trace.

Choice of the generator: $G_t := i [A, H_t] := i (AH_t - H_tA).$

We then obtain

$$orall t \geq 0: \quad \partial_t f(t) = -2 \mathrm{trace} \left(G_t G_t^* \right) = -2 \|G_t\|_2^2 \leq 0 \; .$$

- 4 週 ト - 4 三 ト - 4 三 ト

Let

$$\forall t \geq 0: \quad f(t) := \operatorname{trace}((H_t - A)^2) = \|H_t - A\|_2^2 \geq 0$$

and observe that

$$\begin{aligned} \partial_t f(t) &= \partial_t \left\{ \operatorname{trace} \left(H_t^2 - 2H_t A + A^2 \right) \right\} = \partial_t \left\{ \operatorname{trace} \left(-2H_t A \right) \right\} \\ &= -2 \operatorname{trace} \left(i \left[H_t, G_t \right] A \right) = -2 \operatorname{trace} \left(i \left[A, H_t \right] G_t \right), \end{aligned}$$

by using $\partial_t H_t = i [H_t, G_t]$ and the cocyclicity of the trace.

Choice of the generator:
$$G_t := i [A, H_t] := i (AH_t - H_tA).$$

We then obtain

$$orall t \geq 0: \quad \partial_t f(t) = -2 ext{trace} \left(G_t G_t^*
ight) = -2 \|G_t\|_2^2 \leq 0 \; .$$

2 This suggests that $\partial_t f(t) \to 0$ as $t \to \infty$, which implies $i[A, H_t] \to 0$ and that

$$H_t = U_t H_0 U_t^* \rightarrow H_\infty = U_\infty H_0 U_\infty^*$$
 with $[A, H_\infty] = 0$

3

イロト 不得下 イヨト イヨト

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = [H_t, [H_t, A]], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

The Brocket–Wegner flow has successfully been applied to various problems in Condensed Matter Physics including:

- Electron-phonon coupling
- Dissipative quantum systems
- Interacting fermions, Hubbard model
- Impurity problems
- Non-equilibrium systems

A similar idea is also used in quantum chromodynamics and quantum electrodynamics.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t>0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

$$\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1}.$$

3 Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

• Proof of the existence of
$$U_{\infty} = \lim_{t \to \infty} U_t$$
 ?

9 Proof of
$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
 with $[H_{\infty}, A] = 0$?

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t\geq 0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

$$\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1} .$$

3 Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

• Proof of the existence of
$$U_{\infty} = \lim_{t \to \infty} U_t$$
?

9 Proof of
$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
 with $[H_{\infty}, A] = 0$?

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = [H_t, [H_t, A]], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t>0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

 $\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1} .$

8 Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

• Proof of the existence of
$$U_{\infty} = \lim_{t \to \infty} U_t$$
 ?

9 Proof of
$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
 with $[H_{\infty}, A] = 0$?

イロト イポト イヨト イヨト

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = [H_t, [H_t, A]], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t>0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

$$\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1}.$$

Solution Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

• Proof of the existence of
$$U_{\infty} = \lim_{t \to \infty} U_t$$
 ?

9 Proof of
$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
 with $[H_{\infty}, A] = 0$?

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t>0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

$$\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1} .$$

8 Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

- Proof of the existence of $U_{\infty} = \lim_{t \to \infty} U_t$?
- Solution Proof of $H_{\infty} = U_{\infty}H_0U_{\infty}^*$ with $[H_{\infty}, A] = 0$?

・ロン ・聞と ・ほと ・ほと

It is the (quadratically) nonlinear first-order differential equation:

$$\forall t \geq 0: \quad \partial_t H_t = [H_t, [H_t, A]], \quad H_{t=0} := H_0.$$

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:

• Proof of the existence of $(H_t)_{t>0}$ solution of the flow ?

2 Problem of the existence of $(U_t)_{t\geq 0}$ such that $H_t = U_t H_0 U_t^{-1}$ which means that

$$\forall t \geq 0: \quad \partial_t U_t = [A, H_t] U_t := -iG_t U_t, \quad U_t := \mathbf{1}$$

8 Proof of the existence of $H_{\infty} = \lim_{t \to \infty} H_t$?

• Proof of the existence of
$$U_{\infty} = \lim_{t \to \infty} U_t$$
?

(b) Proof of $H_{\infty} = U_{\infty}H_0U_{\infty}^*$ with $[H_{\infty}, A] = 0$?

