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Quadratic Boson Operators

One—Particle Hilbert Space

@ h:= L2(M, a) is a separable complex Hilbert space of square—integrable functions
on a measure space (M, a). The scalar product on § is given by

(flg) = /M (e (x)da(x) .

@ For any operator X on j, we define its transpose X* and its complex conjugate X
by (f|X*g) := (g|XF) and (f|Xg) := (f|XE), for f, g € b, respectively. Note that

t

X =Xt=X".

@ B() is the Banach space of bounded operators acting on h and £(h) is the
Hilbert spaces of Hilbert—Schmidt operators defined from the scalar product

(X,Y), :=trace(X"Y) with |X]2 := trace(X"X).

@ Condition Al: Let Qo = Q5 > 0 be a positive (possibly unbounded) operator on b.

@ Condition A2: Let By = B§ € £*(h) be a (non—zero) Hilbert-Schmidt operator.
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Quadratic Boson Operators

One—Particle Hilbert Space

@ h:= L2(/\/l, a) is a separable complex Hilbert space of square—integrable functions
on a measure space (M, a). The scalar product on § is given by

(Flg) :=/Mﬁ (x)da (x) -

@ For any operator X on j, we define its transpose X* and its complex conjugate X
by (f|X'g) := (g|XF) and (f|Xg) := (f|Xg), for f,g € b, respectively. Note that

t

X =Xt=X".

@ B(h) is the Banach space of bounded operators acting on h and £(h) is the
Hilbert spaces of Hilbert—Schmidt operators defined from the scalar product

(X,Y), :=trace(X"Y) with |X]2 := trace(X"X).

@ Condition Al: Let Qo = Q5 > 0 be a positive (possibly unbounded) operator on b.

@ Condition A2: Let By = B} € £?(h) be a (non—zero) Hilbert-Schmidt operator.
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Quadratic Boson Operators

Many—particle Hilbert Space: The Boson Fock Space

@ The boson Fock space is the Hilbert space
Fo =P Sa (h°").
n=0

Here, S, is the orthogonal projection onto the subspace of totally symmetric
n—particle wave functions in §®", the n—fold tensor product of f.

@ Annihilation/Creation operators {a(f),a" (f)} are unbounded operators on Fj
defined for f € b by

GOV (xa,. .. x) = Vnil <f‘ (W) (~,X1,...,xn)>
(@ ()W) G,y x) = Sa (f () (W)™ (xq, ... ,xn,l))
They satisfy the Canonical Commutation Relation (CCR):
[a(f),a(g)] =[a"(f).a" (g)] =0 whereas [a(f),a" (g)] = (flg) -

Here
[A, B] .= AB — BA.
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Quadratic Boson Operators

Quadratic Boson Operators

@ Condition Al: Let Qo = Q5 > 0 with domain D () C b.
@ Condition A2: Let By = B§ € £?(h) be a (non—zero) Hilbert-Schmidt operator.
@ Take some orthonormal basis {¢«},o; C D (S0) C b and let ax := a(p«).

@ Then, for any fixed Gy € R, the quadratic boson operator is defined by

Hy := Z {QO}k,é arar + {Bo}k,é aga; + {Bo}k,z axar + Go
k.

with {X}, , = (px|Xpe). ([ dk d€ could also replace 3, ,.)

Proposition (Berezin (66) — Bruneau-Derezinski (07))

Under Conditions A1-A2, Hy is essentially self-adjoint on the domain

D (Ho) := U (@sn (Q0)®") ) CFb.

N=1
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with {X}, , = (px|Xpe). ([ dk d€ could also replace 3, ,.)

Proposition (Berezin (66) — Bruneau-Derezinski (07))

Under Conditions A1-A2, Hy is essentially self-adjoint on the domain
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Quadratic Boson Operators

Diagonalization of Quadratic Operators

Hy = Z {Qo}k,Z aZae —+ {Bo}k,é a:aZ + {Bo}k,é axae + Go
k,l

Al Let Qo = Qg > 0 with domain D () C b.

A2 Let By = B} € £?(h) be a (non—zero) Hilbert-Schmidt operator.

