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Abstract

We study bidensity suspensions of a viscous fluid on an incline. The particles migrate within the fluid due to a combi-
nation of gravity-induced settling and shear induced migration. We propose an extension a recent model [N. Murisic,
B. Pausader, D. Peschka, and A. L. Bertozzi, Dynamics of particle settling and resuspension in viscous liquid films,
Journal of Fluid Mechanics 717 (2013), 203–231] for monodisperse suspensions to two species of particles, resulting in a
hyperbolic system of three conservation laws for the height and particle concentrations. We analyze the Riemann prob-
lem and show that the system exhibits three-shock solutions representing distinct fronts of particles and liquid traveling
at different speeds as well as singular shock solutions for sufficiently large concentrations, for which the mechanism is
essentially the same as the single-species case. We also consider initial conditions describing a fixed volume of fluid,
where solutions are rarefaction-shock pairs, and present a comparison to recent experimental results. The long-time
behavior of solutions is identified for settled mono- and bidisperse suspensions and some leading-order asymptotics are
derived in the single-species case for moderate concentrations.
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1. Introduction

Non-colloidal suspensions of particles in a shear flow
exhibit complex interactions within the mixture. These
suspensions have many applications, for example in mod-
eling spiral separators used in the mining industry [4]. For
suspensions on an incline, the balance of the competing ef-
fects of settling due to gravity and shear-induced migration
leads to an interesting phenomenon [16, 1]: for low concen-
trations, there is a ‘settled’ regime in which the particles
and fluid separate into distinct fronts, while for sufficiently
high concentrations there is a ‘ridged’ regime in which only
a single particle-rich front appears. Murisic et. al. [11, 12]
developed a model for monodisperse suspensions on an in-
cline based on the diffusive flux model of Acrivos [8, 15],
which was successfully used to predict the experimentally
observed settled and ridged regimes and the time evolution
of the fronts. In this model the particles are assumed to
be in equilibrium in the normal direction and the leading
order system for the film height and particle concentra-
tions form a hyperbolic system of conservation laws with
fluxes are determined by a system of ODEs determining
the normal equilibrium of the particles. Analysis of hy-
perbolic systems arising for bidisperse settling have been
extensively studied in the context of other models, for in-
stance in the case of settling in a quiescent fluid [2], though
not in the incline geometry where we are interested in the
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long-term dynamics of the fronts rather than the settling of
particles to the substrate. The Riemann problem has been
studied for the monodisperse model [9, 20], showing the ex-
istence of double shock solutions in the settled regime and
a transition to singular shocks that occurs in the ridged
regime, where particles accumulate at the front. The cor-
responding rarefaction-singular shock solutions that arise
for constant volume initial conditions have also been stud-
ied [19].

In this work, we propose an extension of the model to
bidisperse suspensions by employing a modification of the
diffusive flux model to multiple species [17, 18] and present
some preliminary with comparison to recent experiments
that build on previous work to identify the qualitative be-
havior of the fronts in the incline problem [6]. In section 2,
we present the model. In section section 3, we describe
the Riemann problem for the system and some salient
features that are fundamental to understanding the sys-
tem. Due to the increased complexity of the system, it is
more difficult to obtain analytical results, so we describe
the system qualitatively and through numerical simula-
tions. We demonstrate that the essential difference from
the single species problem is the presence of an additional
trailing shock delimiting the transition from heavier to
lighter particles, while the remaining two shocks have a
similar structure to their monodisperse counterparts. In
section section 4, we consider fixed-volume solutions cor-
responding to results from experiments in which the par-
ticles settle to the substrate. We note that the Riemann
problem is still relevant here to describe local shock so-
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lutions. The full solution has the form of a sequence of
rarefaction-shock pairs corresponding to different fronts
for the particles and fluid. In section 5 we derive theo-
retical results for the long-time behavior of monodisperse
suspensions in the settled regime, where the concentration
of particles uniformly approaches a critical concentration
independent of initial conditions. The asymptotic behav-
ior of the front positions is derived, extending the existing
results for the high-concentration [19, 20] and dilute limit
[12]. The results are then extended qualitatively to the
bidisperse problem.

