Diagonalization of Quadratic Operators via Non-Autonomous Evolution Equations joint work with V. Bach

J.-B. Bru

University of the Basque Country - Ikerbasque Basque Foundation for Science

Outline

(1) Quadratic Boson Operators
(2) Brocket-Wegner Flow Equations
(3) Brocket-Wegner Flow Equations for Quadratic Operators
(4) Concluding Remarks

One-Particle Hilbert Space

- $\mathfrak{h}:=L^{2}(\mathcal{M}, \mathfrak{a})$ is a separable complex Hilbert space of square-integrable functions on a measure space $(\mathcal{M}, \mathfrak{a})$. The scalar product on \mathfrak{h} is given by

$$
\langle f \mid g\rangle:=\int_{\mathcal{M}} \overline{f(x)} g(x) \mathrm{da}(x)
$$

- For any operator X on \mathfrak{h}, we define its transpose X^{t} and its complex conjugate \bar{X} by $\left\langle f \mid X^{\mathrm{t}} g\right\rangle:=\langle\bar{g} \mid X \bar{f}\rangle$ and $\langle f \mid \bar{X} g\rangle:=\overline{\langle\bar{f} \mid X \bar{g}\rangle}$, for $f, g \in \mathfrak{h}$, respectively. Note that

$$
X^{*}=\overline{X^{\mathrm{t}}}=\bar{X}^{\mathrm{t}}
$$

- $\mathcal{B}(\mathfrak{h})$ is the Banach space of bounded operators acting on \mathfrak{h} and $\mathcal{L}^{2}(\mathfrak{h})$ is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$
(X, Y)_{2}:=\operatorname{trace}\left(X^{*} Y\right) \quad \text { with } \quad\|X\|_{2}:=\operatorname{trace}\left(X^{*} X\right)
$$

- Condition A1: Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ be a positive (possibly unbounded) operator on \mathfrak{h}.
- Condition A2: Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

One-Particle Hilbert Space

- $\mathfrak{h}:=L^{2}(\mathcal{M}, \mathfrak{a})$ is a separable complex Hilbert space of square-integrable functions on a measure space $(\mathcal{M}, \mathfrak{a})$. The scalar product on \mathfrak{h} is given by

$$
\langle f \mid g\rangle:=\int_{\mathcal{M}} \overline{f(x)} g(x) \mathrm{da}(x)
$$

- For any operator X on \mathfrak{h}, we define its transpose X^{t} and its complex conjugate \bar{X} by $\left\langle f \mid X^{\mathrm{t}} g\right\rangle:=\langle\bar{g} \mid X \bar{f}\rangle$ and $\langle f \mid \bar{X} g\rangle:=\overline{\langle\bar{f} \mid X \bar{g}\rangle}$, for $f, g \in \mathfrak{h}$, respectively. Note that

$$
X^{*}=\overline{X^{\mathrm{t}}}=\bar{X}^{\mathrm{t}}
$$

- $\mathcal{B}(\mathfrak{h})$ is the Banach space of bounded operators acting on \mathfrak{h} and $\mathcal{L}^{2}(\mathfrak{h})$ is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$
(X, Y)_{2}:=\operatorname{trace}\left(X^{*} Y\right) \quad \text { with } \quad\|X\|_{2}:=\operatorname{trace}\left(X^{*} X\right)
$$

- Condition A1: Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ be a positive (possibly unbounded) operator on \mathfrak{h}.
- Condition A2: Let $B_{0}=B_{0}^{t} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

One-Particle Hilbert Space

- $\mathfrak{h}:=L^{2}(\mathcal{M}, \mathfrak{a})$ is a separable complex Hilbert space of square-integrable functions on a measure space $(\mathcal{M}, \mathfrak{a})$. The scalar product on \mathfrak{h} is given by

$$
\langle f \mid g\rangle:=\int_{\mathcal{M}} \overline{f(x)} g(x) \mathrm{da}(x)
$$

- For any operator X on \mathfrak{h}, we define its transpose X^{t} and its complex conjugate \bar{X} by $\left\langle f \mid X^{\mathrm{t}} g\right\rangle:=\langle\bar{g} \mid X \bar{f}\rangle$ and $\langle f \mid \bar{X} g\rangle:=\overline{\langle\bar{f} \mid X \bar{g}\rangle}$, for $f, g \in \mathfrak{h}$, respectively. Note that

$$
X^{*}=\overline{X^{\mathrm{t}}}=\bar{X}^{\mathrm{t}}
$$

- $\mathcal{B}(\mathfrak{h})$ is the Banach space of bounded operators acting on \mathfrak{h} and $\mathcal{L}^{2}(\mathfrak{h})$ is the Hilbert spaces of Hilbert-Schmidt operators defined from the scalar product

$$
(X, Y)_{2}:=\operatorname{trace}\left(X^{*} Y\right) \quad \text { with } \quad\|X\|_{2}:=\operatorname{trace}\left(X^{*} X\right)
$$

- Condition A1: Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ be a positive (possibly unbounded) operator on \mathfrak{h}.
- Condition A2: Let $B_{0}=B_{0}^{t} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.

Many-particle Hilbert Space: The Boson Fock Space

- The boson Fock space is the Hilbert space

$$
\mathcal{F}_{b}:=\bigoplus_{n=0}^{\infty} \mathcal{S}_{n}\left(\mathfrak{h}^{\otimes n}\right)
$$

Here, \mathcal{S}_{n} is the orthogonal projection onto the subspace of totally symmetric n-particle wave functions in $\mathfrak{h}^{\otimes n}$, the n-fold tensor product of \mathfrak{h}.

