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Abstract. Hotspots of crime localized in space and time are well documented.

Previous mathematical models of urban crime have exhibited these hotspots
but considered a static or otherwise suboptimal police response to them. We

introduce a program of police response to hotspots of crime in which the police

adapt dynamically to changing crime patterns. In particular, they choose their
deployment to solve an optimal control problem at every time. This gives

rise to a free boundary problem for the police deployment’s spatial support.

We present an efficient algorithm for solving this problem numerically and
show that police presence can prompt surprising interactions among adjacent

hotspots.

1. Introduction.

1.1. Crime patterns. Urban crime is ubiquitous and heterogeneous: while it can
certainly affect a whole city, clusters of crimes are often localized in time and space,
forming “hot spots” of increased criminal activity [5, 9]. Simple spatial heterogene-
ity in the environment is insufficient to explain the temporal variations in crime
recurrence [21]. Rather, the emergence of hot spots is linked to repeat victim-
ization: a successful offender likely to re-offend in the same location, or nearby
(near-repeat victimization). Such patterns have been observed in illicit activities
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from residential burglary [11] to insurgent activity in Iraq [23]. For law enforce-
ment, a seemingly obvious response to a hot spot of crime is to deploy additional
resources to the hot spot to deter further crime. These so-called “cops on the dots”
strategies have sometimes successfully dispersed the hot spot, but other times have
merely displaced the crime to surrounding areas [4].

1.2. The discrete Short model. Short et al. [19] introduce an agent-based model
for dynamics of crime. Agents are criminals taking a biased random walk on a
rectangular lattice with periodic boundary conditions. Time steps are discrete, with
length dt. In each time step, each agent either strikes (i.e., commits a crime) at its
present node or moves to an adjacent node. The agents’ decisions are influenced by
a scalar attractiveness field A, whose dynamics are coupled to the agents’ dynamics.

During time step t, an agent at node x strikes at x with probability

ps(x, t) = 1− e−A(x,t)dt. (1)

Agents who strike exit the system; otherwise they move to an adjacent node. If x′

is adjacent to x (denoted hereafter by x′ ∼ x), an agent moves from x to x′ with
probability pm(x, t;x′), which is proportional to A(x′, t).

The attractiveness A is split into a static component A0 and a dynamic compo-
nent B so that A = A0 + B. To model repeat victimization, B at x is increased
by θ for each strike that occurred at x during the previous time period. Then, to
model near-repeat victimization, B diffuses to adjacent nodes and decays. If S(x, t)
denotes the number of strikes at node x at time t, the dynamics of B are given by

B(x, t+ dt) =

(
(1− η)B(x, t) +

η

4

∑
x′∼x

B(x′, t)

)
(1− ωdt) + θS(x, t), (2)

where η is a positive parameter.
Let n(x, t) be the number of criminals at node x at time t. In addition to the

above movement and exit rules, criminals generate at each node according to a
Poisson process with parameter Γ:

E(n(x, t+ dt)|n(·, t)) =
∑
x′∼x

n(x′, t)(1− ps(x, t))pm(x, t;x′) + Γdt, (3)

where E denotes the expectation.
Under different choices of parameters, the system can give rise to different hot

spot patterns. One such pattern is shown in Fig. 1. The system is in homogeneous
equilibrium when all nodes have the same attractiveness A = A0 +B and the same
average number of criminals n. The equilibrium values can be found algebraically:

B =
θΓ

ω
, n =

Γdt

1− eAdt
.

1.3. The continuous Short model. If ` is the length between any two grid nodes,
then ρ = E(n)/`2 is the expectation value of the criminal density. Taking a hydro-
dynamic limit of (2-3) holding `2/dt constant as `, dt→ 0 (and changing variables
to eliminate some parameters) gives a parabolic PDE system:

∂A

∂t
= η4A+ ρA−A+A0 (4)

∂ρ

∂t
= ∇ · (∇ρ− 2ρ∇ logA)− ρA+B. (5)
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Figure 1. A snapshot of the attractiveness A from simulations of
the discrete model on a toroidal grid.

Figure 2. A numerical solution of the continuous model (4) (left)
and (5) (right) with periodic boundary conditions. η = 0.03, A0 =
0.5, B = 2.5.

(The change of variables replaces some parameters with B, which becomes a pa-
rameter together with η and A0.) This reaction-diffusion system resembles the well
known Keller-Segel model of chemotaxis [13, 14, 10]. Rodŕıguez and Bertozzi [18]
demonstrate local existence and uniqueness of solutions for the system; Rodŕıguez
[17] extends this result. Cantrell, Cosner, and Manásevich [7] prove several bifurca-
tion results. Chaturapruek et al. [8] recast both the discrete and continuous short
models using Lévy flights to drive the criminals’ motion, resulting in a nonlocal
PDE system.

Solutions of the PDE system (4-5) exhibit stationary hotspots given appropriate
parameters and initial conditions. Fig. 2 shows a typical configuration of attractive-
ness A (left) and criminal density ρ (right). The solution was computed numerically
using techniques described in [19] from a randomly perturbed initial condition. In
a steady state solution the configuration of hot spots would be more uniform; how-
ever, the convergence from the situation in Fig. 2 to steady state happens over a
much longer time scale than the emergence of the hot spots.
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Short et al. [19] perform a linear stability analysis and predict what combina-
tions of the parameters (η,A0, B) will produce the hotspot-generating instability.
Instability around the homogeneous steady-state solution (A, ρ) = (A, ρ) has the
necessary condition B > 1

2A0. Once that is satisfied, a sufficient condition is

η <
3ρ+ 1−

√
12ρ

B +A0

.

In the hydrodynamic limit, the expected number of crimes per unit area per unit
time follows

E

(
S(x, t)

`2dt

)
≈ E(n(x, t))

`2
ps(x, t)

dt
= ρ(x, t)

A(x, t)dt+O(dt2)

dt
→ ρ(x, t)A(x, t).

The approximation notation ≈ is necessary because, as Jones, Brantingham, and
Chayes [12] point out, n and ps are random variables that are likely not independent,
but their correlations are not very important for understanding the system’s overall
dynamics. We will therefore use ρA as a proxy for the amount of crime.

1.4. Police in the Short model. The original Short model does not consider
police explicitly. In particular, it does not contemplate how criminals would respond
to police presence or how police would respond to the emergence of hotspots. Here
we review several attempts to answer this question.

In [21] and [20], Short et al. add a deterrence term d to (4-5) to model the effect of
police deployment. Deterrence decreases the total crime committed and discourages
new criminals from entering the system. The continuum equations become

∂A

∂t
= η4A+ dρA−A+A0 (6)

∂ρ

∂t
= ∇ · (∇ρ− 2ρ∇ logA)− dρA+ dB. (7)

To model a cops-on-the-dots deployment, d is a function of space whose effect is
centered at the center of a hotspot. Specifically, if the police start at time t0, then

d(x) = 1
2

(
1− tanh[µ(A(x, t0)−Ac)]

)
,

where µ and Ac are positive parameters. Note that d is not a function of time; it is
a fixed deterrence profile based on the attractiveness at time t0. In [21] and [20] it
is shown that the deterrence can dissipate or merely displace hotspots of crime.

Pitcher [16] modifies the original Short model to reflect slightly different as-
sumptions about criminal behavior. Under certain parameters her model is linearly
unstable and exhibits numerical solutions with hotspots resembling those in Fig. 2.
She also considers the effect of police deploying to minimize crime and facing a re-
source constraint. Over time the police displace the criminals and the attractiveness
to the hotspots’ edges, creating ring-like structures.

Jones, Brantingham and Chayes [12] return to the discrete model. They assign
their police three deployment strategies: random patrols, in which police take a true
random walk through the domain; cops on the dots, in which police, like criminals,
take a biased random walk toward areas of greater attractiveness; and peripheral
interdiction, in which police are biased to seek out the edges of hot spots. In
agreement with research using field data, they find that random patrols are largely
ineffective. Cops on the dots is effective early into its implementation, but peripheral
interdiction eventually does just as well. For larger hotspots, peripheral interdiction
is eventually better at reducing crime than cops on the dots.