A3 Qo > 4By(Q2) 1By .

B4 Qy'7°By € £3(h) and 1 > (4 +1) Bo(Q5) *By for some constant 1,¢ > 0.
B5 Qo > 4Bo(Q5) By + p1 for some constant 1 > 0.

Theorem (Bach-B (11))

Under A1-A3 and either B4 or B5, there are Qoo = Q5 >0o0nh, Coo €R and a
unitary operator Us, on Fj such that

UsoHoUly = Hoo := ) {Qoo} ¢ akae + Coo
k.t

Then Hoo can be diagonalized by a unitary operator acting on b, only.
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Diagonalization of Quadratic Operators

Hy = Z {Qo}k,Z aZae —+ {Bo}k,é a:aZ + {Bo}k,é axae + Go
k,l

Al Let Qo = Qg > 0 with domain D () C b.

A2 Let By = Bf € L£*(h) be a (non—zero) Hilbert—Schmidt operator.

A3 Qo > 4By(%) By .

B4 Qy 1By € £2(h) and 1 > (4 + 1) Bo(Q§) By for some constant r,& > 0.
B5 Qo > 4Bo(Q§) ' By + p1 for some constant y > 0.

Theorem (Bach-B (11))
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k,e

Then Hoo can be diagonalized by a unitary operator acting on b, only.
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Quadratic Boson Operators

Diagonalization of Quadratic Operators

Hy = Z {Qo}k,Z aZae —+ {Bo}k,é a:aZ + {Bo}k,é axae + Go
k,l

Al Let Qo = Qg > 0 with domain D () C b.

A2 Let By = Bf € L£*(h) be a (non—zero) Hilbert—Schmidt operator.

A3 Qo > 4By(Q5) !By .

B4 Q, 7By € £2(h) and 1 > (4 + 1) Bo(Qh) 2By for some constant r,& > 0.
B5 Qo > 4Bo(§) ' By + p1 for some constant y > 0.

Theorem (Bach-B (11))

Under A1-A3 and either B4 or B5, there are Qo = Q5 >0o0onh, Cx € R and a
unitary operator Us, on Fp, such that

UooHoU%o = Heo := > {Qeo} p %22 + Coo
k.

Then Hoo can be diagonalized by a unitary operator acting on b, only.
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Quadratic Boson Operators

Historical Overview on Diagonalization of Such Operators

@ 1947, Bogoliubov: Qo and By are 2 x 2 real matrices satisfying A1-A2, B5 and
QoBo = BoQo .
Qo and C are explicitly known. Assumptions stronger than Al, A2, and B5.

@ 1953, Friedrichs - 1966, Berezin: Qo € B(h) and By € £3(h) are both real
symmetric operators satisfying Qo 2By > pl, p > 0.

Qo and C not explicitly known. Assumptions stronger than A1-A3 and B5.

@ 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow
Qo = 2By on some finite dimensional subspace of b.

Qoo and Coo not explicitly known and Qo,Q,* € B(h) are bounded operators.

@ 2011, Bach-B: Q and By satisfy A1-A3 and either B4 or B5: QO,QEI ¢ B(h).
Qo and C are generally not known, but we have proven that:

_ 1
trace (Q’; Q% 43030) =0 and Coo = Go+ Strace (2 — Qo).
Furthermore, if QoBy = BoS2§ then

Qoo = {QS — 48090}1/2 and Coo = Co + %trace (Qo — {Q(Z) — 43030}1/2)
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Historical Overview on Diagonalization of Such Operators

@ 1947, Bogoliubov: Qo and By are 2 x 2 real matrices satisfying A1-A2, B5 and
QoBo = BoQo .
Q. and C. are explicitly known. Assumptions stronger than Al, A2, and B5.

@ 1953, Friedrichs - 1966, Berezin: Qo € B(h) and By € £3(h) are both real
symmetric operators satisfying Qo 2By > pl, p > 0.