- Annihilation/Creation operators $\left\{a(f), a^{*}(f)\right\}$ are unbounded operators on \mathcal{F}_{b} defined for $f \in \mathfrak{h}$ by

$$
\begin{aligned}
(a(f) \Psi)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & :=\sqrt{n+1}\left\langle f \mid(\Psi)^{(n+1)}\left(\cdot, x_{1}, \ldots, x_{n}\right)\right\rangle \\
\left(a^{*}(f) \Psi\right)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & :=\mathcal{S}_{n}\left(f(x)(\Psi)^{(n-1)}\left(x_{1}, \ldots, x_{n-1}\right)\right)
\end{aligned}
$$

They satisfy the Canonical Commutation Relation (CCR):

$$
[a(f), a(g)]=\left[a^{*}(f), a^{*}(g)\right]=0 \quad \text { whereas } \quad\left[a(f), a^{*}(g)\right]=\langle f \mid g\rangle
$$

Here

$$
[A, B]:=A B-B A
$$

Quadratic Boson Operators

- Condition A1: Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ with domain $\mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$.
- Condition A2: Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
- Take some orthonormal basis $\left\{\varphi_{k}\right\}_{k=1}^{\infty} \subset \mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$ and let $a_{k}:=a\left(\varphi_{k}\right)$.
- Then, for any fixed $C_{0} \in \mathbb{R}$, the quadratic boson operator is defined by

$$
\mathrm{H}_{0}:=\sum_{k, \ell}\left\{\Omega_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{0}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}
$$

with $\{X\}_{k, \ell}:=\left\langle\varphi_{k} \mid X \varphi_{\ell}\right\rangle .\left(\int \mathrm{d} k \mathrm{~d} \ell\right.$ could also replace $\left.\sum_{k, \ell}.\right)$

Proposition (Berezin (66) - Bruneau-Derezinski (07))

Under Conditions A1-A2, H_{0} is essentially self-adjoint on the domain

$$
\mathcal{D}\left(\mathrm{H}_{0}\right):=\bigcup_{N=1}^{\infty}\left(\bigoplus_{n=0}^{N} \mathcal{S}_{n}\left(\mathcal{D}\left(\Omega_{0}\right)^{\otimes n}\right)\right) \subset \mathcal{F}_{b} .
$$

Quadratic Boson Operators

- Condition A1: Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ with domain $\mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$.
- Condition A2: Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
- Take some orthonormal basis $\left\{\varphi_{k}\right\}_{k=1}^{\infty} \subset \mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$ and let $a_{k}:=a\left(\varphi_{k}\right)$.
- Then, for any fixed $C_{0} \in \mathbb{R}$, the quadratic boson operator is defined by

$$
\mathrm{H}_{0}:=\sum_{k, \ell}\left\{\Omega_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{0}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}
$$

with $\{X\}_{k, \ell}:=\left\langle\varphi_{k} \mid X \varphi_{\ell}\right\rangle .\left(\int \mathrm{d} k \mathrm{~d} \ell\right.$ could also replace $\left.\sum_{k, \ell}.\right)$

Proposition (Berezin (66) - Bruneau-Derezinski (07))

Under Conditions A1-A2, H_{0} is essentially self-adjoint on the domain

$$
\mathcal{D}\left(\mathrm{H}_{0}\right):=\bigcup_{N=1}^{\infty}\left(\bigoplus_{n=0}^{N} \mathcal{S}_{n}\left(\mathcal{D}\left(\Omega_{0}\right)^{\otimes n}\right)\right) \subset \mathcal{F}_{b} .
$$

Diagonalization of Quadratic Operators

$$
\mathrm{H}_{0}:=\sum_{k, \ell}\left\{\Omega_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{0}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}
$$

A1 Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ with domain $\mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$.
A2 Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
A3 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}$.
B4 $\Omega_{0}^{-1-\varepsilon} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ and $\mathbf{1} \geq(4+\mathrm{r}) B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-2} \bar{B}_{0}$ for some constant $\mathrm{r}, \varepsilon>0$.
B5 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}+\mu \mathbf{1}$ for some constant $\mu>0$.

Theorem (Bach-B (11))

Under A1-A3 and either B4 or B5, there are $\Omega_{\infty}=\Omega_{\infty}^{*} \geq 0$ on $\mathfrak{h}, C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_{b} such that

$$
\mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{\infty}
$$

Then H_{∞} can be diagonalized by a unitary operator acting on \mathfrak{h}, only.

Diagonalization of Quadratic Operators

$$
\mathrm{H}_{0}:=\sum_{k, \ell}\left\{\Omega_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{0}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}
$$

A1 Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ with domain $\mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$.
A2 Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
A3 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}$.
B4 $\Omega_{0}^{-1-\varepsilon} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ and $\mathbf{1} \geq(4+\mathrm{r}) B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-2} \bar{B}_{0}$ for some constant $\mathrm{r}, \varepsilon>0$.
B5 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}+\mu \mathbf{1}$ for some constant $\mu>0$.

Theorem (Bach-B (11))

Under A1-A3 and either B4 or B5, there are $\Omega_{\infty}=\Omega_{\infty}^{*} \geq 0$ on $\mathfrak{h}, C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_{b} such that

$$
\mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{\infty}
$$

Then H_{∞} can be diagonalized by a unitary operator acting on \mathfrak{h}, only.

Diagonalization of Quadratic Operators

$$
\mathrm{H}_{0}:=\sum_{k, \ell}\left\{\Omega_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{0}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{0}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}
$$

A1 Let $\Omega_{0}=\Omega_{0}^{*} \geq 0$ with domain $\mathcal{D}\left(\Omega_{0}\right) \subseteq \mathfrak{h}$.
A2 Let $B_{0}=B_{0}^{\mathrm{t}} \in \mathcal{L}^{2}(\mathfrak{h})$ be a (non-zero) Hilbert-Schmidt operator.
A3 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}$.
B4 $\Omega_{0}^{-1-\varepsilon} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ and $\mathbf{1} \geq(4+\mathrm{r}) B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-2} \bar{B}_{0}$ for some constant $\mathrm{r}, \varepsilon>0$.
B5 $\Omega_{0} \geq 4 B_{0}\left(\Omega_{0}^{\mathrm{t}}\right)^{-1} \bar{B}_{0}+\mu \mathbf{1}$ for some constant $\mu>0$.