2. Model

Figure 1: Left; schematic for the incline problem. Center and right;
images from a typical experiment [10] with α = 20 deg, concentra-
tions φ1 = φ2 = 0.15 of each particle type and at times t = 60 s and
t = 800 s. The dimensions in the image are 0.14 m× 0.5 m.

Our model is an extension of the dynamic model pro-
posed by Murisic et. al. [12] to multiple species of parti-
cles, making use of the equilibrium theory for the diffusive
flux model for bidisperse suspensions [18, 5]. Consider a
mixture of a fluid with large viscosity µ` and density ρ`
and two species of negatively buoyant particles with diam-
eter d and densities ρp,1, ρp,2 satisfying ρ` < ρp,1 < ρp,2.
The geometry of the system is summarized in Figure 1.
The mixture is assumed to be Newtonian with an effective
viscosity µ(φ) that depends on the particle concentration
φ and density ρ(φ) = (1 − φ)ρ` + φ1ρp,1 + φ2ρp,2. The
equations for momentum and mass conservation are

ρ
∂u

∂t
+ ρu · ∇u = ∇ ·

(
−pI + µ(∇u + ∇uT )

)
+ ρg, (1)

0 =
∂ρ

∂t
+∇ · (ρu) = 0, (2)

0 =
∂φi
∂t

+ u ·∇φi + ∇ · J i, i = 1, 2. (3)

The expression for viscosity used here is the Krieger-
Dougherty relation µ(φ) = µ`(1 − φ/φmax)−2. We note
that the order of the zero of µ−1 at φ = φm, which de-
pends on the exponent in the relation, has some effect of
the asymptotics for the system that will be discussed in
section 4. The flux includes terms due to polydisperse

settling [17] and shear-induced diffusion, following the dif-
fusive flux model of Acrivos [7, 15]. This flux is

Jshear = −d
2Kcφ

4
∇(γ̇φ)− d2

4

Kvγ̇φ
2

µ(φ)
∇µ(φ)

where d is the particle diameter, γ̇ is the shear rate. and
the constants Kc ≈ 0.41 and Kv ≈ 0.62 are empirically
determined. The flux due to settling for multiple species
is

Jsettling =
d2g

18µ`

M0(ρi − ρ`) +MI

2∑
j=1

(ρp,j − ρ`)
φi
φ

 ,

where M0 = 1− φ
φm

and MI = Φ(φ) are the self- and inter-

action mobilities [17, 18]. Lastly, we include a flux Jtracer
(which is small in magnitude) due to shear-induced diffu-
sion [18] that causes mixing between the particle species
due to a relative concentration gradient:

J tracer,i = − γ̇d
2

4
Dtr(φ)φ∇

(
φi
φ

)
.

The derivation of the model equations follows a stan-
dard lubrication argument with scales H/L � (d/H)2 �
1, which asserts that the settling velocity of the parti-
cles in the z-direction is much greater than that in the
x-direction. This limits the scope of the model to param-
eter regimes in which the particles equilibrate quickly in
the normal direction and in which the film height is not
too small relative to the particle size. As a consequence
of the scaling, the leading-order balance in(3) is simply
Jz,i = 0, i.e. the particles are in normal equilibrium. The
equilibrium condition then provides a system of ordinary
differential equations in z for the particle concentration φ,
proportion of lighter particles X = φ1/φ and shear stress
σ = µ(φ)∂u∂z :

σ′ = −1− φρ(X), (4a)

X ′ = c2
1

σ

1

Dtr(φ)
X(1−X)

φmax

φmax − φ
, (4b)

φ′ =
(φmax − φ)

(
φ+ ρ(X)

(
φ2 −B(1− φ)

))
σ(φmax − (1− c1)φ+ c1φ)

. (4c)

Here ρ(X) = ρs,1X + ρs,2(1 − X) is an average parti-
cle density, B = 2 cotα

9Kc
describes the balance of gravity-

induced settling and shear-induced migration and c1 =
2(Kv/Kc − 1). The velocity profile is obtained from the

shear stress as u(s) =
∫ s′

0
µ(φ(s′))−1σ(s′)ds′.