Qo and C not explicitly known. Assumptions stronger than A1-A3 and B5.
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Qo = 2By on some finite dimensional subspace of b.
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Quadratic Boson Operators

Historical Overview on Diagonalization of Such Operators

@ 1947, Bogoliubov: Qo and By are 2 x 2 real matrices satisfying A1-A2, B5 and
QoBo = BoQo .
Q. and C. are explicitly known. Assumptions stronger than Al, A2, and B5.

@ 1953, Friedrichs - 1966, Berezin: Qo € B(h) and By € £3(h) are both real
symmetric operators satisfying Qo 2By > pl, p > 0.

Qo and C not explicitly known. Assumptions stronger than A1-A3 and B5.

@ 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow
Qo = 2By on some finite dimensional subspace of b.

Qo0 and Cs not explicitly known and Qo, Q5! € B(h) are bounded operators.

@ 2011, Bach-B: Qo and By satisfy A1-A3 and either B4 or B5: Q,, Q" ¢ B(h).
Q. and C are generally not known, but we have proven that:

trace <QiC - Q% + 4BOBO> =0 and C. = G+ %trace (20 — Qo) -
Furthermore, if QoBy = BoS2§ then

Q%\ = {Q(Q) — 48050}1/2 and Cx = Co + %tl“d(‘,(‘, (Qo — {Qg — 43090}1/2>
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Quadratic Boson Operators

Strategy of the Proof

@ We use a (quadratically) nonlinear first—order differential equation:

Vt>0: OH=[H,[Hi, All, Heo:=Ho, A=N:=)» aa.
k
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Quadratic Boson Operators

Strategy of the Proof

@ We use a (quadratically) nonlinear first—order differential equation:

Vt>0: OH=[H,[Hi, All, Heo:=Ho, A=N:=)» aa.
k

@ Then explicit computations using the CCR to study the commutators show
formally that

t
He = {Qi},, akae + {Be},  aka; + {Bi}, ,akac + Co + 8/ |B-|I5 dr,
Py ’ 0
where the operators Q; = Q} and B: = B} satisfy a system of (quadratically)
nonlinear first—order differential equations
atQt = 716Btét, Qt:() = Q[),

t>0:
V - 0 { 8tBt = _2 (QtBt +4 Btﬂg) 5 Bt:() = BO,
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Quadratic Boson Operators

Strategy of the Proof

@ We use a (quadratically) nonlinear first—order differential equation:

Vt>0: OH=[H,[Hi, All, Heo:=Ho, A=N:=)» aa.
k

@ Then explicit computations using the CCR to study the commutators show
formally that

t
H; := Z {Qt}k,e axae + {Bt}k,e akar + {Bt}k,e akac + Co + 8/0 ”BTHg dr,
k¢

where the operators Q; = Q} and B: = B} satisfy a system of (quadratically)
nonlinear first—order differential equations

9:Q: = —16B:B, Qo := Qo,

t>0:
V - 0 { 8tBt = _2 (QtBt +4 Btﬂg) 5 Bt:() = BO,

@ The map t — ||Bt||2 must be, at least, square—integrable on [0, c0). Then in the
strong resolvent sense,

Hoo = {Quc},,aka + Coo = Jim H,
k2

J.-B. Bru (UPV/EHU - lkerbasque) Diagonalization via Evolution Equations



Brocket—Wegner Flow Equations

Flow Equations for Operators

@ Let the unitary operator Uy s on a Hilbert space h be the solution of the
non-autonomous evolution equation

Vt Z S 2 0: 8tUt,5 = —I'GtUt,s7 Uss = ].7

with self-adjoint (s.a.) generator G;. Here U; := Us.

Remark: There is no unified theory of such Cauchy problem for unbounded generators
G:; in spite of its long history starting 60 years ago. J
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Flow Equations for Operators

@ Let the unitary operator Uy s on a Hilbert space h be the solution of the
non-autonomous evolution equation

Vt Z S 2 0: 8tUt,5 = —I'GtUt,s7 Uss = ].7
with self-adjoint (s.a.) generator G;. Here U; := Us.