Theorem (Bach-B (11))

Under A1-A3 and either B4 or B5, there are $\Omega_{\infty}=\Omega_{\infty}^{*} \geq 0$ on $\mathfrak{h}, C_{\infty} \in \mathbb{R}$ and a unitary operator U_{∞} on \mathcal{F}_{b} such that

$$
\mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}=\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{\infty}
$$

Then H_{∞} can be diagonalized by a unitary operator acting on \mathfrak{h}, only.

Historical Overview on Diagonalization of Such Operators

- 1947, Bogoliubov: Ω_{0} and B_{0} are 2×2 real matrices satisfying $\mathrm{A} 1-\mathrm{A} 2, \mathrm{~B} 5$ and

$$
\Omega_{0} B_{0}=B_{0} \Omega_{0}
$$

Ω_{∞} and C_{∞} are explicitly known. Assumptions stronger than $A 1, A 2$, and $B 5$.

- 1953, Friedrichs - 1966, Berezin: $\Omega_{0} \in \mathcal{B}(\mathfrak{h})$ and $B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_{0} \pm 2 B_{0} \geq \mu \mathbf{1}, \mu>0$.
Ω_{∞} and C_{∞} not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_{0}= \pm 2 B_{0}$ on some finite dimensional subspace of \mathfrak{h}.
Ω_{∞} and C_{∞} not explicitly known and $\Omega_{0}, \Omega_{0}^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_{0} and B_{0} satisfy A1-A3 and either B4 or B5: $\Omega_{0}, \Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$
\operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0 \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\Omega_{\infty}\right)
$$

Furthermore, if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2} \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}\right)
$$

Historical Overview on Diagonalization of Such Operators

- 1947, Bogoliubov: Ω_{0} and B_{0} are 2×2 real matrices satisfying $\mathrm{A} 1-\mathrm{A} 2, \mathrm{~B} 5$ and

$$
\Omega_{0} B_{0}=B_{0} \Omega_{0}
$$

Ω_{∞} and C_{∞} are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs - 1966, Berezin: $\Omega_{0} \in \mathcal{B}(\mathfrak{h})$ and $B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_{0} \pm 2 B_{0} \geq \mu \mathbf{1}, \mu>0$.
Ω_{∞} and C_{∞} not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_{0}= \pm 2 B_{0}$ on some finite dimensional subspace of \mathfrak{h}.
Ω_{∞} and C_{∞} not explicitly known and $\Omega_{0}, \Omega_{0}^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_{0} and B_{0} satisfy A1-A3 and either B4 or B5: $\Omega_{0}, \Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$
\operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0 \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\Omega_{\infty}\right)
$$

Furthermore, if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2} \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}\right)
$$

Historical Overview on Diagonalization of Such Operators

- 1947, Bogoliubov: Ω_{0} and B_{0} are 2×2 real matrices satisfying $\mathrm{A} 1-\mathrm{A} 2, \mathrm{~B} 5$ and

$$
\Omega_{0} B_{0}=B_{0} \Omega_{0}
$$

Ω_{∞} and C_{∞} are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs - 1966, Berezin: $\Omega_{0} \in \mathcal{B}(\mathfrak{h})$ and $B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_{0} \pm 2 B_{0} \geq \mu \mathbf{1}, \mu>0$. Ω_{∞} and C_{∞} not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_{0}= \pm 2 B_{0}$ on some finite dimensional subspace of \mathfrak{h}.
Ω_{∞} and C_{∞} not explicitly known and $\Omega_{0}, \Omega_{0}^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_{0} and B_{0} satisfy A1-A3 and either B4 or B5: $\Omega_{0}, \Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$
\operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0 \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\Omega_{\infty}\right)
$$

Furthermore, if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2} \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}\right)
$$

Historical Overview on Diagonalization of Such Operators

- 1947, Bogoliubov: Ω_{0} and B_{0} are 2×2 real matrices satisfying $\mathrm{A} 1-\mathrm{A} 2, \mathrm{~B} 5$ and

$$
\Omega_{0} B_{0}=B_{0} \Omega_{0}
$$

Ω_{∞} and C_{∞} are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs - 1966, Berezin: $\Omega_{0} \in \mathcal{B}(\mathfrak{h})$ and $B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_{0} \pm 2 B_{0} \geq \mu \mathbf{1}, \mu>0$. Ω_{∞} and C_{∞} not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_{0}= \pm 2 B_{0}$ on some finite dimensional subspace of \mathfrak{h}.
Ω_{∞} and C_{∞} not explicitly known and $\Omega_{0}, \Omega_{0}^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_{0} and B_{0} satisfy A1-A3 and either B4 or B5: $\Omega_{0}, \Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$
\operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0 \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\Omega_{\infty}\right)
$$

Furthermore, if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2} \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}\right)
$$

Historical Overview on Diagonalization of Such Operators

- 1947, Bogoliubov: Ω_{0} and B_{0} are 2×2 real matrices satisfying $\mathrm{A} 1-\mathrm{A} 2, \mathrm{~B} 5$ and

$$
\Omega_{0} B_{0}=B_{0} \Omega_{0}
$$

Ω_{∞} and C_{∞} are explicitly known. Assumptions stronger than A1, A2, and B5.