To formulate the dynamic equations, define depth aver-

aged concentrations φi =
∫ 1

0
φ̃i(s, x, t)ds with φ = φ1 + φ2

and X = φ1/φ using the scaled height s = z/h(x, t). Here-
after, we denote the non-averaged quantities (which de-
pend on z or s) with a tilde, e.g. φ̃(s;x, t) is the solution
to (4c) subject to a total concentration φ(x, t) and X(x, t)
at position x. The fluxes for the system obtained from the
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equilibrium solution are then, for i = 1, 2,

f(φ,X) =

∫ 1

0

ũds, gi(φ,X) =

∫ 1

0

ũφ̃ids. (5)

The next-order terms in the conservation equations (1)
and (3) lead to a system of hyperbolic conservation laws
for the film height h(x, t) and integrated particle density
ni = hφi:

0 =
∂h

∂t
+

∂

∂x
(h3f(φ,X)), (6a)

0 =
∂ni
∂t

+
∂

∂x
(h3gi(φ,X)), i = 1, 2. (6b)

Note that by setting g = g1 + g2 and n = n1 + n2 we get
a pair of conservation laws for the film height and total
number of particles, similar to the monodisperse problem
[12]. That system is not closed because g depends on the
concentration of both species, so the third equation is nec-
essary. However, the reduced system for h and n informs
much of the structure of the full problem, which allows the
existing theory to be applied to the bidisperse case.
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Figure 2: Fluxes for the system (6) as functions of φ for varying
X at α = 30 deg. Arrows indicate direction of increasing X, with
X = 0, 0.25, 0.5, 0.75, 1. The first row shows the particles fluxes g1
lighter) and g2 (heavier), and the second row shows the fluid flux
and the total particle flux g.

Before analyzing the Riemann problem we describe a
few salient features of the fluxes. In the clear fluid limit,
f = 1/3 is a constant and gi = 0 in accordance with the
Huppert model [3]. For sufficiently large concentrations
the fluxes vanish, i.e. there is a maximum packing fraction
φm such that f(φm) = g(φm) = 0. In addition, for each
X there is a unique critical concentration φc = φc(X) ∈
(0, φm] such that φcf(φc, X) = g(φc, X). This balance will
appear frequently in the analysis, so we define

R(φ,X) = φf(φX)− g(φ,X). (7)

Physically, the quantity R represents the difference be-
tween the difference in effective fluid and particle veloci-
ties, so if R > 0 then the particles and fluid will tend to
separate into distinct fronts and aggregate at a single front
if R < 0. In the context of the model, we call a state with
some concentration φ and X ’settled’ if φ < φc (i.e. if
R < 0) and ’ridged’ if φ > φc, corresponding to the two
regimes observed in experiments.

Plots of the fluxes f (fluid) and gi (particle i), along
with g = g1 + g2, are shown in Figure 2 as functions of
φ and X. Hereafter, unless otherwise noted, computed
results refer to α = 30 deg with parameters corresponding
to experiments as in [5]. A few properties of the fluxes are
worth noting here. Most importantly, the fluid flux f is
insensitive to changes in X; it only varies a small amount
up to moderate φ and is nearly constant in X for when
φ > φc,2 = φc(0) the critical concentration for the heavier
particles from the monodisperse theory [11]. Similarly, the
total particle flux g is nearly constant in X for φ > φc,2
as well, although it varies considerably with X below this
threshold (as do the fluxes for each species).

For the fluxes of the equilibrium model, we can look
at ∂f

∂X in more detail to try to understand why it tends to
be small, although are more precise estimate is currently
lacking. Consider a solution (φ̃, X̃, σ̃) to (4) with a given
total concentration φ and X. The density difference ∆ρ
is not small, so one might expect there to be a significant
dependence on ρ. According to the equilibrium theory (as
a consequence of (4b), the ODE for X̃), the particle layers
are mostly stratified in equilibrium, so we can approximate

X̃(s) =

{
0 s < st

1 s > st

for some transition point st (past which there are no heav-
ier particles). From (4a), the change in shear stress with
X is then

dσ̃

dX
(s) =

{
(ρ1 − ρ2)φ s < st

0 s > st
.