Remark: There is no unified theory of such Cauchy problem for unbounded generators
G:; in spite of its long history starting 60 years ago. J

@ Let Hy = Hy acting on h. Then H; := U:HoU; satisfies

Vt Z 0 . 8tHf = i[Ht7 Gt] = I(Hth — Gth)7 Hf:() = HO.
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Brocket—Wegner Flow Equations

Flow Equations for Operators

@ Let the unitary operator Uy s on a Hilbert space h be the solution of the
non-autonomous evolution equation

Vt Z S 2 0: 8tUt,5 = —I'GtUt,s7 Uss = ].7

with self-adjoint (s.a.) generator G;. Here U; := Us.

Remark: There is no unified theory of such Cauchy problem for unbounded generators
G:; in spite of its long history starting 60 years ago. J

@ Let Hy = Hy acting on h. Then H; := U:HoU; satisfies

Vt Z 0 . ath = i[Ht7 Gt] = I(Hth — Gth)7 Ht:() = HO.

Question: find G; depending on a fixed operator A such that in the limit t — oo,
Heo = UscHoUL,  with [A, Heo] := AHoo — HooA = 0. J
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Brocket—Wegner Flow Equations

@ Assume that Hy = Hy and A = A" are two self-adjoint matrices.

@ Let
Vt>0: f(t):=trace((H: — A)®) = |H: — A|3 >0
and observe that
Of (t) = 0O {trace (Ht2 —2H:A+ Az)} = 0, {trace (—2H;A)}
= —2trace (i [H, G:] A) = —2trace (i [A, H:] G¢),

by using 9:H: = i [H¢, G¢] and the cocyclicity of the trace.
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Brocket—Wegner Flow Equations

@ Assume that Hy = Hy and A = A" are two self-adjoint matrices.

@ Let
Vt>0: f(t):=trace((H: — A)®) = |H: — A|3 >0

and observe that
Of (t) = 0O {trace (Ht2 —2H:A+ Az)} = 0, {trace (—2H;A)}
= —2trace (i [H, G:] A) = —2trace (i [A, H:] G¢),

by using 9:H: = i [H¢, G¢] and the cocyclicity of the trace.

Choice of the generator: G: := i [A, H:] := i (AH: — H:A). J
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Brocket—Wegner Flow Equations

@ Assume that Hy = Hy and A = A" are two self-adjoint matrices.

@ Let
Vt>0: f(t):=trace((H: — A)®) = |H: — A|3 >0

and observe that
Of (t) = 0O {trace (Ht2 —2H:A+ Az)} = 0, {trace (—2H;A)}
= —2trace (i [H, G:] A) = —2trace (i [A, H:] G¢),

by using 9:H: = i [H¢, G¢] and the cocyclicity of the trace.

Choice of the generator: G: := i [A, H:] := i (AH: — H:A). J

@ We then obtain
Vt>0:  8.f(t) = —2trace (G:G;) = —2||G:|5 <0 .
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Brocket—Wegner Flow Equations

@ Assume that Hy = Hy and A = A" are two self-adjoint matrices.

@ Let
Vt>0: f(t):=trace((H: — A)®) = |H: — A|3 >0

and observe that
Of (t) = 0O {trace (Ht2 —2H:A+ Az)} = 0, {trace (—2H;A)}
= —2trace (i [H, G:] A) = —2trace (i [A, H:] G¢),

by using 9:H: = i [H¢, G¢] and the cocyclicity of the trace.

Choice of the generator: G: := i [A, H:] := i (AH: — H:A). J

@ We then obtain
Vt>0:  8.f(t) = —2trace (G:G;) = —2||G:|5 <0 .

@ This suggests that 9:f (t) — 0 as t — oo, which implies i[A, H;] — 0 and that

He = UeHoU; — Hoo = UscHoUZ,  with  [A, Hao] =0 .
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Brocket—Wegner Flow Equations

Brocket—Wegner Flow for Operators

It is the (quadratically) nonlinear first—order differential equation:

Yt Z 0: Bth = [Ht, [I‘It7 A]] ; Ht:() = Ho.