COPS ON THE DOTS 5

1.5. Other models. Berestycki and Nadal [1] postulate a different PDE model
grounded in economic rather than anthropological literature. Unlike the Short
model it is not agent-based, but like the Short model it reflects repeat victimization
and exhibits hot spots. Police interact with the system by exerting limited con-
trol over the local cost of illegal activity. Given enough resources, an appropriate
police strategy can moderate the strength of the hot spots over time. Berestycki,
Rodŕıguez and Ryzhik [2] find traveling wave solutions to the system.

Birks, Townsley, and Stewart [3] present a novel agent-based model of crim-
inal behavior. As in the discrete Short model, criminal agents move through a
rectangular grid and decide whether to strike based in part on different levels of
attractiveness encountered throughout the domain. However, in their model targets
are distributed randomly throughout the domain, rather than uniformly at one per
node. Furthermore, agents are constrained to move along nodes of a transport net-
work, also determined randomly. They are more likely to strike at targets near their
current position if those targets are more attractive and if they are more aware of
the targets. The study finds that hot spots are more likely to emerge if each agent
has only a few destination transit nodes, if attractiveness is heterogeneous, and if
awareness is heterogeneous. They do not discuss police directly.

2. Optimal deployment of police. We propose a new method for police deploy-
ment that takes into account police departments’ ability to strategize and coordinate
their motions. Where prior work has postulated either that police deploy to a fixed
location or that they may move but without any coordination, we propose that the
police are constantly responding to new crimes that are committed. Their rule of
movement will be to always deploy to minimize the total crime occurring instan-
taneously. This approach reflects police’s expertise, hierarchy, and coordination, in
contrast with criminals who may not collaborate or even share a common goal.

2.1. Model specification. Return to equations (6-7), but assume now that police
need not choose a static deployment based on the state of the system at one point in
time. Instead allow them to allocate resources dynamically based on how the system
responds to them. Under this framework we need a different understanding of the
deterrence factor d. Rather than being a fixed function of space it must change
in accordance with how the police choose to deploy. Let κ(x, t) be the amount of
police resources deployed to point x at time t. Then the deterrence factor prevailing
at (x, t) is d(κ(x, t)), with d now a function from [0,∞) to (0, 1].

Intuition and convenience allow us to describe several properties we expect of d.

Definition 2.1. A function d : [0,∞)→ (0, 1] is a deterrence function if and only
if each of the following is satisfied:

1. d(0) = 1: If no police are present at a location, the criminals behave there as
they would in the original model.

2. d is decreasing: More police should result in less crime.
3. d is convex: Returns to additional police should diminish.
4. d is C2: There are no critical levels of police that prevent d from being smooth.
5. d is positive: The police cannot prevent all crime no matter how much they

deploy; however,
6. limk→∞ d(k) = 0: They can achieve a target deterrence level if they deploy

enough resources.
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Assumptions 3 and 4 together imply by the Inverse Function Theorem that d′ is
invertible and (d′)−1 is C1; we will use this later. The choice d(k) = e−k will be
convenient, particularly because of a computational advantage described in section
3.3.

The police deploy to solve a minimization problem. For now we will assume that
their goal at time t is to minimize the total crime in the system at time t, that is,∫
d(κ)ρAdx, which we sometimes denote F (κ). They face a positivity constraint

κ ≥ 0 and some appropriate constraint on their total resources. For now we will
assume that at each time step the police must deploy a fixed amount of resources
K; that is, for all t,

∫
κ dx = K.

The problem with dynamic police is therefore

∂A

∂t
= η4A+ d(κ)ρA−A+A0, (8)

∂ρ

∂t
= ∇ · (∇ρ− 2ρ∇ logA)− d(κ)ρA+ d(κ)B, (9)

κ = arg min

{∫
Ω

d(k)ρAdx : k ∈ L1(Ω), k ≥ 0,

∫
Ω

k dx = K

}
. (10)

The optimization problem (10) is the novel part of the model.
The feasible set {k ∈ L1(Ω) : k ≥ 0,

∫
Ω
k dx = K} is a convex subset of L1,

and (by the convexity of d) the objective functional κ 7→
∫
d(κ)ρAdx is a convex

functional. Thus the optimization problem is convex. In the dual formulation it
becomes a free boundary problem, with the boundary determined by ρ, A, and λ,
the dual variable associated to the L1 constraint.

2.2. Dual formulation: a free boundary problem. The dual formulation has
an immediate interpretation in the perspective of the police commander deciding
where to deploy resources. Each incremental resource should go to the place where
it can have the most incremental impact, until all the resources are used up. Limi-
tations on the commander’s resources force him to ignore areas where the amount
of crime is below some critical threshold. This threshold is determined by the dual
variable λ.

Throughout this section, fix t and consider the problem of recovering the optimal
κ from ρA. We will assume that the introduction of police into the Short model has
not disrupted the continuity guaranteed by [18] too much. In particular, we assume
that ρA is continuous.

Theorem 2.2. Let ρA be non-negative everywhere, positive on a set of positive
measure, and continuous. Then there exists λ > 0 such that

κ = (d′)−1(−λ/ρA)χU(λ,ρA), (11)

where U(λ, f) = {x ∈ Ω : f(x) > −λ/d′(0)}. This λ is the Lagrange multiplier as-
sociated to the L1 constraint (10) and as such is the unique solution to the nonlinear
equation

G(λ) :=

∫
U(λ,ρA)

(d′)−1(−λ/ρA)dx = K. (12)

The proof of Theorem 2.2 is presented in Lemmas 2.3-2.6. First we dispatch the
easy case when κ > 0 throughout Ω.

Lemma 2.3. Theorem 2.2 holds if κ > 0 everywhere.
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Proof. We need not impose the κ ≥ 0 constraint explicitly. Only the L1 constraint
remains, and the Lagrange multiplier method in calculus of variations suffices. The
stationarity criterion is d′(κ)ρA+ λ = 0, where λ is the Lagrange multiplier associ-
ated to the L1 constraint. As noted previously d′ is invertible, so solving for κ gives
(11). Substituting this into the L1 constraint gives (12), noting that U(λ, ρA) = Ω
in this case.
G is strictly decreasing because d′ (and hence (d′)−1) is strictly increasing. Thus

the λ solving (12) is unique.

Now assume that κ = 0 on a subset of Ω of positive measure. There exists a
Lagrange multiplier λ > 0 such that d′(κ)ρA+λ = 0 wherever κ > 0. The κ defined
in (11) is a weakly increasing function of ρA. In particular, there is some threshold
value C such that κ(x) > 0 if ρ(x)A(x) > C but κ(x) = 0 if ρ(x)A(x) < C. Lemmas
2.4 and 2.5 show that C = −λ/d′(0). The central idea is that the choice of λ in
(12) allows κ to be continuous as ρA passes the −λ/d′(0) threshold. Were it not
continuous, it would be advantageous to redistribute some κ from the edges of its
support to nearby areas where it is 0. Lemma 2.6 proves that this is the unique λ
solving (12) by showing that G is strictly decreasing.

Lemma 2.4. C ≥ −λ/d′(0).

Proof. Suppose otherwise; then C < −λ/d′(0). Let ρ(x)A(x) = 1
2 (C − λ/d′(0));

such an x exists because ρA is continuous. Then κ(x) > 0, and

d′(κ(x)) = − 2λ

C − λ/d′(0)
.

Both sides are negative, so

d′(κ(x)) < − 2λ

−λ/d′(0)− λ/d′(0)
= d′(0).

But by assumption d is convex, so d′(κ(x)) > d′(0). Thus C ≥ −λ/d′(0).

Lemma 2.5. C ≤ −λ/d′(0).

Proof. Suppose otherwise; then C > −λ/d′(0). Let ε ∈ (0, 1
2C). Because ρA is

continuous, there exist δ > 0 and open subsets U+, U− of Ω such that |U+| =
|U−| = δ, 0 < ρA − C < ε in U+, and 0 < C − ρA < ε in U−. By definition of
C, κ is positive in U+ but zero in U−. In particular, letting κ∗ = (d′)−1(−λ/C)
κ > κ∗ > 0 in U+. This last set of inequalities is independent of ε, so we are free
to further stipulate that ε < 1

2κ
∗.