- 1953, Friedrichs - 1966, Berezin: $\Omega_{0} \in \mathcal{B}(\mathfrak{h})$ and $B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ are both real symmetric operators satisfying $\Omega_{0} \pm 2 B_{0} \geq \mu \mathbf{1}, \mu>0$. Ω_{∞} and C_{∞} not explicitly known. Assumptions stronger than A1-A3 and B5.
- 1967, Kato-Mugibayashi: They only have relaxed previous assumptions to allow $\Omega_{0}= \pm 2 B_{0}$ on some finite dimensional subspace of \mathfrak{h}.
Ω_{∞} and C_{∞} not explicitly known and $\Omega_{0}, \Omega_{0}^{-1} \in \mathcal{B}(\mathfrak{h})$ are bounded operators.
- 2011, Bach-B: Ω_{0} and B_{0} satisfy A1-A3 and either B4 or B5: $\Omega_{0}, \Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Ω_{∞} and C_{∞} are generally not known, but we have proven that:

$$
\operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0 \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\Omega_{\infty}\right)
$$

Furthermore, if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2} \quad \text { and } \quad C_{\infty}=C_{0}+\frac{1}{2} \operatorname{trace}\left(\Omega_{0}-\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}\right)
$$

Strategy of the Proof

- We use a (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} \mathrm{H}_{t}=\left[\mathrm{H}_{t},\left[\mathrm{H}_{t}, A\right]\right], \quad \mathrm{H}_{t=0}:=\mathrm{H}_{0}, \quad A=N:=\sum_{k} a_{k}^{*} a_{k} .
$$

Strategy of the Proof

- We use a (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} \mathrm{H}_{t}=\left[\mathrm{H}_{t},\left[\mathrm{H}_{t}, A\right]\right], \quad \mathrm{H}_{t=0}:=\mathrm{H}_{0}, \quad A=N:=\sum_{k} a_{k}^{*} a_{k} .
$$

- Then explicit computations using the CCR to study the commutators show formally that

$$
\mathrm{H}_{t}:=\sum_{k, \ell}\left\{\Omega_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{t}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}+8 \int_{0}^{t}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau
$$

where the operators $\Omega_{t}=\Omega_{t}^{*}$ and $B_{t}=B_{t}^{t}$ satisfy a system of (quadratically) nonlinear first-order differential equations

$$
\forall t \geq 0: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

Strategy of the Proof

- We use a (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} \mathrm{H}_{t}=\left[\mathrm{H}_{t},\left[\mathrm{H}_{t}, A\right]\right], \quad \mathrm{H}_{t=0}:=\mathrm{H}_{0}, \quad A=N:=\sum_{k} a_{k}^{*} a_{k} .
$$

- Then explicit computations using the CCR to study the commutators show formally that

$$
\mathrm{H}_{t}:=\sum_{k, \ell}\left\{\Omega_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{t}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}+8 \int_{0}^{t}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau
$$

where the operators $\Omega_{t}=\Omega_{t}^{*}$ and $B_{t}=B_{t}^{t}$ satisfy a system of (quadratically) nonlinear first-order differential equations

$$
\forall t \geq 0: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

- The map $t \mapsto\left\|B_{t}\right\|_{2}$ must be, at least, square-integrable on $[0, \infty)$. Then in the strong resolvent sense,

$$
\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{\infty}=\lim _{t \rightarrow \infty} \mathrm{H}_{t}
$$

Flow Equations for Operators

(1) Let the unitary operator $U_{t, s}$ on a Hilbert space \mathfrak{h} be the solution of the non-autonomous evolution equation

$$
\forall t \geq s \geq 0: \quad \partial_{t} U_{t, s}=-i G_{t} U_{t, s}, \quad U_{s, s}:=\mathbf{1}
$$

with self-adjoint (s.a.) generator G_{t}. Here $U_{t}:=U_{t, 0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_{t} in spite of its long history starting 60 years ago.

Flow Equations for Operators

(1) Let the unitary operator $U_{t, s}$ on a Hilbert space \mathfrak{h} be the solution of the non-autonomous evolution equation

$$
\forall t \geq s \geq 0: \quad \partial_{t} U_{t, s}=-i G_{t} U_{t, s}, \quad U_{s, s}:=\mathbf{1}
$$

with self-adjoint (s.a.) generator G_{t}. Here $U_{t}:=U_{t, 0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_{t} in spite of its long history starting 60 years ago.
(2) Let $H_{0}=H_{0}^{*}$ acting on \mathfrak{h}. Then $H_{t}:=U_{t} H_{0} U_{t}^{*}$ satisfies

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]:=i\left(H_{t} G_{t}-G_{t} H_{t}\right), \quad H_{t=0}:=H_{0}
$$

Flow Equations for Operators

(1) Let the unitary operator $U_{t, s}$ on a Hilbert space \mathfrak{h} be the solution of the non-autonomous evolution equation

$$
\forall t \geq s \geq 0: \quad \partial_{t} U_{t, s}=-i G_{t} U_{t, s}, \quad U_{s, s}:=\mathbf{1}
$$

with self-adjoint (s.a.) generator G_{t}. Here $U_{t}:=U_{t, 0}$.

Remark: There is no unified theory of such Cauchy problem for unbounded generators G_{t} in spite of its long history starting 60 years ago.
(2) Let $H_{0}=H_{0}^{*}$ acting on \mathfrak{h}. Then $H_{t}:=U_{t} H_{0} U_{t}^{*}$ satisfies

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]:=i\left(H_{t} G_{t}-G_{t} H_{t}\right), \quad H_{t=0}:=H_{0}
$$

Question: find G_{t} depending on a fixed operator A such that in the limit $t \rightarrow \infty$,

$$
H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*} \quad \text { with } \quad\left[A, H_{\infty}\right]:=A H_{\infty}-H_{\infty} A=0 .
$$

- Assume that $H_{0}=H_{0}^{*}$ and $A=A^{*}$ are two self-adjoint matrices.
- Let

$$
\forall t \geq 0: \quad f(t):=\operatorname{trace}\left(\left(H_{t}-A\right)^{2}\right)=\left\|H_{t}-A\right\|_{2}^{2} \geq 0
$$

and observe that

$$
\begin{aligned}
\partial_{t} f(t) & =\partial_{t}\left\{\operatorname{trace}\left(H_{t}^{2}-2 H_{t} A+A^{2}\right)\right\}=\partial_{t}\left\{\operatorname{trace}\left(-2 H_{t} A\right)\right\} \\
& =-2 \operatorname{trace}\left(i\left[H_{t}, G_{t}\right] A\right)=-2 \operatorname{trace}\left(i\left[A, H_{t}\right] G_{t}\right)
\end{aligned}
$$

by using $\partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]$ and the cocyclicity of the trace.