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

The Brocket—Wegner flow has successfully been applied to various

problems in Condensed Matter Physics including:

@ Electron-phonon coupling

Stefan Kehrein

@ Dissipative quantum systems
The Flow Equation
@ Interacting fermions, Hubbard model fu",ﬂ?:;_'}a,ﬁde
Systems
@ Impurity problems

Non-equilibrium systems

A similar idea is also used in quantum chromodynamics and

quantum electrodynamics.
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Brocket—Wegner Flow Equations

Brocket—Wegner Flow for Operators

It is the (quadratically) nonlinear first—order differential equation:

Yt Z 0: Bth = [Ht, [/‘I1:7 A]] 5 Ht:O = Ho.

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
@ Proof of the existence of (H;)t>o solution of the flow ?
@ Problem of the existence of (Uy)¢>o such that H = U;HoU; ! which means that
VE>0: OUe=[A H] U i= —iGelU, Us:=1.
© Proof of the existence of Hy :tingo H: ?

@ Proof of the existence of U, :tlim U: ?
— 00

© Proof of Hoo = Uoo HoUS, with [Heo, A] =07
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Brocket—Wegner Flow Equations

Brocket—Wegner Flow for Operators

It is the (quadratically) nonlinear first—order differential equation:

Yt Z 0: Bth = [Ht, [I‘I1:7 A]] 5 Ht:O = Ho.

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
@ Proof of the existence of (H;)t>o solution of the flow ?
@ Problem of the existence of (U;)¢>0 such that H; = UtHonl which means that
Vt>0: 0:Ur=[A H] Ui :=—iG Uy, Up:=1.
© Proof of the existence of Hy :tingo H: ?

@ Proof of the existence of U, :tlim U: ?
— 00

© Proof of Hoo = Uoo HoUS, with [Heo, A] =07
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Brocket—Wegner Flow Equations

Brocket—Wegner Flow for Operators

It is the (quadratically) nonlinear first—order differential equation:

Yt Z 0: Bth = [Ht, [/‘I1:7 A]] 5 Ht:O = Ho.

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
@ Proof of the existence of (H;)t>o solution of the flow ?
@ Problem of the existence of (Uy)¢>o such that H = U;HoU; ! which means that
VE>0: OUe=[A H] U i= —iGelU, Us:=1.
© Proof of the existence of Ho, :t[»Tc H; ?

@ Proof of the existence of U, :tlim U: ?
— 00

© Proof of Hoo = Uoo HoUS, with [Heo, A] =07
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Brocket—Wegner Flow for Operators

It is the (quadratically) nonlinear first—order differential equation:

Yt Z 0: Bth = [Ht, [/‘I1:7 A]] 5 Ht:O = Ho.

R. W. BROCKETT, Linear Algebra Appl. ('91). F. WEGNER, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
@ Proof of the existence of (H;)t>o solution of the flow ?
@ Problem of the existence of (Uy)¢>o such that H = U;HoU; ! which means that
VE>0: OUe=[A H] U i= —iGelU, Us:=1.
© Proof of the existence of Hy :tingo H: ?

@ Proof of the existence of U, :tlim U: ?
— 00

© Proof of Hoo = Usc HoUZ, with [Hoo, A] =07
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Brocket—Wegner Flow Equations

Well-posedness of Brocket—Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let b be any separable Hilbert space.

@ Bounded operators: Global existence. Take Hy = Hy, A= A" € B(h). Then
there are two unique solutions (H)t>0, (Us)i>0 € C°[Ry; B ()] respectively of

Vt Z O : ath = [Ht, [Ht,IA]]7 Ht:O = HO N atUt = [A, Ht] Ut, UO = 1,

and satisfying
Ht:UtH()U;(7 U:Ut:UtU::l
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Brocket—Wegner Flow Equations

Well-posedness of Brocket—Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let b be any separable Hilbert space.
@ Bounded operators: Global existence. Take Hy = Hy, A= A" € B(h). Then
there are two unique solutions (H)t>0, (Us)i>0 € C°[Ry; B ()] respectively of
Vt Z O : ath = [Ht, [Ht, /4]]7 Ht:O = HO N atUt = [A, Ht] Ut, UO = 1,

and satisfying
Ht:UtHQU;(7 U:Ut:UtU::l

@ Unbounded operators: Local existence. The flow has a unique, smooth local
unbounded solution (H: = UtHoU;)ecpo, T.) Under some restricted conditions on
iterated commutators.
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Brocket—Wegner Flow Equations

Well-posedness of Brocket—Wegner Flow Equations

Theorem (Bach-B ('10 - '11))

Let b be any separable Hilbert space.