The change in f is given by the expression

∂f

∂X
= −∆ρφ

∫ st

0

(1− s)
(

1− p̃hi(s)

φm

)2

ds

− 2

φm

∫ 1

0

(1− s)

(
1− φ̃

φm

)
σ
∂φ

∂X
ds.

The first term is due to the change in shear stress and is
negative. The second term represents the change in f due
to the concentration profile change (which affects the vis-
cosity). The sign of ∂φ

∂X̃
is negative for s < st (an increase

in the number of lighter particles will lead to a smaller to-
tal concentration near the substrate). While neither term
is particularly small in general, they tend to oppose each
other. In the ridged regime, where φ is increasing, we ex-
pect ∂f

∂X̃
to be small (as is evident in Figure 2) because
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µ−1 and d(µ−1)/dφ will both be small by to the viscosity
relation.

3. Riemann Problem

We now consider the Riemann problem for the bidis-
perse system. It is convenient to write the system in
vector form, so we define U = (h, n1, n2)T and F (U) =
h3(f, g1, g2)T so that the system is

∂U

∂t
+

∂

∂x
F (U) = 0. (8)

The dependence of the flux F on h enters only in the lead-
ing factor of h3. If we define a scaled flux F = (f, g1, g2)T

then the Jacobian of the system is h2J̄ where J̄ depends
only on φ and X and is given by

J̄ =

(
3F̄ − φ∂F̄∂φ

∣∣∣∣ ∂F̄∂φ + 1−X
φ

∂F̄
∂X

∣∣∣∣ ∂F̄∂φ − X
φ
∂F̄
∂X

)
. (9)

Hyperbolicity of the system has been verified numerically
over the relevant parameter regime by checking the eigen-
values of (9) over all (φ,X). We first consider Riemann
initial conditions

U(x, 0) =

{
UL x < 0

UR x > 0
(10)

(the subscripts indicate the state, e.g. L for left state). Of
interest in particular are triple shock solutions, that is, a
sequence of shock connections UL = U0 → U1 → U2 →
U3 = UR satisfying the Rankine-Hugoniot condition

F (UL)− F (UR) = s(UL − UR) (11)

Solutions to (11) for a given left state UL are a family of
three curves (k-shocks) corresponding to the eigenvalues
λ1 < λ2 < λ3 of the Jacobian (9). We impose on each
shock Ui−1 → Ui with speed si the Lax entropy condition

λi(Ui−1) > s > λi(Ui), λi+1(Ui) > s > λi−1(Ui−1). (12)

Shock curves emanating from a state U are denoted here
by S±i (U) where S−i is the branch satisfying (12). Precise
results are somewhat difficult to obtain due not only to the
equilibrium ODE, but also to the three-equation system,
so we give a qualitative description. As in the monodis-
perse problem [20], there are three types of triple shock
solutions. Typical solutions in each case are shown in Fig-
ure 3 in conserved variables (h, n1, n2). First, if the concen-
tration of particles is small, the film height is decreasing.
For larger concentrations (in the ridged regime), there is
a large intermediate height, corresponding to a buildup of
particles and fluid near the leading front. For some initial
conditions, the two shocks merge together to form a sin-
gular shock where the particle concentration reaches the
maximum packing fraction. The new feature of the bidis-
perse system is the presence of the second species, which

provides the additional trailing shock. In experiments, we
therefore expect to see sharp transitions from a region with
heavier particles, to one with lighter particles, and then
possibly a clear fluid front depending on the concentration
of the mixture, which is what is observed in experiments
(for example, in Figure 1).
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Figure 3: Typical shock solutions for (h, n1, n2) with initial states
hL > hR, uniform concentration φL = φR = φ0 and XL = XR = 0.5
in the domain. From left to right: a triple shock solution with φ0 =
0.3 and intermediate state h∗ < hL, a solution for large concentration
φ0 = 0.55 with h∗ > hL and a shock/singular shock solution due to
a small right state hR.