・ロン ・聞と ・ ほと ・ ほと

Well-posedness of Brocket–Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let \mathfrak{h} be any separable Hilbert space.

Bounded operators: Global existence. Take H₀ = H₀^{*}, A = A^{*} ∈ B(h). Then there are two unique solutions (H_t)_{t≥0}, (U_t)_{t≥0} ∈ C[∞] [ℝ₀⁺; B(h)] respectively of

 $\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0 ; \quad \partial_t U_t = \left[A, H_t\right] U_t, \quad U_0 := \mathbf{1},$

and satisfying

$$H_t = U_t H_0 U_t^*, \quad U_t^* U_t = U_t U_t^* = \mathbf{1}.$$

Well-posedness of Brocket–Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let \mathfrak{h} be any separable Hilbert space.

Bounded operators: Global existence. Take H₀ = H₀^{*}, A = A^{*} ∈ B(h). Then there are two unique solutions (H_t)_{t≥0}, (U_t)_{t≥0} ∈ C[∞][ℝ₀⁺; B(h)] respectively of

 $\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0 ; \quad \partial_t U_t = \left[A, H_t\right] U_t, \quad U_0 := \mathbf{1},$

and satisfying

$$H_t = U_t H_0 U_t^*, \quad U_t^* U_t = U_t U_t^* = \mathbf{1}.$$

• Unbounded operators: Local existence. The flow has a unique, smooth local unbounded solution $(H_t = U_t H_0 U_t^*)_{t \in [0, T_{max})}$ under some restricted conditions on iterated commutators.

Well-posedness of Brocket–Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let \mathfrak{h} be any separable Hilbert space.

Bounded operators: Global existence. Take H₀ = H₀^{*}, A = A^{*} ∈ B(h). Then there are two unique solutions (H_t)_{t≥0}, (U_t)_{t≥0} ∈ C[∞][ℝ₀⁺; B(h)] respectively of

 $\forall t \geq 0: \quad \partial_t H_t = \left[H_t, \left[H_t, A\right]\right], \quad H_{t=0} := H_0 ; \quad \partial_t U_t = \left[A, H_t\right] U_t, \quad U_0 := \mathbf{1},$

and satisfying

$$H_t = U_t H_0 U_t^*, \quad U_t^* U_t = U_t U_t^* = \mathbf{1}.$$

- Unbounded operators: Local existence. The flow has a unique, smooth local unbounded solution $(H_t = U_t H_0 U_t^*)_{t \in [0, T_{max})}$ under some restricted conditions on iterated commutators.
- Blows up of the Brocket–Wegner flow. There are two unbounded self–adjoint $H_0 = H_0^*, A \ge 0$ such that the flow has a (unbounded) local solution $(H_t = U_t H_0 U_t^*)_{t \in [0, T_{max})}$ which blows up on its domain at a finite time $T_{max} < \infty$.

Brocket–Wegner Flow Equations for Quadratic Operators

• We use the Brocket–Wegner flow for any quadratic operators H₀:

$$\forall t \geq 0: \quad \partial_t \mathbf{H}_t = [\mathbf{H}_t, [\mathbf{H}_t, A]], \quad \mathbf{H}_{t=0} := \mathbf{H}_0, \quad A = \mathbf{N} := \sum_k a_k^* a_k.$$

• Then explicit computations using the CCR show formally that

$$H_t := \sum_{k,\ell} \{\Omega_t\}_{k,\ell} a_k^* a_\ell + \{B_t\}_{k,\ell} a_k^* a_\ell^* + \{\bar{B}_t\}_{k,\ell} a_k a_\ell + C_0 + 8 \int_0^t \|B_\tau\|_2^2 d\tau,$$

where the operators $\Omega_t = \Omega_t^*$ and $B_t = B_t^t$ must satisfy a system of (quadratically) nonlinear first-order differential equations

$$\forall t \geq 0: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t, & \Omega_{t=0} := \Omega_0, \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right), & B_{t=0} := B_0, \end{array} \right.$$

Brocket–Wegner Flow Equations for Quadratic Operators

• We use the Brocket–Wegner flow for any quadratic operators H₀:

$$\forall t \geq 0: \quad \partial_t \mathbf{H}_t = [\mathbf{H}_t, [\mathbf{H}_t, A]], \quad \mathbf{H}_{t=0} := \mathbf{H}_0, \quad A = \mathbf{N} := \sum_k a_k^* a_k.$$