Now let κ̂ = κ− εχU+ + εχU− , where χV is the indicator function on the set V .
This κ̂ meets the positivity and L1 constraints, and

F (κ̂)− F (κ) =

∫
U+

(d(κ− ε)− d(κ))ρAdx+

∫
U−

(d(κ+ ε)− d(κ))ρAdx

=

∫
U+

(d(κ− ε)− d(κ))ρAdx+

∫
U−

(d(ε)− 1)ρAdx

<

∫
U+

(d(κ− ε)− d(κ))(C + ε)dx+

∫
U−

(d(ε)− 1)(C − ε)dx

= (C + ε)

∫
U+

(d(κ− ε)− d(κ))dx+ δ(C − ε)(d(ε)− 1). (13)
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By Taylor’s theorem, there exists ε∗(0) ∈ (0, ε) such that d(ε) − 1 = d′(0)ε +
1
2d
′′(ε∗(0))ε2. Let M be the supremum of all values of d′′(k) such that k is within

1
2κ
∗ of any value taken by κ. M is finite because Ω is finite, κ is finite, and d′′ is

continuous. M is positive because d′′ is positive. We can therefore write

d(ε)− 1 ≤ d′(0)ε+ 1
2Mε2. (14)

By similar reasoning, for each κ there exists ε∗(κ) ∈ (0, ε) such that

d(κ− ε)− d(κ) = −d′(κ)ε+ 1
2d
′′(κ− ε∗(κ))ε2 ≤ −d′(κ)ε+ 1

2Mε2. (15)

Substituting (14) and (15) into (13),

F (κ̂)− F (κ) < (C + ε)

∫
U+

(
− d′(κ)ε+ 1

2Mε2
)
dx+ δ(C − ε)

(
d′(0)ε+ 1

2Mε2
)

= −(C + ε)ε

∫
U+

d′(κ)dx+ δ(C − ε)d′(0)ε+ δCMε2

< −(C + ε)ε

∫
U+

d′(κ∗)dx+ δ(C − ε)d′(0)ε+ δCMε2

= −δ(C + ε)d′(κ∗)ε+ δ(C − ε)d′(0)ε+ δCMε2

= δC(d′(0)− d′(κ∗))ε+ δ(CM − d′(κ∗)− d′(0))ε2.

Choose ε small enough that the first-order term dominates. Because d′ is increasing,
this term is negative. Thus F (κ̂) − F (κ) < 0, but then κ is not optimal. Thus
C ≤ −λ/d′(0).

Therefore, as predicted, C = −λ/d′(0), implying (11). This in turn implies (12),
so it remains only to show that λ solves (12) uniquely. Lemma 2.6 suffices for this.

Lemma 2.6. G is strictly decreasing.

Proof. If h > 0, then

G(λ+ h)−G(λ)

h
=

∫
U(λ+h,ρA)

(d′)−1(−(λ+ h)/ρA)− (d′)−1(−λ/ρA)

h
dx

− 1

h

∫
U(λ,ρA)\U(λ+h,ρA)

(d′)−1(−λ/ρA)dx

=: I1(h)− I2(h).

Because everything is continuous,

lim
h→0+

I1(h) =

∫
U(λ,ρA)

∂

∂λ
(d′)−1(−λ/ρA)dx = −

∫
U(λ,ρA)

1

ρAd′′((d′)−1(−λ/ρA))
dx.

Because h > 0,

I2(h) <
1

h

∫
U(λ,ρA)\U(λ+h,ρA)

(d′)−1

(
−λ

−(λ+ h)/d′(0)

)
dx

=
|U(λ, ρA) \ U(λ+ h, ρA)|

h
(d′)−1

(
λ

λ+ h
d′(0)

)
.

The Taylor approximation

(d′)−1

(
λ

λ+ h
d′(0)

)
= − d′(0)

λd′′(0)
h+ o(h)
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then yields

I2(h) < − d′(0)

λd′′(0)
|U(λ, ρA) \ U(λ+ h, ρA)|+ o(1)

= − d′(0)

λd′′(0)
|{−λ/d′(0) < ρA ≤ −(λ+ h)/d′(0)}|+ o(1).

By a standard measure-theoretic argument,

lim
h→0+

I2(h) ≤ − d′(0)

λd′′(0)

∣∣∣∣ ⋂
h>0

{−λ/d′(0) < ρA ≤ −(λ+ h)/d′(0)}
∣∣∣∣ = 0.

But I2(h) > 0 by definition, so

lim
h→0+

I2(h) = 0.

Thus

lim
h→0+

G(λ+ h)−G(λ)

h
= −

∫
{ρA>−λ/d′(0)}

1

ρAd′′((d′)−1(−λ/ρA))
dx < 0.

If h < 0, then

G(λ+ h)−G(λ)

h
=

1

h

∫
U(λ+h,ρA)\U(λ,ρA)

(d′)−1(−(λ+ h)/ρA)dx

+

∫
U(λ,ρA)

(d′)−1(−(λ+ h)/ρA)− (d′)−1(−λ/ρA)

h
dx

=: I3(h) + I4(h).

As before,

lim
h→0−

I4(h) =

∫
U(λ,ρA)

∂

∂λ
(d′)−1(−λ/ρA)dx = −

∫
U(λ,ρA)

1

ρAd′′((d′)−1(−λ/ρA))
dx.

We cannot guarantee that limh→0− I3(h) = 0. This is because

lim
h→0−

|U(λ+ h, ρA) \ U(λ, ρA)| = |{ρA = −λ/d′(0)}|,

which is not necessarily 0. (If it is, then the left- and right-handed derivatives have
the same negative value, and we are through.) However, we do have the bounds

d′(0)

λd′′(0)
|{−(λ+ h)/d′(0) < ρA ≤ −λ/d′(0)}|+ o(1) ≤ I3(h) ≤ 0

as h → 0−. Thus the left-handed derivative is no greater than the right-handed
derivative, which is itself negative, and G is strictly decreasing.

We may therefore replace (10) in the statement of the problem with (12), with
κ understood to be given explicitly by (11). This formulation will be helpful for
determining κ numerically.

Geometrically, λ specifies the threshold crime level below which the police will
not bother to deploy. This level is precisely λ scaled by the positive constant
−1/d′(0). As the system evolves, λ too will change. Implicit differentiation in t on
the equation G(λ) = K gives

λt
λ

=

∫
U(λ,ρA)

1
ρAd′′(κ) (At

A + ρt
ρ )dx∫

U(λ,ρA)
1

ρAd′′(κ)dx
.
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Thus the growth rate of λ is determined by a weighted average of the growth rates of
A and ρ inside U(λ, ρA), the region in which the police are deployed. In particular,
if ρ and A reach steady state inside U(λ, ρA), then λt = 0, and the whole system is
in steady state.

Corollary 2.7 reveals why exponential deterrence will be so convenient later on.

Corollary 2.7. If d(k) = e−k, then throughout U(λ, ρA), d(κ)ρA = λ.

Proof. A straightforward calculation following from (d′)−1(y) = − log(−y).

2.3. Linear stability. The homogeneous steady state solution (A, ρ, κ) = (Ã, ρ̃, κ̃)
to (8-10) is given by

Ã = d(κ̃)B +A0, ρ̃ =
B

Ã
, κ̃ =

K

|Ω|
. (16)

We can also write Ã = d(κ̃)A+ (1− d(κ̃))A0. The equilibrium value of A is thus a
convex combination of the equilibrium value without police (A) and its minimum

possible value (A0). More police decreases Ã but increases ρ̃ proportionally, so that

ρ̃Ã = ρA. The average amount of crime in Ω is d(κ̃)ρ̃Ã, less by a factor of d(κ̃)
than in the system without police.

To understand how the addition of police impacts the stability of the system,
we perform a linear stability analysis centered at this equilibrium. Because κ is
completely determined at each time by A and ρ, we perturb only A and ρ and then
determine the consequences on κ. Let ε > 0 be a small parameter specifying the
scale of the perturbation: A = Ã + εa, ρ = ρ̃ + εr. The scale parameter ε relative
to the perturbations a and r is such that A and ρ are positive everywhere. Let κ
denote the solution to (10) given this A and ρ.

First we prove that, if ε is small enough, then κ > 0 throughout Ω.

Proposition 2.8. Let K > 0, and let ρA be positive and bounded. Then there exists
ε0 > 0 such that, if 0 < ε < ε0, then κ as defined in (10) is positive throughout Ω.

Proof. It suffices to show that, for all y ∈ Ω,∫
Ω

(d′)−1

(
d′(0)

ρ(y)A(y)

ρ(x)A(x)

)
dx < K.