3.1. First shock

We consider now in detail the 1-shock for the bidisperse
system, which corresponds to the front of heavier particles.
A family of numerically computed shock curves (for differ-
ent φL) are shown in Figure 4. To a good approximation,
the curve for small φL represents a jump only in X, with
h and φ constant. There is only a small variation in h
(representing a small downward jump in film height that
can be seen in Figure 3). Note that the admissible states
U1 along the shock curve have X > XL, an increase in
the concentration of lighter particles. Physically, this rep-
resents the lighter particles and fluid separating from the
slower front of heavier particles which lags behind while
keeping the total concentration across the jump approxi-
mately constant. However, as evident in Figure 4, there
is some variation in h, which is quite prominent as φL be-
comes large. This is required by the system; it is evident
from the expression for the Jacobian (9) that the vector
(0, 1,−1) in conserved variables points in the X-direction
and is a right eigenvector of J only if ∂f

∂X and ∂g
∂X are both

zero (this is the degenerate case where h and n would form
a system independent of X). While ∂f

∂X is small, the same
is not true of the latter, so the 1-shock curve cannot only
be a jump in X and must have some change in h or φ.
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Interestingly, the deviation in the h (and φ) directions
increases considerably near and beyond the critical concen-
tration. This can be seen by assuming a formal expansion
h = hL + h1 + · · · , φ = φL + · · · with h1 � hL where
h1 � hL and the ellipses indicate higher order terms. In
this case the g1 equation in (11) gives an estimate for the
shock speed:

s

h2
L

≈ 1

φL

g1(φL, X)− g1(φL, XL)

X −XL
. (13)

Notably, g1 is approximately quadratic in X, which implies
that s scales almost linearly with the proportion of lighter
particles. Solving for h1 gives the simple approximation

h1

hL
≈ 1

3

(φf − g)
∣∣X
XL

(φf − g)|XL
.

This suggests that h1 depends on the jump in R = φf − g
from the left to right state. The effect can be seen in
Figure 4 (plotting the 1-curve for varying φL and fixed
XL = 0.5, hL = 1). As φL comes close to the ridged
regime, the shock curves begin to bend considerably in h
due to a large relative change in R (noting that R(φ) = 0
in the transition from settled to ridged).
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1  
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Figure 4: 1-curves for fixed XL = 0.25 and φL varying from 0.3 to
0.55 in the non-conserved variables (h, φ,X). The curves are nearly
parallel to the X axis for φL in the settled regime, representing a
transition from mostly heavier to mostly lighter particles with little
change in height. For large φL, the change in height can be greater
if the intermediate state contains a mixture of both particles.

3.2. Second and third shocks

Next, we consider the remaining two shocks. The posi-
tion of the first intermediate state U1 depends on the right
state, which is evident from the family of 2-curves emanat-
ing from the 1-curve S−1 (UL) (shown in Figure 5). The rel-
evant branch of the curve S−2 connects states U1 ∈ S−1 UL
to a second intermediate state with a smaller height and
total concentration. If φR is small (or XR is large), i.e.
there are few heavy particles downstream, then X1 must
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Figure 5: Riemann problem for φ in the settled regime in the vari-
ables (h, φ,X), in three dimensions (left) and projected onto the
(h, φ) plane (right). The plots show the 1-shock curve (black) from
the given left state, family of 2-shock curves emanating from it, and
3-shock curve associated with the given right state.

be near one, so that the last intermediate state U2 has φ2

sufficiently small (note that φ2 → 0 as X1 → 1).
The family of 2-curves generates a surface in the (X,φ)

plane; a triple-shock solution will exist if the curve of ad-
missible states U2 with U2 → UR intersects this surface.
The surface, along with a typical 3-curve is shown in Fig-
ure 5. We see that so long as XR is not too large, the
3-curve will indeed intersect the surface. From the (h, φ)
projection (see right panel in Figure 5, it is clear that
we also require (hR, φR) to be within a certain region, in
agreement with the monodisperse theory [9]. If (hR, φR)
lies outside this region, then the 3-connection is instead
a rarefaction: U0 →S U1 →S U2 →R UR. Rarefaction
solutions are considered in more detail in the context of
constant-volume conditions in section 4.