• Then explicit computations using the CCR show formally that

$$H_{t} := \sum_{k,\ell} \left\{ \Omega_{t} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{t} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{t} \right\}_{k,\ell} a_{k} a_{\ell} + C_{0} + 8 \int_{0}^{t} \left\| B_{\tau} \right\|_{2}^{2} \mathrm{d}\tau,$$

where the operators $\Omega_t = \Omega_t^*$ and $B_t = B_t^t$ must satisfy a system of (quadratically) nonlinear first-order differential equations

$$\forall t \geq 0: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t, & \Omega_{t=0} := \Omega_0, \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right), & B_{t=0} := B_0, \end{array} \right.$$

A blows up of the Brocket–Wegner flow can then be seen by taking

$$\Omega_0=0 \quad \text{and} \quad B_0=\left(egin{array}{cc} 0 & \mathrm{b} \ \mathrm{b} & 0 \end{array}
ight) \quad ext{with} \quad \mathrm{b}>0.$$

● Under Conditions A1–A3, there is $(\Omega_t, B_t)_{t \in [0, T_{max})}$ solution of

$$\forall t \in [0, T_{\max}) \subseteq \mathbb{R}_0^+: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t \ , & \Omega_{t=0} := \Omega_0 \ , \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right) \ , & B_{t=0} := B_0 \ . \end{array} \right.$$

The operators $\Omega_t = \Omega^*_t \ge 0$ and $B_t \in \mathcal{L}^2(\mathfrak{h})$ satisfies:

$$\forall t \in [0, T_{\max}): \quad \operatorname{trace}\left(\Omega_t^2 - 4B_t\bar{B}_t - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

and if $\Omega_0 B_0 = B_0 \Omega_0^{t}$ then

$$\forall t \in [0, T_{\max}): \quad \Omega_t = \{\Omega_0^2 - 4B_0\bar{B}_0 + 4B_t\bar{B}_t\}^{1/2}$$

This is possible to show because

$$\forall t \in [0, T_{\max}): \quad B_t = B_t^{t} = W_t B_0 W_t^{t} ,$$

where W_t is a (bounded, positive) operator acting on \mathfrak{h} solution of

$$\forall t \in [0, T_{\max}): \quad \partial_t W_t = -2\Omega_t W_t , \quad W_t := \mathbf{1} .$$

So, one only has one equation solved by the contraction mapping principle.

● Under Conditions A1–A3, there is $(\Omega_t, B_t)_{t \in [0, T_{max})}$ solution of

$$\forall t \in [0, T_{\max}) \subseteq \mathbb{R}_0^+: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t \ , & \Omega_{t=0} := \Omega_0 \ , \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right) \ , & B_{t=0} := B_0 \ . \end{array} \right.$$

The operators $\Omega_t = \Omega_t^* \ge 0$ and $B_t \in \mathcal{L}^2(\mathfrak{h})$ satisfies:

$$\forall t \in [0, T_{\max}): \quad \operatorname{trace}\left(\Omega_t^2 - 4B_t\bar{B}_t - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

and if $\Omega_0 B_0 = B_0 \Omega_0^{t}$ then

$$\forall t \in [0, T_{\max}): \quad \Omega_t = \{\Omega_0^2 - 4B_0\bar{B}_0 + 4B_t\bar{B}_t\}^{1/2}$$

2) Existence of a unitary operator U_t as strong solution on $\mathcal{D}(N) \subsetneq \mathcal{F}_b$ of

$$\forall t \in [0, T_{\max}): \quad \partial_t \mathbf{U}_t = [\mathbf{N}, \mathbf{H}_t] \mathbf{U}_t := -i\mathbf{G}_t \mathbf{U}_t, \quad \mathbf{U}_t := \mathbf{1}.$$

Indeed, denoting $\mathcal{Y} := \mathcal{B}(\mathcal{D}(N))$, the generator $G_t := i [N, H_t] = G_t^*$ satisfies $\|G_t\|_{\mathcal{Y}} \le 11 \|B_0\|_2, \|G_t - G_s\|_{\mathcal{Y}} \le 11 \|B_t - B_s\|_2, \|[N, G_t]\|_{\mathcal{Y}} \le 22 \|B_0\|_2$

(ロ) (聞) (目) (ヨ)

● Under Conditions A1–A3, there is $(\Omega_t, B_t)_{t \in [0, T_{max})}$ solution of

$$\forall t \in [0, T_{\max}) \subseteq \mathbb{R}_0^+: \quad \left\{ \begin{array}{ll} \partial_t \Omega_t = -16B_t \bar{B}_t \ , & \Omega_{t=0} := \Omega_0 \ , \\ \partial_t B_t = -2\left(\Omega_t B_t + B_t \Omega_t^t\right) \ , & B_{t=0} := B_0 \ . \end{array} \right.$$