If this is so, then the police deploy to every point in Ω. LetM = max(max |a|,max |r|).
Because (d′)−1 is increasing and d′(0) < 0,∫

Ω

(d′)−1

(
d′(0)

ρ(y)A(y)

ρ(x)A(x)

)
dx ≤

∫
Ω

(d′)−1

(
d′(0)

min ρA

max ρA

)
dx

≤
∫

Ω

(d′)−1

(
d′(0)

ρ̃Ã+ (ρ̃+ Ã)Mε+M2ε2

ρ̃Ã− (ρ̃+ Ã)Mε−M2ε2

)
dx

= |Ω|(d′)−1

(
d′(0)

ρ̃Ã+ (ρ̃+ Ã)Mε+M2ε2

ρ̃Ã− (ρ̃+ Ã)Mε−M2ε2

)
. (17)

When ε = 0, the quantity in (17) is 0. It is also a continuous function of ε, so it
is less than K up to some positive value, say ε0. For ε ∈ (0, ε0), κ > 0 throughout
Ω.

Assuming henceforth that ε is small enough to satisfy Proposition 2.8,

κ = (d′)−1

(
− λ(ε)

(ρ̃+ εr)(Ã+ εa)

)
.



COPS ON THE DOTS 11

Note the dependence of λ on ε. We seek a Taylor expansion of κ in ε, centered at
ε = 0. By assumption, when ε = 0, κ = κ̃. For the linear coefficient,

∂κ

∂ε

∣∣∣
ε=0

=
1

d′′
(
(d′)−1(−λ(0)/ρ̃Ã)

) · − ρ̃Ãλ′(0)− (ρ̃a+ Ãr)λ(0)

ρ̃2Ã2

=
1

d′′(κ̃)

(
(ρ̃a+ Ãr)λ(0)

ρ̃2Ã2
− λ′(0)

ρ̃Ã

)
. (18)

Recalling that λ(0) is the Lagrange multiplier associated to the homogeneous steady

state, λ(0) = −d′(κ̃)ρ̃Ã. We get λ′(0) through implicit differentiation on the L1

constraint ∫
Ω

(d′)−1

(
λ(ε)

(ρ̃+ εr)(Ã+ εa)

)
dx = K.

Differentiating with respect to ε and setting ε = 0,∫
Ω

1

d′′(κ̃)

(
(ρ̃a+ Ãr)λ(0)

ρ̃2Ã2
− λ′(0)

ρ̃Ã

)
dx = 0

λ′(0) =
λ(0)

|Ω|ρ̃Ã

(
ρ̃

∫
Ω

a dx+ Ã

∫
Ω

r dx

)
.

Assuming the perturbations have zero spatial mean, λ′(0) = 0. Substituting into
(18),

∂κ

∂ε

∣∣∣
ε=0

=
1

d′′(κ̃)

(ρ̃a+ Ãr) · −d′(κ̃)ρ̃Ã

ρ̃2Ã2
= − d

′(κ̃)

d′′(κ̃)

( r
ρ̃

+
a

Ã

)
.

Thus

κ = κ̃− d′(κ̃)

d′′(κ̃)

( r
ρ̃

+
a

Ã

)
ε+ o(ε).

This leads to an expansion of d(κ) about ε = 0:

d(κ) = d(κ̃)− d′(κ̃)2

d′′(κ̃)

( r
ρ̃

+
a

Ã

)
ε+ o(ε).

Substitute the perturbation into (8):

ε
∂a

∂t
= εη4a+

(
d(κ̃)− d′(κ̃)2

d′′(κ̃)

( r
ρ̃

+
a

Ã

)
ε

)
(Ã+ εa)(ρ̃+ εr)− (Ã+ εa−A0) + o(ε)

= d(κ̃)Ãρ̃− (Ã−A0)

+

(
η4a− a+ d(κ̃)Ãr + d(κ̃)ρ̃a− d′(κ̃)2

d′′(κ̃)
ρ̃Ã
( r
ρ̃

+
a

Ã

))
ε+ o(ε).

The order-1 terms cancel by (16). Disregarding the superlinear terms, we get

∂a

∂t
= η4a− a+

(
d(κ̃)− d′(κ̃)2

d′′(κ̃)

)
ρ̃a+

(
d(κ̃)− d′(κ̃)2

d′′(κ̃)

)
Ãr

Follow the same course for (9):

∂r

∂t
= 4r − d(κ̃)Ãr − 2ρ̃

Ã
4a− d(κ̃)ρ̃a.

We choose the form a(x, t) = r(x, t) = eσt+in·x for the perturbations so they
will be eigenfunctions of the differential operators ∂/∂t and 4. The equations are
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radial, so we can let n be scalar: a(x, t) = r(x, t) = eσt+in(x1+x2) This yields the
eigenvalue system(

−ηn2 − 1 +D(κ̃)ρ̃ D(κ̃)Ã
2ρ̃

Ã
n2 − d(κ̃)ρ̃ −n2 − d(κ̃)Ã

)(
a
r

)
= σ

(
a
r

)
(19)

where D(κ̃) = d(κ̃)− d′(κ̃)2/d′′(κ̃). Note that D(κ̃) < d(κ̃).
This system can be linearly unstable, for example if η = 1

10 , A0 = 1
100 , B = 1

2 ,

d(κ) = (1 + κ)−1, K = 1, n = 1. For the remainder of this section we present
sufficient conditions for linear stability (or equivalently necessary conditions for
linear instability) because these give clues to how effective police can be in stopping
crime. We begin with a special case.

Proposition 2.9. If d is exponential, then the system is unconditionally linearly
stable.

Proof. In this case D is identically 0. The matrix is triangular, and its uncondi-
tionally negative eigenvalues can be read off the diagonal.

This is a marked contrast with the K = 0 case, the original Short system, in
which the proper choice of parameters can yield linear instability [19]; this system
is linearly stable for any positive value of K. The key to the discontinuity lies in
Proposition 2.8: given K > 0, κ is everywhere positive once ε is small enough. In
contrast, when K = 0, κ cannot be positive anywhere.

Of course, D(κ̃) need not be identically 0 in general.1 Theorem 2.11 states that
even these scenarios can be stabilized given enough police. It and several other
results rely on the following lemma.

Lemma 2.10. For all η, A0, B, K > 0 and every deterrence function d, if the
system is linearly unstable, then

1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃ < −η. (20)

Proof. The greater of the eigenvalues of the matrix in (19) is

σn =
−qn +

√
q2
n − 4

(
ηn4 + (1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)n2 + d(κ̃)Ã

)
2

(21)

where qn = 1 + d(κ̃)Ã+ (1 + η)n2 −D(κ̃)ρ̃. The system is linearly unstable if and
only if Reσn > 0 for some integer n.

First we show that qn > 0, for which q0 > 0 suffices. First,

d(κ̃)(d(κ̃)B +A0)2 +B
d′(κ̃)2

d′′(κ̃)
> 0

d(κ̃)B +A0 + d(κ̃)(d(κ̃)B +A0)2 −
(
d(κ̃)− d′(κ̃)2

d′′(κ̃)

)
B > A0

1 + d(κ̃)(d(κ̃)B +A0)−
(
d(κ̃)− d′(κ̃)2

d′′(κ̃)

)
B

d(κ̃)B +A0

>
A0

d(κ̃)B +A0

.

Recalling the definitions of Ã and ρ̃ from (16),

1 + d(κ̃)Ã−D(κ̃)ρ̃ >
A0

Ã
,

1Indeed the only deterrence function d solving the differential equation D(k) = 0 is d(k) = e−ck,
with c a constant of integration.
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so q0 > 0.
Thus Reσn > 0 only if the square root in (21) is real and greater than qn.

Equivalently, there exists an integer n such that

ηn4 + (1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)n2 + d(κ̃)Ã < 0. (22)

Equivalently, the polynomial f1 defined by

f1(x) = ηx2 + (1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)x+ d(κ̃)Ã

has two real roots, and a positive square integer lies between them. This is true
only if the greater root of f1 is greater than 1:

−(1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃) +
√

(1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)2 − 4ηd(κ̃)Ã

2η
> 1.

Equivalently,√
(1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)2 − 4d(κ̃)ηÃ > 2η + 1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃. (23)

If the right-hand side of (23) is positive, then we can square both sides, leading
ultimately to the inequality

1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃ < −η − d(κ̃)Ã.

If the right-hand side of (23) is negative, then

1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃ < −2η.