In the case of a ridged left state, the 2-curves satisfying
Equation 12 instead have h increasing rather than decreas-
ing; the change in sign of φf − g changes which branch of
the 2-curve satisfies the entropy condition (this is illus-
trated in Figure 5, where both S−2 and S+

2 are shown).
The structure of the curves is somewhat more interesting
(see [20]) and the asymptotic form is known in the limit
as φ → φm. As φ increases, the value of hL increases and
diverges to ∞, and for sufficiently large φ, the 2 and 3−
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curves no longer intersect as h→∞, which leads to a sin-
gular shock. The monodisperse theory applies in this con-
text because the curves in the bidisperse problem collapse
almost exactly onto the (h, φ) plane. Again, as in the set-
tled case, the 2-curves form a surface in the (φ,X) plane,
so that the existence of an intersection (h∗, φ∗) in the (h, φ)
plane implies there exists some state U1 (by choosing the
appropriate X1) such that this is actually an intersection
in the full three-dimensional system. Also, we can see that
X → 1 as φ→ φm for the 2 and 3-curves; this implies that
only lighter particles aggregate at the singular ’front’ (to
be expected due to the increased tendency to settle of the
heavier particles [5].
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Figure 6: Riemann problem for φ in the ridged regime projected
onto (h,X) and (h, φ) for left and right states that produce a triple
shock with large intermediate height. For smaller choices of hR,
the 3−curve (green) will not intersect the family of 2−curves (blue),
leading to a singular shock solution, just as in the monodisperse case
[20].

4. Constant volume solutions

We now look at constant volume solutions to the sys-
tem (6) in the settled regime. For simplicity, the ini-
tial conditions are taken to be h(x, 0) = 1 for x ∈ [0, 1]
(zero otherwise) and n1(x, 0) = φ0X0h(x, 0), n2(x, 0) =
φ0(1 − X0)h(x, 0), corresponding to a reservoir of fluid
(normalized to length and height one) with some initial
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Figure 7: Typical profiles for constant-volume solutions to the mono-
and bidisperse system with α = 30 deg and φ0 = 0.3, shown at
t = 500. The initial conditions are a volume of mixture of height and
length one.

volume fraction φ0. The study of the Riemann problem
shows the general structure of solutions as sequences of
shocks. The constant-volume solution is instead a series
of rarefaction-shock pairs with fronts xp(t) (the particle
front, past which n = 0) and xf (t) (the fluid front). For
the bidisperse system, there are two particle fronts xp,2
and xp,1. Typical solution profiles in both cases are shown
in Figure 7.
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Figure 8: Front positions for the bidisperse system with fixed volume
initial conditions for angles α = 15, 20, 25 deg (top to bottom) and
settled concentrations φ0 = 0.2, 0.3 (left to right). The solid lines
(with dots) are experimental data and dashed lines are numerical
solutions.

We can compare, at least qualitatively, the theory pre-
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sented here to experimental data. It is challenging to
construct the Riemann initial conditions experimentally
due to the tendency of particles in the reservoir to set-
tle towards the maximum packing fraction before being
released (so that they might not resuspend at all). Exper-
iments testing this model have instead focused on the case
of fixed volume initial conditions. Previous investigations
have explored the transition between settled and ridged
regimes [6]. The experimental data considered [10] has
been collected for angles and concentrations within the set-
tled regime (the rarefaction-singular shock pairs expected
in the ridged regime [19] have not been fully explored in
experiments). The data tracked is the position of the three
fronts obtained from imaging, as the height and concentra-
tion profiles are difficult to determine accurately. Due to
fingering instabilities (visible in Figure 1, particularly for
the leading fluid front), the front positions are estimated
using an averaging procedure. In addition, because the ex-
periments begin with a well-mixed suspension, some time
is required for equilibrium to be reached. This introduces
a parameter t∗, the time at which the particles reach their
equilibrium state. While an estimate can be obtained from
a scaling argument, we estimate t∗ directly, essentially us-
ing it as a fitting parameter. The suspension is evolved as
well mixed until t∗, (which is within the range of 20 to 40
seconds) and the equilibrium model is used thereafter. A
more thorough understanding of the transient phase would
be necessary to obtain both a better comparison, and is of
interest for future work.