The operators $\Omega_t = \Omega^*_t \ge 0$ and $B_t \in \mathcal{L}^2(\mathfrak{h})$ satisfies:

$$\forall t \in [0, T_{\max}): \quad \operatorname{trace}\left(\Omega_t^2 - 4B_t\bar{B}_t - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

and if $\Omega_0 B_0 = B_0 \Omega_0^t$ then

$$\forall t \in [0, T_{\max}): \quad \Omega_t = \{\Omega_0^2 - 4B_0\bar{B}_0 + 4B_t\bar{B}_t\}^{1/2}$$

2) Existence of a unitary operator U_t as strong solution on $\mathcal{D}(\mathrm{N}) \subsetneq \mathcal{F}_b$ of

$$\forall t \in [0, T_{\max}): \quad \partial_t \mathbf{U}_t = [\mathbf{N}, \mathbf{H}_t] \mathbf{U}_t := -i\mathbf{G}_t \mathbf{U}_t, \quad \mathbf{U}_t := \mathbf{1}.$$

③ Using resolvents, show next that, for all $t \in [0, T_{max})$,

$$\mathbf{H}_{t} := \sum_{k,\ell} \left\{ \Omega_{t} \right\}_{k,\ell} a_{k}^{*} a_{\ell} + \left\{ B_{t} \right\}_{k,\ell} a_{k}^{*} a_{\ell}^{*} + \left\{ \bar{B}_{t} \right\}_{k,\ell} a_{k} a_{\ell} + C_{t} = \mathbf{U}_{t} \mathbf{H}_{0} \mathbf{U}_{t}^{*}.$$

• Using an a priori estimate, the assumption $\Omega_0^{-1/2} B_0 \in \mathcal{L}^2(\mathfrak{h})$ exclude blows up, i.e., $\mathcal{T}_{\max} = \infty$, and yields the convergence, in the strong resolvent sense, of the family $(H_t = U_t H_0 U_t^*)_{t \geq 0}$ of unbounded operators to

$$\mathrm{H}_{\infty} := \sum_{k,\ell} \left\{ \Omega_{\infty} \right\}_{k,\ell} a_k^* a_\ell + C_0 + 8 \int_0^\infty \|B_{\tau}\|_2^2 \mathrm{d}\tau$$

In particular, one shows that

$$\operatorname{trace}\left(\Omega_t^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 4\|B_t\|_2^2 \Longrightarrow \operatorname{trace}\left(\Omega_\infty^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

if $\Omega_0B_0 = B_0\Omega_0^{\text{t}}$ then

$$\Omega_t = \{\Omega_0^2 - 4B_0\bar{B}_0 + 4B_t\bar{B}_t\}^{1/2} \Longrightarrow \Omega_\infty = \left\{\Omega_0^2 - 4B_0\bar{B}_0\right\}^{1/2}$$

Indeed, $\Omega_0^{-1/2}B_0 \in \mathcal{L}^2(\mathfrak{h})$ yields the integrability of $t \mapsto \|B_t\|_2^2$ on $[0,\infty)$ whereas

$$\Omega_t = \Omega_0 - 16 \int_0^t B_\tau \bar{B}_\tau d\tau \Longrightarrow \Omega_\infty = \Omega_0 - 16 \int_0^\infty B_\tau \bar{B}_\tau d\tau$$

and

and

$$\left\|\{(\mathrm{H}_{\infty}+i\lambda\mathbf{1})^{-1}-(\mathrm{H}_t+i\lambda\mathbf{1})^{-1}\}(\mathrm{N}+\mathbf{1})^{-1}\right\|_{\mathrm{op}} \leq C\left(\int_t^{\infty}\|B_{\tau}\|_2^2\mathrm{d}\tau+\|B_t\|_2\right) \ .$$

・ロト ・四ト ・ヨト ・ヨト

• Using an a priori estimate, the assumption $\Omega_0^{-1/2} B_0 \in \mathcal{L}^2(\mathfrak{h})$ exclude blows up, i.e., $\mathcal{T}_{\max} = \infty$, and yields the convergence, in the strong resolvent sense, of the family $(H_t = U_t H_0 U_t^*)_{t \geq 0}$ of unbounded operators to

$$\mathrm{H}_{\infty} := \sum_{k,\ell} \left\{ \Omega_{\infty} \right\}_{k,\ell} a_k^* a_\ell + C_0 + 8 \int_0^\infty \|B_{\tau}\|_2^2 \mathrm{d}\tau$$