@ Bounded operators: Global existence. Take Hy = Hy, A= A" € B(h). Then
there are two unique solutions (H)t>0, (Us)i>0 € C°[Ry; B ()] respectively of

Vt Z O : ath = [Ht, [Ht,IA]]7 Ht:O = HO N atUt = [A, Ht] Ut, UO = 1,

and satisfying
Ht:UtHQU;(7 U:Ut:UtU::l

@ Unbounded operators: Local existence. The flow has a unique, smooth local
unbounded solution (H: = UtHoU;)ecpo, T.) Under some restricted conditions on
iterated commutators.

@ Blows up of the Brocket—Wegner flow. There are two unbounded self-adjoint
Ho = Hg, A > 0 such that the flow has a (unbounded) local solution
(He = UtHo Ur )te(o, Tin) Which blows up on its domain at a finite time Tmax < 00.
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Brocket—-Wegner Flow Equations for Quadratic Operators

Brocket—Wegner Flow Equations for Quadratic Operators

@ We use the Brocket—Wegner flow for any quadratic operators Hg:

Vt>0: OH, =[H,[He, All, Heo:=Ho, A=N:=)» aa
k

@ Then explicit computations using the CCR show formally that

t
He = {Q}, akac+{Be}y, akar + {Bi}, ,akac + Co+ 8/0 1B~ I3 dr,
k.2

where the operators Q, = QF and B; = B} must satisfy a system of (quadratically)
nonlinear first—order differential equations

9:Q: = —16B: B, Qo = Qo,

t>0:
v - 0 { 8tBt = _2 (QtBt +4 Btﬂg) 5 Bt:() = BO,
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Brocket—Wegner Flow Equations for Quadratic Operators

@ We use the Brocket—Wegner flow for any quadratic operators Hg:

Vt>0: OH, =[H,[He, All, Heo:=Ho, A=N:=)» aa
k

@ Then explicit computations using the CCR show formally that

t
He = {Q}, akac+{Be}y, akar + {Bi}, ,akac + Co+ 8/0 1B~ I3 dr,
k.2

where the operators Q, = QF and B; = B} must satisfy a system of (quadratically)
nonlinear first—order differential equations

9:Q: = —16B: B, Qo = Qo,

t>0:
V - 0 { 8tBt = _2 (QtBt +4 Btﬂg) 5 Bt:() = BO,

@ A blows up of the Brocket—Wegner flow can then be seen by taking

0 b

Q2 =0 and Bo:(b 0

) with b > 0.

J.-B. Bru (UPV/EHU - lkerbasque) Diagonalization via Evolution Equations



Brocket—-Wegner Flow Equations for Quadratic Operators

Diagonalization of Quadratic Operators

© Under Conditions A1-A3, there is (¢, Bt)ico, Ty Solution of

02 = _16BtBt 5 Qi—0 := Qo s
8tBt = -2 (QtBt =+ Btﬂg) 5 Bt:() = B() .

The operators Q; = Qf > 0 and B, € £?(h) satisfies:

Yt € [0, Tmax) C R{ - {

Vt € [0, Tma) ©  trace (Q? _4BB — R+ 450/?30) =0

and if QoBy = By} then
Vt € [0, Tmax) : Qe = {Q3 — 4ByBo + 4B:B:}*/? .

This is possible to show because
YVt € [0, Tmax) 1  Br = Bf = W,ByW, ,
where W; is a (bounded, positive) operator acting on § solution of
Vt €0, Tmax) :  OeWe = —2Q:W,, W,:=1.