A series of plots comparing the front positions are shown
in Figure 8. Solutions to (6) were computed numerically
using an upwind scheme, with the fluxes pre-computed
from the equilibrium equations(4). As expected, the three
fronts can be observed in the experimental data, and the
speed of the fronts is greater for larger angles and con-
centrations. The fluid front is predicted reasonably well.
However, the model appears to somewhat under-predict
the particle fronts in most cases, particularly for larger
angles where the transient phase is expected to be longer.
This may be particularly true for multiple species, as the
two types of particles must separate from each other as
well as from the fluid. While t∗ is estimated to be on the
order of one minute (so we would hope the model compares
well over most of the data), a second transient time might
be much later. A suspension that remains partly mixed
would behave differently, and for instance might explain
the increased speed of the observed front of heavier parti-
cles.

5. Asymptotic behavior

5.1. Long-term behavior: monodisperse

It is of interest to study similarity solutions that arise
as long time limits for these models. The simplest exam-
ple is the Huppert solution for a clear fluid, which predicts
a t1/3 scaling for the front position. We can analyze the

monodisperse system in detail to obtain the long-term be-
havior of the fronts and examine the effect of the addition
of particles to the t1/3 behavior of the Huppert model.
The theory for the dilute limit of the dynamic model was
studied in [12], where an exact solution for the rarefaction
can be found, and the particle front was shown to evolve
as xp = (Cpt)

1/3 + T0 + O(t−1/3) for some constant T0.
A similar behavior occurs in the high-concentration limit,
where one obtains a rarefaction and a singular shock [19]
and the exponent α in xf (t) ∼ tα is perturbed slightly
from 1/3 due to the accumulation of mass at the front.

We will show that the time scale at which the leading-
order asymptotics for the particle fronts become dominant
is quite large, and so it cannot be compared directly to the
current experimental data. The key observation, used in
[19] to approximate the rarefaction in the ridged regime,
is that the concentration within the first rarefaction ap-
proaches the critical concentration φc as t→∞. If we de-
fine φ(ξ) = n(ξ)/h(ξ), then it can be shown [19] that nec-
essarily φ(0) = limξ→0 n(ξ)/h(ξ) = φc if n(0) = h(0) = 0.
Since xp(t)/t → 0 as t → ∞, it must be that φ → φc
uniformly for x ∈ [0, xp(t)] as t → ∞. This suggests that
we should look for a solution to (6) with constant concen-
tration, and then study the linearization of φ about φc to
obtain the next-order correction.

To define this solution, let ξ = x/t and let λ(φ) be
the largest eigenvalue for (6) (note that λ depends only on
φ = n/h). The system only admits a rarefaction n(ξ), h(ξ)
with n/h constant if φ = φc, so the limiting value of φ is
independent of initial conditions - it is only a function
of the system parameters. This solution is, explicitly (as
noted in [19] for ridged solutions),

h(x, t) =


0 ξ < 0√
ξ/λc 0 < ξ < xp(t)/t√
ξ xp/t < ξ < xf/t

0 ξ > xf/t

(14)

where the eigenvalue is λc = 3f(φc). Setting r := φ0/φc,
the front positions are xp = (Cpt)

1/3 and xf = (Cf t)
1/3

with constants

Cp =
9

4
(3r2f(φc)), Cf =

9

4

(
1− r

(
1−

√
3f(φc)

))2

which can be obtained from particle and fluid conservation

φ0 = t

∫ xp(t)/t

0

n(ξ) dξ (15)

1 = t

∫ xp(t)/t

0

h(ξ) dξ + t

∫ xf (t)/t

xp(t)/t

√
ξ dξ. (16)

Plots of the limiting solution against numerical simulations
are shown in Figure 10. For physical context, in the model
of [12] with typical experimental parameters, 1500 units of
non-dimensional time corresponds to about 10 minutes, by
which point the particle fronts have traveled on the order
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of one meter along the incline. If the long-time behavior
with φ→ φc is correct, then we expect

lim
t→∞

xp(t)

xf (t)
= (3r2f(φc))

1
3

(
1− r(1−

√
3f(φc))

) 2
3

. (17)

In the dilute limit, the ratio (17) reduces to the result
derived by Murisic et. al. [12] with φc = B/2.