In either case, (20) holds.

Theorem 2.11. For all η, A0, B > 0 and every deterrence function d, there exists
K∗ > 0 such that the system is linearly stable if K > K∗.

Proof. Suppose the system is linearly unstable. Then (20) holds, which implies

1 + d(κ̃)ηÃ− 3d(κ̃)ρ̃ < −η.

Per (16), substitute B/Ã for ρ̃ and d(κ̃)B +A0 for Ã. Collect terms in d(κ̃):

ηB
2
d(κ̃)3 + 2ηA0Bd(κ̃)2 + (ηA2

0 + (η − 2)B)d(κ̃) + (η + 1)A0 ≤ 0.

Define the polynomial f2 by

f2(y) = ηB
2
y3 + 2ηA0By

2 + (ηA2
0 + (η − 2)B)y + (η + 1)A0.

Because f2(0) = (η + 1)A0 > 0, by the intermediate value theorem there exists
y2 ∈ (0, 1] such that f1(y) ≥ 0 for all y ∈ [0, y2]. Let K∗ = d−1(y2)|Ω|. By
Definition 2.1, if K > K∗, then d(κ̃) ≤ y2. Thus f2(d(κ̃)) ≥ 0, so by Lemma 2.10
the system is linearly stable.

Thus K∗ is bounded from above in terms of the zeros of a cubic polynomial.
Specifically, y2 is the lesser of 1 and the least positive root of f2, if it has a positive
root. If it does not, then the system is linearly stable for all K > 0.

The K∗ found in the above proof is by no means sharp. Indeed, Proposition 2.9
tells us that K∗ = 0 when d is exponential. Even in general cases we may be able
to sharpen it further. For (22) to hold, the polynomial f1 must have two real roots,
so its discriminant must be positive. Equivalently,

(1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃)2 ≥ 4d(κ̃)ηÃ. (24)
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If 1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃ > 0, then the roots of p are not positive, so (24) reduces to

1 + d(κ̃)ηÃ− 3D(κ̃)ρ̃ ≤ −2

√
d(κ̃)ηÃ. (25)

If we use (25) in the place of (20) in the proof of Theorem 2.11, we get the function
f3 defined by

f3(y) = ηB
2
y3 + 2ηA0By

2 + (ηA2
0 − 2B)y + 2

√
η(By +A0)3/2y1/2 +A0.

in the place of f2. Because f3 is continuous and f3(0) > 0, a similar intermediate
value theorem argument works here as well. If y3 is the lesser of 1 and the least
positive root of f3, then K∗ = min(d−1(y2), d−1(y3))|Ω|. Corollary 2.19 sharpens
K∗ further.

Moreover, Theorem 2.11 is not the only sufficient condition for linear stability.
Propositions 2.12 and 2.14 and Corollaries 2.13 and 2.15 provide conditions relying
only on the parameters η, A0, and B.

Proposition 2.12. If η ≥ 2B/(B +A2
0), then the system is linearly stable.

Proof. The polynomial f2 has all positive coefficients, except possibly for the linear
coefficient. If η ≥ 2B/(B +A2

0), then the linear coefficient is non-negative, so f2 is
monotone. Thus it can have no positive roots, since f2(0) > 0.

Corollary 2.13. If η ≥ 2, then the system is linearly stable.

Proposition 2.14. If η ≥ (2B −A0)/(B +A0), then the system is linearly stable.

Proof. Write (20) as

(η + 1)A0 + (η − 2)d(κ̃)B + d(κ̃)η(d(κ̃)B +A0)2 < −3B
d′(κ̃)2

d′′(κ̃)
.

If the system is linearly unstable, then η − 2 < 0 by Corollary 2.13. Because the
right-hand side is negative and 0 < d(κ̃) < 1,

(η + 1)A0 + (η − 2)B < 0. (26)

Because (20) is necessary for linear instability by Lemma 2.10, so is (26).

Corollary 2.15. If 2B ≤ A0, then the system is linearly stable.

Since stating Theorem 2.11 we have ignored the information about the shape of
d encoded in the d′(κ̃)2/d′′(κ̃) term of D(κ̃). We now use it and Lemma 2.10 to
treat another special case.

Proposition 2.16. If d(κ) = (1 + κ)−p with p ≥ 2, then the system is linearly
stable.

Proof. In this case,
D(κ) = 1

p+1 (1 + κ)−p = 1
p+1d(κ).

Substituting this into (20) gives

1 + d(κ̃)ηÃ− 3
p+1d(κ̃)ρ̃ < −η.

Collecting terms in d(κ̃),

ηB
2
d(κ̃)3 + 2ηA0Bd(κ̃)2 + (ηA2

0 + (η + 1− 3
p+1 )B)d(κ̃) + (η + 1)A0 < 0.

This can hold only if the polynomial f4 defined by

f4(y) = ηB
2
y3 + 2ηA0By

2 + (ηA2
0 + (η + 1− 3

p+1 )B)y + (η + 1)A0
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has a root between 0 and 1. Since f4(0) > 0 and all coefficients are positive, except
perhaps for the linear coefficient, the linear coefficient must be negative for such a
root to exist. Thus

p <
3

η + 1 + ηA2
0/B

− 1

is a necessary condition for linear stability. But this is impossible if p ≥ 2.

Proposition 2.17 uses the (d′)2/d′′ information to show that, in general, d must
decay slower than exponentially in unstable regions.

Proposition 2.17. Given η, A0, B > 0 and a deterrence function d, let [K1,K2]
be an interval such that the system is linearly unstable if K1 ≤ K ≤ K2. If K1 <
K ≤ K2, then

d(κ̃) > d(κ̃1) exp

(
d′(κ̃1)

d(κ̃1)
(κ̃− κ̃1)

)
. (27)

Proof. Recall first that κ̃ = K/|Ω|, so we may speak interchangeably of K and κ̃.
It follows from Lemma 2.10 that D is positive on [κ̃1, κ̃2], or equivalently

d′′(κ̃)

d′(κ̃)
<
d′(κ̃)

d(κ̃)
.

Integrating both sides from κ̃1 to κ̃,

log
d′(κ̃)

d′(κ̃1)
< log

d(κ̃)

d(κ̃1)

d′(κ̃)

d(κ̃)
>
d′(κ̃1)

d(κ̃1)
.

Integrating again,

log
d(κ̃)

d(κ̃1)
>
d′(κ̃1)

d(κ̃1)
(κ̃− κ̃1),

which is (27).

Proposition 2.9 is a corollary to Proposition 2.17.
We now present a final result limiting the instability of the system. Like Propo-

sition 2.17, it establishes a lower bound for d(κ̃) in unstable regions based on local
properties of d. It relies on a similar technique.

Proposition 2.18. Given η, A0, B > 0 and a deterrence function d, let [K1,K2]
be an interval such that the system is linearly unstable if K1 ≤ K ≤ K2. Then there
exist positive constants α1, α2, α3, and p such that, if K1 < K ≤ K2, then

d(κ̃) > α1 + (α2 + α3(κ̃− κ̃1))−p. (28)

Proof. By Lemma 2.10, if the system is linearly unstable, then

1

3B

d′′(κ̃)

d′(κ̃)
> − d′(κ̃)

(1 + η + d(κ̃)η(d(κ̃)B +A0))(d(κ̃)B +A0)− 3Bd(κ̃)
.

We would like to use the same procedure as in Proposition 2.17, integrating both
sides to get a first-order differential inequality in d. However, the left-hand side is
not integrable analytically, so we replace (20) with

1 + d(κ̃)η
A2

0

Ã
− 3D(κ̃)ρ̃ < −η, (29)
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which follows from (20) because A0 < Ã. Write (29) as

3B
d′(κ̃)2

d′′(κ̃)
< −(ηA2

0 + (η − 2)B)d(κ̃)− (η + 1)A0. (30)

The left-hand side is positive, so the right-hand side is also positive. Thus we may
take reciprocals of both sides:

1

3B

d′′(κ̃)

d′(κ̃)2
>

1

−(ηA2
0 + (η − 2)B)d(κ̃)− (η + 1)A0

. (31)

Let b = −(ηA2
0 + (η − 2)B), c = (η + 1)A0. By Proposition 2.12,

b > − 2B

B +A2
0

A2
0 −

(
2B

B +A2
0

− 2

)
B = 0.