- Assume that $H_{0}=H_{0}^{*}$ and $A=A^{*}$ are two self-adjoint matrices.
- Let

$$
\forall t \geq 0: \quad f(t):=\operatorname{trace}\left(\left(H_{t}-A\right)^{2}\right)=\left\|H_{t}-A\right\|_{2}^{2} \geq 0
$$

and observe that

$$
\begin{aligned}
\partial_{t} f(t) & =\partial_{t}\left\{\operatorname{trace}\left(H_{t}^{2}-2 H_{t} A+A^{2}\right)\right\}=\partial_{t}\left\{\operatorname{trace}\left(-2 H_{t} A\right)\right\} \\
& =-2 \operatorname{trace}\left(i\left[H_{t}, G_{t}\right] A\right)=-2 \operatorname{trace}\left(i\left[A, H_{t}\right] G_{t}\right)
\end{aligned}
$$

by using $\partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]$ and the cocyclicity of the trace.

Choice of the generator: $\quad G_{t}:=i\left[A, H_{t}\right]:=i\left(A H_{t}-H_{t} A\right)$.

- Assume that $H_{0}=H_{0}^{*}$ and $A=A^{*}$ are two self-adjoint matrices.
- Let

$$
\forall t \geq 0: \quad f(t):=\operatorname{trace}\left(\left(H_{t}-A\right)^{2}\right)=\left\|H_{t}-A\right\|_{2}^{2} \geq 0
$$

and observe that

$$
\begin{aligned}
\partial_{t} f(t) & =\partial_{t}\left\{\operatorname{trace}\left(H_{t}^{2}-2 H_{t} A+A^{2}\right)\right\}=\partial_{t}\left\{\operatorname{trace}\left(-2 H_{t} A\right)\right\} \\
& =-2 \operatorname{trace}\left(i\left[H_{t}, G_{t}\right] A\right)=-2 \operatorname{trace}\left(i\left[A, H_{t}\right] G_{t}\right)
\end{aligned}
$$

by using $\partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]$ and the cocyclicity of the trace.

$$
\text { Choice of the generator: } \quad G_{t}:=i\left[A, H_{t}\right]:=i\left(A H_{t}-H_{t} A\right) \text {. }
$$

(1) We then obtain

$$
\forall t \geq 0: \quad \partial_{t} f(t)=-2 \operatorname{trace}\left(G_{t} G_{t}^{*}\right)=-2\left\|G_{t}\right\|_{2}^{2} \leq 0
$$

- Assume that $H_{0}=H_{0}^{*}$ and $A=A^{*}$ are two self-adjoint matrices.
- Let

$$
\forall t \geq 0: \quad f(t):=\operatorname{trace}\left(\left(H_{t}-A\right)^{2}\right)=\left\|H_{t}-A\right\|_{2}^{2} \geq 0
$$

and observe that

$$
\begin{aligned}
\partial_{t} f(t) & =\partial_{t}\left\{\operatorname{trace}\left(H_{t}^{2}-2 H_{t} A+A^{2}\right)\right\}=\partial_{t}\left\{\operatorname{trace}\left(-2 H_{t} A\right)\right\} \\
& =-2 \operatorname{trace}\left(i\left[H_{t}, G_{t}\right] A\right)=-2 \operatorname{trace}\left(i\left[A, H_{t}\right] G_{t}\right)
\end{aligned}
$$

by using $\partial_{t} H_{t}=i\left[H_{t}, G_{t}\right]$ and the cocyclicity of the trace.

Choice of the generator: $\quad G_{t}:=i\left[A, H_{t}\right]:=i\left(A H_{t}-H_{t} A\right)$.
(1) We then obtain

$$
\forall t \geq 0: \quad \partial_{t} f(t)=-2 \operatorname{trace}\left(G_{t} G_{t}^{*}\right)=-2\left\|G_{t}\right\|_{2}^{2} \leq 0
$$

(2) This suggests that $\partial_{t} f(t) \rightarrow 0$ as $t \rightarrow \infty$, which implies $i\left[A, H_{t}\right] \rightarrow 0$ and that

$$
H_{t}=U_{t} H_{0} U_{t}^{*} \rightarrow H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*} \quad \text { with } \quad\left[A, H_{\infty}\right]=0
$$

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0}
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

The Brocket-Wegner flow has successfully been applied to various problems in Condensed Matter Physics including:

- Electron-phonon coupling
- Dissipative quantum systems
- Interacting fermions, Hubbard model
- Impurity problems
- Non-equilibrium systems

A similar idea is also used in quantum chromodynamics and quantum electrodynamics.

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Brocket-Wegner Flow for Operators

It is the (quadratically) nonlinear first-order differential equation:

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} .
$$

R. W. Brockett, Linear Algebra Appl. ('91). F. Wegner, Ann. Phys. Leipzig ('94).

Mathematical difficulties of this idea:
(1) Proof of the existence of $\left(H_{t}\right)_{t \geq 0}$ solution of the flow?
(2) Problem of the existence of $\left(U_{t}\right)_{t \geq 0}$ such that $H_{t}=U_{t} H_{0} U_{t}^{-1}$ which means that

$$
\forall t \geq 0: \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}:=-i G_{t} U_{t}, \quad U_{t}:=\mathbf{1}
$$

(3) Proof of the existence of $H_{\infty}=\lim _{t \rightarrow \infty} H_{t}$?
(4) Proof of the existence of $U_{\infty}=\lim _{t \rightarrow \infty} U_{t}$?
(5) Proof of $H_{\infty}=U_{\infty} H_{0} U_{\infty}^{*}$ with $\left[H_{\infty}, A\right]=0$?

Well-posedness of Brocket-Wegner Flow Equations

Theorem (Bach-B ('10-'11))

Let \mathfrak{h} be any separable Hilbert space.