So, one only has one equation solved by the contraction mapping principle.
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Brocket—-Wegner Flow Equations for Quadratic Operators

Diagonalization of Quadratic Operators

© Under Conditions A1-A3, there is (¢, Bt)ico, Ty, Solution of

8tQt = —16Btét y Qt:() = Qo s
0By = -2 (QtBt + Bth) , Bi=o:=Bo .

The operators Q; = Qf > 0 and B; € £?(h) satisfies:

Yt € [0, Tmax) C RY - {

Vt € [0, Tmax) :  trace (Qf —4B:B, — B + 4BOBO) =0
and if QoBy = By then
Vt € [0, Tmax) : Qe = {Q3 — 4ByBy + 4B:B.}*/? .

@ Existence of a unitary operator U, as strong solution on D(N) C F, of
Vt S [0, Tmax) . 6tUt = [N,Ht] Ut = —iGtUt7 Ut = ].

Indeed, denoting YV := B (D (N)), the generator G; := i [N, H;] = G{satisfies

[Gelly < 11Boll2, |Gt = Gslly <11|[Br = Bsll2, [ [N, Ge] [y < 22]|Boll,
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Brocket—-Wegner Flow Equations for Quadratic Operators

Diagonalization of Quadratic Operators

© Under Conditions A1-A3, there is (¢, Bt)ico, Tmyy) Solution of

atQt = —16Btét 5 Qt:() = Q[) s
0By = -2 (QtBt + Btﬂg) , Bi=o:=Bo .

The operators Q; = Qf > 0 and B; € £?(h) satisfies:

Yt € [0, Tmax) C R{ - {

Vt € [0, Tmax) :  trace (Q% — 4B.B; — Qﬁ + 4BOBO> =0
and if QoBy = BOQB then
Vt € [0, Tmax) : Qe = {Q2 — 4BoBo + 4B.B,}/2 .

@ Existence of a unitary operator U, as strong solution on D(N) C F of

vVt c [O, Tmax) . 8tUt = [N,Ht] Ut = —I'GtUt, Ut = ].

@ Using resolvents, show next that, for all t € [0, Tmax),

H, := Z {Qc}i pakae +{Be}, o aka + {B‘}k,e akae + C: = U:HoU;.
P
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Brocket—-Wegner Flow Equations for Quadratic Operators

© Using an a priori estimate, the assumption le/zBo € £2(h) exclude blows up, i.e.,
Tmax = 00, and yields the convergence, in the strong resolvent sense, of the family
(He = UtHoUj )¢>0 of unbounded operators to

Hoo = 3 {Qu}y aiac + Go+ 8/0 1B, |dr .

k0

In particular, one shows that
trace (Q? -0+ 48030) = 4\|Bt|\§ — trace (Qio -0+ 4BOBO) =0
and if QoBy = By then

_ _ _y1/2
Qp = {Q2 — 4BoBo + 4B:B.}? = Qo = {QS - 43030} .
Indeed, Q; /2B, € £? h) yields the integrability of t — ||B:||3 on [0, c0) whereas
0

t oo
Qt:Qo—16/ BTBTdT:szﬂo—m/ B.B,dr
0 0

and

H{(Hm +iA1) ™ — (He + i) (N + 1)*1H0p <c (/w 1B, |I3dr + ||Bt\|2) .

t

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations



Brocket—-Wegner Flow Equations for Quadratic Operators

© Using an a priori estimate, the assumption le/zBo € £2(h) exclude blows up, i.e.,
Tmax = 00, and yields the convergence, in the strong resolvent sense, of the family
(He = UtHoUj )¢>0 of unbounded operators to

Hoo = 3 {Qu}y aiac + Go+ 8/0 1B, |dr .

k0

In particular, one shows that
trace (Q? -5+ 48030) = 4||B;||5 = trace (Qio -+ 4BOBO) =0
and if QoBy = By then
2 z B 11/2 2 5 /2
Qp = {Q2 — 4BoBo + 4B:B.}? = Qo = {QO - 43030} .
@ Use Conditions B4 or B5 to obtain the strong convergence of (U;)e>0 to Uss as

well as
Heoo = UsoHoUL .