By (30), bd(κ̃)− c > 0. Write (31) as

1

3B

d′′(κ̃)

d′(κ̃)
<

d′(κ̃)

bd(κ̃)− c
(32)

Integrate (32) from κ̃1 to κ̃:

1

3B
log

d′(κ̃)

d′(κ̃1)
<

1

b
log

bd(κ̃)− c
bd(κ̃1)− c

d′(κ̃)

d′(κ̃1)
<

(
bd(κ̃)− c
bd(κ̃1)− c

)3B/b

d′(κ̃)

(bd(κ̃)− c)3B/b
>

d′(κ̃1)

(bd(κ̃1)− c)3B/b
. (33)

Now observe

−ηA2
0 − ηB < B

−ηA2
0 − (η − 2)B < 3B

b < 3B.

Thus 3B/b > 1, so integrating (33) gives

1

b− 3B

(
(bd(κ̃)− c)1−3B/b − (bd(κ̃1)− c)1−3B/b

)
>

d′(κ̃1)

(bd(κ̃1)− c)3B/b
(κ̃− κ̃1)

Equivalently,

d(κ̃) >
c

b
+

1

b

(
(c− bd(κ̃1))1−3B/b +

(b− 3B)d′(κ̃1)

(c− bd(κ̃1))3B/b
(κ̃− κ̃1)

)b/(b−3B)

.

Bringing 1/b inside the parentheses yields (28).

Corollary 2.19. If K ≥ d−1(c/b)|Ω|, then the system is linearly stable.
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3. Numerical implementation. First we describe our procedure for solving (8-
9) numerically. Divide the two-dimensional torus Ω into an equally spaced square
grid with N nodes on each side, distance h apart. Fixed time steps suffice. Let
(An, ρn, κn) denote the state of the system at time step n.

To calculate An+1 and ρn+1 from (An, ρn, κn), we use a finite difference scheme
closely resembling the one described in [19]. However, rather than tracking the
criminal density ρ at each step, we track an attractiveness-normalized criminal
density z = ρ/A. Equations (8-9) become

∂A

∂t
= η4A+ d(κ)A2z − (A−A0) (34)

∂z

∂t
= 4z −

(
(1 + η)4A− (A−A0)

A
− d(κ)A

)
z − d(κ)Az2 + d(κ)

A−A0

A
. (35)

As Sun [22] observes, this transformation banishes the advective term in (9), elim-
inating concerns about upwinding. Equations (34-35) are solved numerically by a
semi-implicit method, using spectral methods for the implicit part, following [19].

In the following we outline the procedure for solving the optimization problem,
which in the discrete context is to find κn+1 ∈ RN×N solving

κn+1 = arg min

{ N∑
i,j=1

d(ki,j)ρ
n+1
i,j An+1

i,j : ki,j ≥ 0,

N∑
i,j=1

ki,j = K

}
.

Efficiency will be important, as the optimization problem must be solved anew in
every time step. The strategy will be to reduce the problem to solving a nonlinear
equation in a single (integer) variable and then using a combination of iterative
methods to solve this equation. When d(k) = e−k, the form of the nonlinear
equation will suggest a simpler algorithm.

3.1. Reduction of the problem. We can reduce this problem to solving a non-
linear equation, reminiscent of section 2.2 above. We are given two-dimensional
vectors ρn+1 and An+1 and seek κn+1.

Rearrange the N2 values of ρn+1
i,j An+1

i,j into a one-dimensional vector f ∈ RN2

,
so that its values are in descending order. If α is the coordinate map mediating the

two (fα(i,j) = ρn+1
i,j An+1

i,j ), then it is natural to define another vector ξ ∈ RN2

by

ξα(i,j) = κn+1
i,j ; that is, ξ is the rearrangement of κn+1 matching the rearrangement

of f . We can recast the optimization problem in terms of ξ: we want to find ξ ∈ RN2

minimizing
∑N2

α=1 d(ξα)fα subject to ξα ≥ 0,
∑N2

α=1 ξα = K.
In the optimal configuration there will be a β such that ξα > 0 if α < β and

ξα = 0 if α > β. Any police deployed to the right of such a β would be more
effective deployed to the left of β. If β is known, we can restrict consideration to
the dimensions in which ξ is positive. A straightforward application of Lagrange
multipliers then gives that d′(ξα)fα must be the same for all α between 1 and β.
We can use this to read off the values of ξ:

ξα =

{
(d′)−1(d′(0)fβ/fα) if α ≤ β,
0 otherwise.

(36)
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Determining ξ is thus a matter only of solving the nonlinear resource constraint
equation for β:

G(β) :=

β∑
α=1

(d′)−1

(
d′(0)

fβ
fα

)
= K. (37)

We can then recover κn+1 if we know the coordinate map α(i, j). The above equa-
tion has at most one solution, because G is increasing:

G(β + 1)−G(β) = (d′)−1

(
d′(0)

fβ+1

fβ+1

)

+

β∑
α=1

(
(d′)−1

(
d′(0)

fβ+1

fα

)
− (d′)−1

(
d′(0)

fβ
fα

))
The extra β+ 1 term is 0. By construction f is decreasing, and (d′)−1 is increasing
because d′ is. Thus G(β + 1)−G(β) > 0.

It is of course unlikely that we will find a β solving (37) exactly. Rather, there
will be some β for which G(β) < K but G(β + 1) > K. If we then set ξ as in (36),
there will be some police left over, which for convenience we will distribute evenly
among those ξα for which α ≤ β. We do not expect this small liberty we’ve taken
to affect the results meaningfully.

As we noted above, to use this reduction we need to determine α(i, j). The first
time we do this we can expect it to take O(N2 logN) floating point operations
using the quicksort algorithm on f . However, if the time step is small, α should not
change very much between time steps. Thus if we use the previous time step’s α as
an initial guess we can expect quicksort to finish in less than O(N2 logN).

It may be that K is so large that (37) has no solution for β ≤ N2. In this scenario
the police will deploy to every grid point. It is still the case that d′(ξα)fα is the
same for all α; in fact, they equal λ, the Lagrange multiplier of the `1 constraint.
The problem in this case is to solve

H(λ) :=

N2∑
α=1

(d′)−1(−λ/fα) = K

for λ; then ξα = (d′)−1(−λ/fα). This is a problem in a continuous variable, and
standard iterative methods suffice. They are unfortunately expensive because we
have to sum all the way to N2 at each iteration. For the following we restrict
consideration to the harder scenario in which β < N2.

3.2. General deterrence: a discrete false position method. We now present
the iterative method to solve (37). Our main workhorse will be the false position
method, but we will use the secant method to initialize a window of an appropriate
size and bisection if the false position method stalls, as it can near the solution.

We begin with an initial guess β0. SupposeG(β0) < K; then we know β ∈ [a0, b0],
where a0 = β and b = N2. If β0 is a good initial guess, then information around
β0 will be more helpful than information around N2. Therefore, we hold off on
beginning false position at first. We compute β1 using the secant method, with
G(β0 + 1)−G(β0) as the slope. If G(β1) > K, we let a1 = a0, b1 = β1, and switch
to the false position method. Otherwise, we let a1 = β1, b1 = b0, and repeat until
G(βn) > K. The same method works mutatis mutandis for when G(β0) > K; in
this case we repeat until G(βn) < K, when we set an = βn.
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Once we have bn < N2, we use a discrete false position method to narrow the
window [an, bn] progressively. The false position method applied to a discrete
function can stall as the window narrows to the solution; that is, it can select
[an+1, bn+1] = [an, bn]. In practice we found this happened a significant minority of
the time. In these cases we switched to bisection to guarantee convergence.

We have no reason to expect to guess β close to correctly a priori, so we can
expect this algorithm to be expensive the first time it is run in any given simulation.
However, we do not expect β to change much between successive time steps, so using
the prior time step’s solution as an initial guess should speed up successive runs of
the algorithm.

3.3. Exponential deterrence: a homomorphism-based method. When d(k) =
e−k, G has the form

G(β) =

β∑
α=1

log(fα/fβ).

Computing G(β) directly requires β logarithm evaluations, so we would prefer to
evaluate it as few times as possible. In fact we can cut down the work signifi-
cantly by observing the following consequence of the fact that the logarithm is a
homomorphism:

G(β) = G(β − 1) + β log
fβ−1

fβ
. (38)

This means that starting by calculating G(1) and incrementing until G(β) ≥ K
takes about β logarithm evaluations and 3β additional floating point operations, a
very reasonable cost. We therefore simply compute G(α) recursively until we find
G(α) > K, and set β = α− 1.