- Bounded operators: Global existence. Take $H_{0}=H_{0}^{*}, A=A^{*} \in \mathcal{B}(\mathfrak{h})$. Then there are two unique solutions $\left(H_{t}\right)_{t \geq 0},\left(U_{t}\right)_{t \geq 0} \in C^{\infty}\left[\mathbb{R}_{0}^{+} ; \mathcal{B}(\mathfrak{h})\right]$ respectively of

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} ; \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}, \quad U_{0}:=\mathbf{1}
$$

and satisfying

$$
H_{t}=U_{t} H_{0} U_{t}^{*}, \quad U_{t}^{*} U_{t}=U_{t} U_{t}^{*}=1
$$

Well-posedness of Brocket-Wegner Flow Equations

Theorem (Bach-B ('10-'11))

Let \mathfrak{h} be any separable Hilbert space.

- Bounded operators: Global existence. Take $H_{0}=H_{0}^{*}, A=A^{*} \in \mathcal{B}(\mathfrak{h})$. Then there are two unique solutions $\left(H_{t}\right)_{t \geq 0},\left(U_{t}\right)_{t \geq 0} \in C^{\infty}\left[\mathbb{R}_{0}^{+} ; \mathcal{B}(\mathfrak{h})\right]$ respectively of

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} ; \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}, \quad U_{0}:=\mathbf{1}
$$

and satisfying

$$
H_{t}=U_{t} H_{0} U_{t}^{*}, \quad U_{t}^{*} U_{t}=U_{t} U_{t}^{*}=1
$$

- Unbounded operators: Local existence. The flow has a unique, smooth local unbounded solution $\left(H_{t}=U_{t} H_{0} U_{t}^{*}\right)_{t \in\left[0, T_{\max }\right)}$ under some restricted conditions on iterated commutators.

Well-posedness of Brocket-Wegner Flow Equations

Theorem (Bach-B ('10-'11))

Let \mathfrak{h} be any separable Hilbert space.

- Bounded operators: Global existence. Take $H_{0}=H_{0}^{*}, A=A^{*} \in \mathcal{B}(\mathfrak{h})$. Then there are two unique solutions $\left(H_{t}\right)_{t \geq 0},\left(U_{t}\right)_{t \geq 0} \in C^{\infty}\left[\mathbb{R}_{0}^{+} ; \mathcal{B}(\mathfrak{h})\right]$ respectively of

$$
\forall t \geq 0: \quad \partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right], \quad H_{t=0}:=H_{0} ; \quad \partial_{t} U_{t}=\left[A, H_{t}\right] U_{t}, \quad U_{0}:=\mathbf{1}
$$

and satisfying

$$
H_{t}=U_{t} H_{0} U_{t}^{*}, \quad U_{t}^{*} U_{t}=U_{t} U_{t}^{*}=1
$$

- Unbounded operators: Local existence. The flow has a unique, smooth local unbounded solution $\left(H_{t}=U_{t} H_{0} U_{t}^{*}\right)_{t \in\left[0, T_{\max }\right)}$ under some restricted conditions on iterated commutators.
- Blows up of the Brocket-Wegner flow. There are two unbounded self-adjoint $H_{0}=H_{0}^{*}, A \geq 0$ such that the flow has a (unbounded) local solution $\left(H_{t}=U_{t} H_{0} U_{t}^{*}\right)_{t \in\left[0, T_{\max }\right)}$ which blows up on its domain at a finite time $T_{\max }<\infty$.

Brocket-Wegner Flow Equations for Quadratic Operators

- We use the Brocket-Wegner flow for any quadratic operators H_{0} :

$$
\forall t \geq 0: \quad \partial_{t} \mathrm{H}_{t}=\left[\mathrm{H}_{t},\left[\mathrm{H}_{t}, A\right]\right], \quad \mathrm{H}_{t=0}:=\mathrm{H}_{0}, \quad A=N:=\sum_{k} a_{k}^{*} a_{k} .
$$

- Then explicit computations using the CCR show formally that

$$
\mathrm{H}_{t}:=\sum_{k, \ell}\left\{\Omega_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{t}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}+8 \int_{0}^{t}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau
$$

where the operators $\Omega_{t}=\Omega_{t}^{*}$ and $B_{t}=B_{t}^{t}$ must satisfy a system of (quadratically) nonlinear first-order differential equations

$$
\forall t \geq 0: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

Brocket-Wegner Flow Equations for Quadratic Operators

- We use the Brocket-Wegner flow for any quadratic operators H_{0} :

$$
\forall t \geq 0: \quad \partial_{t} \mathrm{H}_{t}=\left[\mathrm{H}_{t},\left[\mathrm{H}_{t}, A\right]\right], \quad \mathrm{H}_{t=0}:=\mathrm{H}_{0}, \quad A=N:=\sum_{k} a_{k}^{*} a_{k} .
$$

- Then explicit computations using the CCR show formally that

$$
\mathrm{H}_{t}:=\sum_{k, \ell}\left\{\Omega_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{t}\right\}_{k, \ell} a_{k} a_{\ell}+C_{0}+8 \int_{0}^{t}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau
$$

where the operators $\Omega_{t}=\Omega_{t}^{*}$ and $B_{t}=B_{t}^{t}$ must satisfy a system of (quadratically) nonlinear first-order differential equations

$$
\forall t \geq 0: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

- A blows up of the Brocket-Wegner flow can then be seen by taking

$$
\Omega_{0}=0 \quad \text { and } \quad B_{0}=\left(\begin{array}{ll}
0 & \mathrm{~b} \\
\mathrm{~b} & 0
\end{array}\right) \quad \text { with } \quad \mathrm{b}>0
$$

Diagonalization of Quadratic Operators

(1) Under Conditions A1-A3, there is $\left(\Omega_{t}, B_{t}\right)_{t \in\left[0, T_{\max }\right)}$ solution of

$$
\forall t \in\left[0, T_{\max }\right) \subseteq \mathbb{R}_{0}^{+}: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