In particular, one shows that

and

trace
$$\left(\Omega_t^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 4\|B_t\|_2^2 \Longrightarrow \operatorname{trace}\left(\Omega_\infty^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

if $\Omega_0B_0 = B_0\Omega_0^{\mathrm{t}}$ then

$$\Omega_t = \{\Omega_0^2 - 4B_0ar{B}_0 + 4B_tar{B}_t\}^{1/2} \Longrightarrow \Omega_\infty = \left\{\Omega_0^2 - 4B_0ar{B}_0
ight\}^{1/2}.$$

Output Section Section 5. It is to be a strong convergence of (Ut)t≥0 to U∞ as well as

$$\mathrm{H}_{\infty} = \mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}$$
 .

Indeed, B4 (or B5), which yields $\Omega_0^{-1/2}B_0 \in \mathcal{L}^2(\mathfrak{h})$, implies the integrability of $t \mapsto \|B_t\|_2$ on $[0,\infty)$ whereas

$$\|(\mathbf{U}_{\infty} - \mathbf{U}_{t})(\mathbf{N} + \mathbf{1})^{-1}\|_{\mathrm{op}} \leq \tilde{C} \int_{t}^{\infty} \|B_{\tau}\|_{2} \, \mathrm{d}\tau \;.$$
 (1)

・ロト ・聞ト ・ヨト ・ヨトー

• Using an a priori estimate, the assumption $\Omega_0^{-1/2} B_0 \in \mathcal{L}^2(\mathfrak{h})$ exclude blows up, i.e., $\mathcal{T}_{\max} = \infty$, and yields the convergence, in the strong resolvent sense, of the family $(H_t = U_t H_0 U_t^*)_{t \geq 0}$ of unbounded operators to

$$\mathrm{H}_{\infty} := \sum_{k,\ell} \left\{\Omega_{\infty}
ight\}_{k,\ell} a_k^* a_\ell + C_0 + 8 \int_0^\infty \|B_{\tau}\|_2^2 \mathrm{d} au$$

In particular, one shows that

and

trace
$$\left(\Omega_t^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 4\|B_t\|_2^2 \Longrightarrow \operatorname{trace}\left(\Omega_\infty^2 - \Omega_0^2 + 4B_0\bar{B}_0\right) = 0$$

if $\Omega_0B_0 = B_0\Omega_0^{\mathrm{t}}$ then

$$\Omega_t = \{\Omega_0^2 - 4B_0ar{B}_0 + 4B_tar{B}_t\}^{1/2} \Longrightarrow \Omega_\infty = \left\{\Omega_0^2 - 4B_0ar{B}_0
ight\}^{1/2}$$

Ise Conditions B4 or B5 to obtain the strong convergence of (U_t)_{t≥0} to U_∞ as well as

$$H_{\infty} = U_{\infty}H_0U_{\infty}^*$$
.

() Then H_∞ can be diagonalized by a unitary operator acting on $\mathfrak{h},$ using a diagonalization of Ω_∞ to have

$$\{\Omega_{\infty}\}_{k,\ell} := \langle \varphi_k | \Omega_{\infty} \varphi_\ell \rangle = \delta_{k,\ell} \lambda_k.$$

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.

< 🗇 🕨

- ∢ ∃ ▶

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_0 :

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_0 :
 - i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of ${\rm H}_0.$

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_0 :
 - i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_0 .
 - ii. Unboundedness of $\Omega_0 \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_0 :
 - i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_0 .
 - ii. Unboundedness of $\Omega_0 \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.
 - iii. Unboundedness of Ω₀⁻¹ ∉ B(𝔥). Controlled but absolutely nontrivial. Out of the scope of previous works.

・ロン ・聞と ・ほと ・ほと

- The Brocket–Wegner flow ∂_tH_t = [H_t, [H_t, A]] can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_0 :
 - i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_0 .
 - ii. Unboundedness of $\Omega_0 \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.
 - iii. Unboundedness of Ω₀⁻¹ ∉ B(𝔥). Controlled but absolutely nontrivial. Out of the scope of previous works.
- This example is the first mathematical use of the Brocket–Wegner flow to diagonalize (unbounded) operators.

イロン 不聞と 不同と 不同と