4. Numerical results. We present several results from runs of the finite difference
scheme. First we present several solution patterns and discuss them qualitatively.
Then we consider patterns of police distribution for different values of K, the total
amount of police. Finally we return to Proposition 2.8 and consider the relationship
between K and ε, the amplitude of a Fourier perturbation off the homogeneous
steady state.

4.1. Solution behavior. We present the results of several runs of the numerics
described in the previous sections. In each case we used grid size N = 256, grid
spacing dx = 1

4 , and periodic boundary conditions. The length of the time step
varied between 0.02 and 0.5 depending on observed stability criteria.

We observed three regimes of behavior, illustrated in Fig. 3. In general, hotspots
respond to the introduction of police by expanding in radius but decreasing in
height. When there are few police, the hotspots widen slightly and then remain
at equilibrium (Fig. 3b). When there are many police, the hotspots all overlap,
and the system approaches a spatially homogeneous equilibrium (Fig. 3d). These
states correspond to the two kinds of equilibrium states observed in the model
without police, namely hotspots and no hotspots. However, a moderate number of
police can produce an intermediate state in which hotspots merge only with a few
neighbors, creating a system of persistent “warm worms” with a diffuse interface
into worm-like cold regions of little crime (Fig. 3c). In this case the police and
criminals both remain within the warm regions. We have observed this behavior
with several choices of deterrence function d.
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Figure 3. Plots of the criminal density ρ from numerical solutions
of (8-10). Here d(k) = e−k. (a) A near-steady-state solution with
η = 0.03, A0 = 0.5, B = 2.5, and no police, same as Fig. 2. (b)
The same system at time 500 after K = 300 police were introduced
at time 0. (c) K = 500, t = 500. (d) K = 700, t = 500.

Figure 4. Plots of the criminal density ρ from numerical solutions
of (8-10) Here d(k) = e−k. (a) A near-steady-state solution with
η = 0.05, A0 = 1.1, B = 2.9, and no police. (b) The same system
at time 500 after K = 0.66 police were introduced at time 0. (c)
K = 0.67, t = 500.

The third regime is absent under some parameter choices. Fig. 4 shows two plots
of a system with two close values of K (K = 0.66 for (b) and K = 0.67 for (c)).
One produces hotspot flattening and the other hotspot dissipation, with no apparent
intermediate regime of warm worms. Fig. 4 suggests a geometric explanation: the
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hotspots are distributed so uniformly (compare with Fig. 3) that a hotspot cannot
collide with one neighbor without colliding with them all.

Qualitatively, the “warm worms” solution resembles well known phase-separated
solutions of the Cahn-Hilliard equation [6]. In that case, the phase separation arises
from the double-well Ginzburg-Landau potential. In our equations, however, the
only equilibrium, stable or otherwise, is given by (16). Moreover, the values of
A, ρ, and κ at the worms’ peaks are greater than the equilibrium values, and the
values at the troughs are less. The dynamics here are clearly quite different from
the Cahn-Hilliard dynamics.

The “warm worms” regime does not appear stable; indeed, once the topology
settles we observe a slow drift in the system, in the worms’ prevailing direction. It
is possible that the worms regime is a metastable state that in the long run will
approach either the first or third regime (that is, flattened hot spots or homoge-
neous equilibrium). This convergence has not occurred on the time scales we have
considered.

4.2. Dynamics of κ. The three regimes are also reflected in Fig. 5. Here our
initial condition resembles Fig. 2, a state of stable hotspots found by running the
original Short model. At t = 0 we introduce police and run until t = 1000, varying
the value of K between runs. We then plotted the maximum value of κ in each
simulation against K, yielding the solid line. We repeated this process starting from
a homogeneous initial condition, as well; this is the dashed line.

The hotspot flattening regime ends at about K = 420, when maxκ abruptly
turns downward. The warm worms regime ends at around K = 580, when we get
total hotspot suppression and the two branches merge. The bumpy pattern in the
intermediate regime is consistent with the notion that warm worms is not a stable
regime. Sudden changes in maxκ occur at transition points in the topology of the
worms, as shown in the inset images.

We have not plotted minκ as part of Fig. 5. For the dashed line minimum and
maximum coincide, while for the solid line the minimum is 0 until the branches
merge, at which point it joins them. In all our simulations, if minκ ever exceeds 0
the system ultimately converges to homogeneous equilibrium.

4.3. Return to linear stability. We now investigate Proposition 2.8 numerically.
For a given value of K, consider the initial condition A(x, 0) = Ã+ εf(x), ρ(x, 0) =

ρ̃+ εf(x), where ε is a small positive parameter, f is a Fourier perturbation, and Ã
and ρ̃ are the homogeneous equilibrium values of A and ρ for the given parameters,
including K, given in (16). Proposition 2.8 tells us that, for a small enough value
of ε, κ will be nonzero everywhere. The only steady states we have observed in
which the police deploy everywhere is the homogeneous steady state; that is, in all
observed cases where κ is eventually supported throughout Ω, (A, ρ) converges to

(Ã, ρ̃).
We can ask then, given K, what critical value of ε separates the regimes where

the system converges to (Ã, ρ̃) or remains spatially heterogeneous. Fig. 6 shows
this critical value ε∗(K) for several values of K. We found this value numerically,
by doing a binary search through different candidate values and then running the
scheme described above. The relationship between K and ε∗(K) appears linear.
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Figure 5. Data gathered from solutions of (8-10) with η = 0.03,
A0 = 0.5, B = 2.5. For different values of K, the maximum value of
κ at time t = 1000 is plotted for two classes of solutions. The solid
line comes from solutions seeded with an initial condition of stable
hot spots. The dashed line comes from solutions seeded with the
homogeneous equilibrium values (16). Inset pictures are snapshots
of A.

4.4. Comparison with the discrete model. We now implement police within
the discrete, stochastic crime model introduced in [19] and described briefly in sec-
tion 1.2. As in the continuous model, police should decrease the rate at which
new criminals enter the system and discourage existing criminals from committing
crimes. The former effect is accomplished by replacing the constant criminal birth
parameter Γ in (3) with the spatially varying d(κ(x, t))Γ. The latter effect is ac-
complished modifying the strike probability specified in (1):

ps(x, t) = 1− e−d(κ(x,t))A(x,t)dt.

All that remains is the rule for choosing κ. In the discrete model there is no
continuous criminal density ρ, only the integer-valued number of criminals n. Using
nA in the place of ρA in the objective function for κ produces a discontinuous
κ whose support is highly irregular. It also implies that the police know where
every criminal is at any given time, rather than the overall distribution of criminals
represented by ρ. Instead we use A2, which like ρA is steeper than A but follows
its pattern of high and low values. At time t κ is chosen by

κ = arg min

{ N∑
i,j=1

d(ki,j)Ai,j(t)
2 : k ∈ RN×N , ki,j ≥ 0,

N∑
i,j=1

ki,j = K

}
.
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Figure 6. Given police resources K, ε∗(K) is the critical ampli-
tude of the Fourier perturbation in an initial condition for (8-10).
For values of ε below ε∗(K), the system converges to homogeneous
equilibrium. For values of ε above ε∗(K), the system remains spa-
tially heterogeneous.

The algorithms described in section 3 can be used here, with f = A2 instead of
f = ρA.

Fig. 7 shows snapshots of the attractiveness A from numerical simulations of the
discrete model with police. We begin with (a), a state with stationary hot spots.
Then in (b), (c), and (d) we add 300, 500, and 700 police, respectively, and let time
run, as in Fig. 3. We see several characteristics shared with the continuous system
as shown in Fig. 3. In particular, (c) shows a “warm worms” regime arising in the
discrete model, as well. The worms evolve differently than in the continuous system
because of the discrete system’s stochastic nature.

5. The radial problem for small police forces. The first behavior regime (flat-
tened hot spots) is represented in Fig. 5 to the left of K ≈ 400. For small K the
police are concentrated entirely within the hot spot centers, and the increase in
maxκ is faster than K1/2. To better understand this small-K behavior we focus on
the case of a single hotspot in steady state when total police resources K is small.
For simplicity we take d(k) = e−k for this section. As in [15], replace ρ with the
transformed variable V = ρ/A2 to simplify the ODEs. Now d(κ)V A3 represents the
total crime at a location.