The operators $\Omega_{t}=\Omega_{t}^{*} \geq 0$ and $B_{t} \in \mathcal{L}^{2}(\mathfrak{h})$ satisfies:

$$
\forall t \in\left[0, T_{\max }\right): \quad \operatorname{trace}\left(\Omega_{t}^{2}-4 B_{t} \bar{B}_{t}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\forall t \in\left[0, T_{\max }\right): \quad \Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2}
$$

This is possible to show because

$$
\forall t \in\left[0, T_{\max }\right): \quad B_{t}=B_{t}^{\mathrm{t}}=W_{t} B_{0} W_{t}^{\mathrm{t}}
$$

where W_{t} is a (bounded, positive) operator acting on \mathfrak{h} solution of

$$
\forall t \in\left[0, T_{\max }\right): \quad \partial_{t} W_{t}=-2 \Omega_{t} W_{t}, \quad W_{t}:=\mathbf{1}
$$

So, one only has one equation solved by the contraction mapping principle.

Diagonalization of Quadratic Operators

(1) Under Conditions A1-A3, there is $\left(\Omega_{t}, B_{t}\right)_{t \in\left[0, T_{\max }\right)}$ solution of

$$
\forall t \in\left[0, T_{\max }\right) \subseteq \mathbb{R}_{0}^{+}: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

The operators $\Omega_{t}=\Omega_{t}^{*} \geq 0$ and $B_{t} \in \mathcal{L}^{2}(\mathfrak{h})$ satisfies:

$$
\forall t \in\left[0, T_{\max }\right): \quad \operatorname{trace}\left(\Omega_{t}^{2}-4 B_{t} \bar{B}_{t}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\forall t \in\left[0, T_{\max }\right): \quad \Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2}
$$

(2) Existence of a unitary operator U_{t} as strong solution on $\mathcal{D}(\mathrm{N}) \subsetneq \mathcal{F}_{b}$ of

$$
\forall t \in\left[0, T_{\max }\right): \quad \partial_{t} \mathrm{U}_{t}=\left[\mathrm{N}, \mathrm{H}_{t}\right] \mathrm{U}_{t}:=-i \mathrm{G}_{t} \mathrm{U}_{t}, \quad \mathrm{U}_{t}:=\mathbf{1} .
$$

Indeed, denoting $\mathcal{Y}:=\mathcal{B}(\mathcal{D}(\mathrm{N}))$, the generator $\mathrm{G}_{t}:=i\left[\mathrm{~N}, \mathrm{H}_{t}\right]=\mathrm{G}_{t}^{*}$ satisfies

$$
\left\|\mathrm{G}_{t}\right\|_{\mathcal{Y}} \leq 11\left\|B_{0}\right\|_{2}, \quad\left\|\mathrm{G}_{t}-\mathrm{G}_{s}\right\| \mathcal{Y} \leq 11\left\|B_{t}-B_{s}\right\|_{2},\left\|\left[\mathrm{~N}, \mathrm{G}_{t}\right]\right\| \mathcal{Y} \leq 22\left\|B_{0}\right\|_{2}
$$

Diagonalization of Quadratic Operators

(1) Under Conditions A1-A3, there is $\left(\Omega_{t}, B_{t}\right)_{t \in\left[0, T_{\max }\right)}$ solution of

$$
\forall t \in\left[0, T_{\max }\right) \subseteq \mathbb{R}_{0}^{+}: \quad \begin{cases}\partial_{t} \Omega_{t}=-16 B_{t} \bar{B}_{t}, & \Omega_{t=0}:=\Omega_{0} \\ \partial_{t} B_{t}=-2\left(\Omega_{t} B_{t}+B_{t} \Omega_{t}^{\mathrm{t}}\right), & B_{t=0}:=B_{0}\end{cases}
$$

The operators $\Omega_{t}=\Omega_{t}^{*} \geq 0$ and $B_{t} \in \mathcal{L}^{2}(\mathfrak{h})$ satisfies:

$$
\forall t \in\left[0, T_{\max }\right): \quad \operatorname{trace}\left(\Omega_{t}^{2}-4 B_{t} \bar{B}_{t}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\forall t \in\left[0, T_{\max }\right): \quad \Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2}
$$

(2) Existence of a unitary operator U_{t} as strong solution on $\mathcal{D}(\mathrm{N}) \subsetneq \mathcal{F}_{b}$ of

$$
\forall t \in\left[0, T_{\max }\right): \quad \partial_{t} \mathrm{U}_{t}=\left[\mathrm{N}, \mathrm{H}_{t}\right] \mathrm{U}_{t}:=-i \mathrm{G}_{t} \mathrm{U}_{t}, \quad \mathrm{U}_{t}:=\mathbf{1}
$$

(3) Using resolvents, show next that, for all $t \in\left[0, T_{\max }\right)$,

$$
\mathrm{H}_{t}:=\sum_{k, \ell}\left\{\Omega_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+\left\{B_{t}\right\}_{k, \ell} a_{k}^{*} a_{\ell}^{*}+\left\{\bar{B}_{t}\right\}_{k, \ell} a_{k} a_{\ell}+C_{t}=\mathrm{U}_{t} \mathrm{H}_{0} \mathrm{U}_{t}^{*}
$$

(9) Using an a priori estimate, the assumption $\Omega_{0}^{-1 / 2} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ exclude blows up, i.e., $T_{\max }=\infty$, and yields the convergence, in the strong resolvent sense, of the family $\left(\mathrm{H}_{t}=\mathrm{U}_{t} \mathrm{H}_{0} \mathrm{U}_{t}^{*}\right)_{t \geq 0}$ of unbounded operators to

$$
\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{0}+8 \int_{0}^{\infty}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau .
$$

In particular, one shows that

$$
\operatorname{trace}\left(\Omega_{t}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=4\left\|B_{t}\right\|_{2}^{2} \Longrightarrow \operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2} \Longrightarrow \Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}
$$