Indeed, B4 (or B5), which yields 90_1/250 € L£2(h), implies the integrability of
t > ||Bt]|2 on [0, 00) whereas

I(Uso — U(N + 1) lop < € / "B dr . (1)
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Brocket—-Wegner Flow Equations for Quadratic Operators

© Using an a priori estimate, the assumption le/zBo € £2(h) exclude blows up, i.e.,
Tmax = 00, and yields the convergence, in the strong resolvent sense, of the family
(He = UtHoUj )¢>0 of unbounded operators to

Hoo = 3 {Qu}y aiac + Go+ 8/ 1B, |dr .
kL 0
In particular, one shows that
trace (Q? -0+ 48030) = 4\|Bt|\§ — trace (Qio -0+ 4BOBO) =0
and if QoBy = By then

_ _ _N1/2
Q, = {02 — 4ByBo + 4B:B.}"> = Qo = {QS - 43030} .

@ Use Conditions B4 or B5 to obtain the strong convergence of (U;)e>0 to Uss as

well as
Heoo = UsoHoUL .

@ Then H, can be diagonalized by a unitary operator acting on b, using a
diagonalization of Q. to have

{Qoc}y 4 = (Pk[Qooipe) = S0k
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Concluding Remarks

Concluding Remarks

@ The Brocket-Wegner flow d:H: = [Hz, [H:, A]] can be a powerful technique as
seen on quadratic operators.
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seen on quadratic operators.

@ Easy to describe, but mathematically involved due to unboundedness of operators.
See, e.g., [Bach-B ('11)] which has 122 pages !
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i. Unboundedness of creation/annihilation operators. Easily controlled.
Not a problem either for all previous works on diagonalization of Hp.

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations



Concluding Remarks

Concluding Remarks

@ The Brocket-Wegner flow d:H: = [Hz, [H:, A]] can be a powerful technique as
seen on quadratic operators.

@ Easy to describe, but mathematically involved due to unboundedness of operators.
See, e.g., [Bach-B ('11)] which has 122 pages !

@ 3 sources of unboundedness in the quadratic operators Hy:

i. Unboundedness of creation/annihilation operators. Easily controlled.
Not a problem either for all previous works on diagonalization of Hp.

ii. Unboundedness of Qo ¢ B(h). Controlled with the flow.
Out of the scope of previous works.

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations



Concluding Remarks

Concluding Remarks

@ The Brocket-Wegner flow d:H: = [Hz, [H:, A]] can be a powerful technique as
seen on quadratic operators.

@ Easy to describe, but mathematically involved due to unboundedness of operators.
See, e.g., [Bach-B ('11)] which has 122 pages !

@ 3 sources of unboundedness in the quadratic operators Hy:
i. Unboundedness of creation/annihilation operators. Easily controlled.
Not a problem either for all previous works on diagonalization of Hp.

ii. Unboundedness of Qo ¢ B(h). Controlled with the flow.
Out of the scope of previous works.

iii. Unboundedness of Q' ¢ B(h). Controlled but absolutely nontrivial.
Out of the scope of previous works.

J.-B. Bru (UPV/EHU - Ikerbasque) Diagonalization via Evolution Equations



Concluding Remarks

Concluding Remarks

@ The Brocket-Wegner flow d:H: = [Hz, [H:, A]] can be a powerful technique as
seen on quadratic operators.

@ Easy to describe, but mathematically involved due to unboundedness of operators.
See, e.g., [Bach-B ('11)] which has 122 pages !

@ 3 sources of unboundedness in the quadratic operators Hy:
i. Unboundedness of creation/annihilation operators. Easily controlled.
Not a problem either for all previous works on diagonalization of Hp.

ii. Unboundedness of Qo ¢ B(h). Controlled with the flow.
Out of the scope of previous works.

iii. Unboundedness of Q' ¢ B(h). Controlled but absolutely nontrivial.
Out of the scope of previous works.

@ This example is the first mathematical use of the Brocket—Wegner flow to

diagonalize (unbounded) operators.
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