5.1. Restatement as a boundary-value problem. The governing equations are
radially symmetric, so any such solution should be radially symmetric. Changing
the spatial coordinates to radial and assuming a steady state, we have the ODE
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Figure 7. Plots of the attractiveness A from numerical solutions
of the discrete system with police. In all cases A0 = 1

30 , η = 0.03,

ω = 1
15 , θ = 0.56, Γ = 0.02, d(k) = e−k. (a) Stationary hot spots

without police (b) The same system at time 400 after K = 300
police were introduced at time 0. (c) K = 500, t = 400. (d)
K = 700, t = 400.

system

0 = (rAr)r + d(κ)V A3 −A+A0

0 = (rVrA
2)r − d(κ)V A3 + d(κ)B

κ = (d′)−1(−λ/ρA)χU(λ,ρA)

where λ > 0 satisfies ∫
U(λ,ρA)

(d′)−1(−λ/ρA)r dr = K.

K can be rescaled by 2π without loss of generality.
The notion is that we have a hotspot centered at the origin, so total crime should

be decreasing in r until it reaches a trough, say at r = β, whose value would in
the full two-dimensional system be determined by the proximity of other hot spots.
Because V A3 is decreasing and K is small, we can predict that U(λ, ρA) will be
an interval with one endpoint at the origin and the other endpoint at some b ∈
(0, β). Furthermore, we can take advantage of Corollary 2.7 to simplify d(κ)V A3 =
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V (b)A(b)3 within (0, b). We therefore have a boundary-value problem:

0 = η
r (rAr)r + V (b)A(b)3 −A+A0 if 0 < r < b, (39)

0 = 1
r (rVrA

2)r − V (b)A(b)3 +B V (b)A(b)3

V A3 if 0 < r < b, (40)

0 = η
r (rAr)r + V A3 −A+A0 if b < r < β, (41)

0 = 1
r (rVrA

2)r − V A3 +B if b < r < β, (42)

K =

∫ b

0

log

(
V A3

V (b)A(b)3

)
r dr (43)

The boundary conditions are A′(0) = V ′(0) = A′(β) = V ′(β) = 0 and A and V
continuous across b. We have also specified that the hotspot peaks at 0 and troughs
at β.

Next we show that regular solutions to this boundary-value problem are regular
at the boundary. First note that a simple analog to Theorem 2.2 holds for this
radial problem, by parallel reasoning.

Proposition 5.1. Any solution (V,A) to the boundary-value problem that is C2 in
(0, b) and C2 in (b, β) is C2 in (0, β).

Proof: It suffices to show that V and A are C2 across b. It is given that V and
A are continuous across b. Furthermore, because d(κ) is a continuous function of r
by Proposition 2.2, d(κ)V A3−A+A0 is a continuous function of r. Thus η

r (rAr)r
is continuous through b, and hence so is (rAr)r. This means that the antiderivative
rAr is C1 around b, and hence Ar is C1 at b. Thus A is C2 around b.

Likewise, −d(κ)V A3 + d(κ)B is continuous at b, so (rVrA
2)r is. Thus VrA

2 is
C1. We just showed A is C2, so Vr is C1. Thus V is C2.

In particular, Proposition 5.1 allows us to use a similar numerical scheme to that
used on the full 2D problem without treating the boundary specially. We outline
the numerical method in the next section.

We conclude by noting briefly that (39) has a general solution in terms of a Bessel
function of the first kind, namely

A(r) = A0 + V (b)A(b)3 + (A(0)−A0 − V (b)A(b)3)J0(ir/
√
η).

Taylor coefficients for a series solution for V in (0, b) can be derived from (39) and
(40).

5.2. Numerical method. We compute solutions to (39-43) by running a fixed-
point iteration, essentially simulating the time-dependent equations until they reach
steady state. At each step we must solve a finite difference problem and an opti-
mization problem. Our initial condition is a low trough away from the origin and a
peak at the origin, so that with the right choice of parameters the steady state will
be a hot spot centered at the origin.

The finite difference solver is based on the same transformation (34-35) used in
the 2D problem. The only extra difficulty is the degeneracy of the radial Laplacian
at the origin. Here we employ standard techniques for dealing with degenerate
diffusion, following [24]. If our domain is partitioned into a grid by 0 = r0 < r1 <
r2 < · · · < rN = β, then the discrete Laplacian operator 4r is defined by

(4ru)i =
2

r2
i+1 − r2

i

(
2ri+1

ri+2 − ri
(ui+1 − ui)−

2ri
ri+1 − ri−1

(ui − ui−1)

)
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Figure 8. maxκ(·, t) vs. K at t = 500 for the two-dimensional
problem (solid) and the radial problem (dashed).

for 1 ≤ i ≤ N − 2. With Neumann boundary conditions the edge terms are

(4ru)0 =
8

r1r2
(u1 − u0),

(4ru)N−1 = − 2

r2
N − r2

N−1

2rN−1

rN − rN−2
2(uN−1 − uN−2).

Offsetting the extra difficulty of implementing degenerate diffusion, the above op-
erator 4r is tridiagonal, so the implicit part of each finite difference step can be
solved in O(N) time. Also, it can be defined on grids of variable length.

The optimization solver is essentially the same as in the 2D exponential case,
relying on the identity (38). The radial solver is actually simpler because total
crime is decreasing on (0, β), and therefore we needn’t sort the grid points every
time step.

Because we plan to investigate the problem for small values of K, we choose the
grid to be fine near the origin and coarser away from the origin. This will give us
a more precise κ contour.

5.3. Results. Fig. 8 shows that the radial problem reproduces the small-K be-
havior of the full 2-D problem. The solid line is the same as in Fig. 5, while the
dashed line shows results from the radial simulation. The shapes are nearly iden-
tical for small K. They settle to lines of different slope for large K only because
their domains are different. The radial problem’s transition between steady states
occurs at about K = 550, when the two-dimensional problem is still in the “warm
worms” regime. This may suggest that the warm worms are indeed a metastable
state connecting two stable equilibria (flattened hot spots and homogeneity).
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6. Conclusion. We have introduce into the Short model police behavior that seeks
to minimize crime. The equations can be restated as a free-boundary problem,
with the boundary being a level set of the crime level ρA determined by λ, the
dual variable associated to the L1 constraint on police resources. Given enough
police, the linear instability in the original Short model is stabilized. We present a
numerical scheme and discuss patterns in the results.

Several of our results suggest that even a temporary infusion of police into a
crime-ridden area can reduce crime. In section 4 we provided sudden infusions
of police to an area with existing hot spots of crime. For the initial condition
considered in Fig. 5, when K was greater than about 650 the hot spots were wiped
away completely by t = 500. However, the case of Fig. 3(c) is instructive: if there
are not enough police, the effect can be to reduce crime overall but greatly increase
the area over which criminals act. This recalls the discrete version of the original
Short model, which in some parameter regimes had migratory hot spots. This may
be an undesirable result for policymakers. Even if the “warm worms” regime is a
metastable transition state toward homogeneous equilibrium, the transition would
occur over a timescale that policymakers may find unacceptable.

Indeed, the status of the “warm worms” regime remains an open problem. An
investigation of the bifurcation theory of the two stable states may provide some
clues. Another open problem is the well posedness of the free-boundary problem
(8-12). We saw that police generally stabilize the hot spots, but regularity may
be lost across the free boundary. If a two-dimensional analogue to Proposition 5.1
holds, then there is at least some regularity. Sharper results on the linear stability
of the two-dimensional system would also be welcome.

Several extensions of this work also present themselves. We assume here that po-
lice react instantaneously to changes in the total crime ρA. In practice they receive
delayed, incomplete, noisy indicators of the amount of crime. Even with improved
information, police officials generally make decisions at regularly scheduled meet-
ings rather than continuously. One possible way to model this would be to force
κ to be piecewise constant in time, only changing at certain prescribed values of t,
and to force police to optimize against an outdated picture of ρA.

Though police presence in (8-12) modifies criminal perception and behavior to
some extent, the core of their dynamics still arises from the random walk model
described in section 1.2. Routine activity theory suggests that criminals are not as
strategic as police, but it also suggests that they are at least somewhat strategic as
they evaluate their opportunities. A more complete treatment would consider the
interplay between criminal and police strategies using the tools of game theory.
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