Indeed, $\Omega_{0}^{-1 / 2} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ yields the integrability of $t \mapsto\left\|B_{t}\right\|_{2}^{2}$ on $[0, \infty)$ whereas

$$
\Omega_{t}=\Omega_{0}-16 \int_{0}^{t} B_{\tau} \bar{B}_{\tau} \mathrm{d} \tau \Longrightarrow \Omega_{\infty}=\Omega_{0}-16 \int_{0}^{\infty} B_{\tau} \bar{B}_{\tau} \mathrm{d} \tau
$$

and

$$
\left\|\left\{\left(\mathrm{H}_{\infty}+i \lambda \mathbf{1}\right)^{-1}-\left(\mathrm{H}_{t}+i \lambda \mathbf{1}\right)^{-1}\right\}(\mathrm{N}+\mathbf{1})^{-1}\right\|_{\mathrm{op}} \leq C\left(\int_{t}^{\infty}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau+\left\|B_{t}\right\|_{2}\right)
$$

(9) Using an a priori estimate, the assumption $\Omega_{0}^{-1 / 2} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ exclude blows up, i.e., $T_{\max }=\infty$, and yields the convergence, in the strong resolvent sense, of the family $\left(\mathrm{H}_{t}=\mathrm{U}_{t} \mathrm{H}_{0} \mathrm{U}_{t}^{*}\right)_{t \geq 0}$ of unbounded operators to

$$
\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{0}+8 \int_{0}^{\infty}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau .
$$

In particular, one shows that

$$
\operatorname{trace}\left(\Omega_{t}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=4\left\|B_{t}\right\|_{2}^{2} \Longrightarrow \operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2} \Longrightarrow \Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}
$$

(5) Use Conditions B4 or B5 to obtain the strong convergence of $\left(\mathrm{U}_{t}\right)_{t \geq 0}$ to U_{∞} as well as

$$
\mathrm{H}_{\infty}=\mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}
$$

Indeed, B4 (or B5), which yields $\Omega_{0}^{-1 / 2} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$, implies the integrability of $t \mapsto\left\|B_{t}\right\|_{2}$ on $[0, \infty)$ whereas

$$
\begin{equation*}
\left\|\left(\mathrm{U}_{\infty}-\mathrm{U}_{t}\right)(\mathrm{N}+1)^{-1}\right\|_{\mathrm{op}} \leq \tilde{C} \int_{t}^{\infty}\left\|B_{\tau}\right\|_{2} \mathrm{~d} \tau \tag{1}
\end{equation*}
$$

(9) Using an a priori estimate, the assumption $\Omega_{0}^{-1 / 2} B_{0} \in \mathcal{L}^{2}(\mathfrak{h})$ exclude blows up, i.e., $T_{\max }=\infty$, and yields the convergence, in the strong resolvent sense, of the family $\left(\mathrm{H}_{t}=\mathrm{U}_{t} \mathrm{H}_{0} \mathrm{U}_{t}^{*}\right)_{t \geq 0}$ of unbounded operators to

$$
\mathrm{H}_{\infty}:=\sum_{k, \ell}\left\{\Omega_{\infty}\right\}_{k, \ell} a_{k}^{*} a_{\ell}+C_{0}+8 \int_{0}^{\infty}\left\|B_{\tau}\right\|_{2}^{2} \mathrm{~d} \tau .
$$

In particular, one shows that

$$
\operatorname{trace}\left(\Omega_{t}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=4\left\|B_{t}\right\|_{2}^{2} \Longrightarrow \operatorname{trace}\left(\Omega_{\infty}^{2}-\Omega_{0}^{2}+4 B_{0} \bar{B}_{0}\right)=0
$$

and if $\Omega_{0} B_{0}=B_{0} \Omega_{0}^{\mathrm{t}}$ then

$$
\Omega_{t}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}+4 B_{t} \bar{B}_{t}\right\}^{1 / 2} \Longrightarrow \Omega_{\infty}=\left\{\Omega_{0}^{2}-4 B_{0} \bar{B}_{0}\right\}^{1 / 2}
$$

(5) Use Conditions B4 or B5 to obtain the strong convergence of $\left(\mathrm{U}_{t}\right)_{t \geq 0}$ to U_{∞} as well as

$$
\mathrm{H}_{\infty}=\mathrm{U}_{\infty} \mathrm{H}_{0} \mathrm{U}_{\infty}^{*}
$$

(6) Then H_{∞} can be diagonalized by a unitary operator acting on \mathfrak{h}, using a diagonalization of Ω_{∞} to have

$$
\left\{\Omega_{\infty}\right\}_{k, \ell}:=\left\langle\varphi_{k} \mid \Omega_{\infty} \varphi_{\ell}\right\rangle=\delta_{k, \ell} \lambda_{k}
$$

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_{0} :

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_{0} :
i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_{0}.

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_{0} :
i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_{0}.
ii. Unboundedness of $\Omega_{0} \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_{0} :
i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_{0}.
ii. Unboundedness of $\Omega_{0} \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.
iii. Unboundedness of $\Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Controlled but absolutely nontrivial. Out of the scope of previous works.

Concluding Remarks

- The Brocket-Wegner flow $\partial_{t} H_{t}=\left[H_{t},\left[H_{t}, A\right]\right]$ can be a powerful technique as seen on quadratic operators.
- Easy to describe, but mathematically involved due to unboundedness of operators. See, e.g., [Bach-B ('11)] which has 122 pages !
- 3 sources of unboundedness in the quadratic operators H_{0} :
i. Unboundedness of creation/annihilation operators. Easily controlled. Not a problem either for all previous works on diagonalization of H_{0}.
ii. Unboundedness of $\Omega_{0} \notin \mathcal{B}(\mathfrak{h})$. Controlled with the flow. Out of the scope of previous works.
iii. Unboundedness of $\Omega_{0}^{-1} \notin \mathcal{B}(\mathfrak{h})$. Controlled but absolutely nontrivial. Out of the scope of previous works.
- This example is the first mathematical use of the Brocket-Wegner flow to diagonalize (unbounded) operators.