The behavior of the rarefaction near φc can then be
obtained by solving for the concentration φ in the first
rarefaction. Following [19], the ODE system for the rar-
efaction is (with λ′ = dλ

dφ )

h′(ξ) =
1

h

1

2λ+ λ′

f ′ (λ− 3f)
,

n′(ξ) =
1

h

λ− 3f + φf ′

2λf ′ + λ′(λ− 3f)
.

It follows from the above and the condition ξ = h2λ that

φ′ =
1

ξ

λ(λ− 3f)

2λf ′ + λ′(λ− 3f)
. (18)

This is a single ODE for φ; the appropriate boundary con-
ditions are φ(0) = φc as discussed earlier and φ(1) = φ0.
The entropy condition ensures that the denominator of
(18) is single-signed; we can check by computing the eigen-
value explicitly that λ− 3f < 0 for φ < φc and λ− 3f > 0
for φ > φc, so it follows that φc is the unique attracting
fixed point as ξ → 0 as expected. We can now linearize
(18) about φc and obtain h =

√
ξ/λ(φ) and n = hφ from

that computation.
There are two cases to consider here, since the fixed

point φc may equal φmax. The linearization depends on the
behavior of R(φ) as defined in (7), which satisfies R(φc) =
0. If φc < φm we assume in addition that R′(φc) < 0
with the inequality being strict; which should hold for any
reasonable model of the fluxes. However, R′(φm) = 0,
a consequence of the viscosity µ(φ) becoming infinite as
φ → φm; more precisely, R(p)(φm) = 0 if dp

dφp (µ−1) as
φ→ φm, which holds up to p = 2 in the equilibrium model
used here [20]. Thus there are two cases to consider for
the linearization, depending on whether the degeneracy is
present.

Note that for the incline problem, the critical concen-
tration increases with angle, so we can define α∗ to be the
angle for which φc = φm (if it exists). In the equilibrium
model we can find this exactly:

cotα∗ =
9φmKc

2ρs(1− φm)
(1 + ρsφm).

For typical experimental parameters, α∗ ≈ 15.4 deg, which
is well within the range of angles for which the model as-
sumptions are expected to be valid.

Case 1 (φc < φm):

The scaled eigenvalue λ is, explicitly,

λ = 3f − R′ + 2f

2
+

1

2

√
(R′ + 2f)2 − 12f ′R. (19)

Note that this implies (as claimed earlier) that λ ≤ 3f for
settled solutions and λ ≥ 3f for ridged. With p = φ− φc,

λ− 3f = −3f ′(φc)
R′(φc)

R′(φc) + 2f(φc)
p+O(p2).

The linearization of (18) about φc is therefore

p′ = η
p

ξ
+O(p2), η := −3

2

R′(φc)

R′(φc) + 2f(φc)
(20)

so p ∼ Kpξ
η to leading order for some constant Kp. The

prefactor Kp is determined by the constraint φ(1) = φ0,
but is difficult to obtain explicitly since the approximation
is only valid as ξ → 0. We do have, however, the simple
approximation Kp ≈ φ0 − φc.

In the equilibrium model it is straightforward to com-
pute the exponent η by exploiting the fact that φ is con-
stant in z at the critical concentration; the result is

η = − β

2(β + 2)
, β :=

1 + 2ρsφc +Bρ

(1 + c1
φm

φm−φc )(1 + ρsφc)
. (21)

Note that η → 0 as α → α∗ from above since φc → φm,
so the particle concentration will tend to converge more
slowly as φc increases.

Case 2 (φc = φm):

Assume that R′(φm) = R′′(φm) = 0. and set p = φ −
φm. Further assume the expansions

R(φ) =
a

6
p3 +O(p4), f ′(φ) = bp+O(p2)

Expanding the expression (19) for λ gives

λ = 3f − R′ + 2f

2
+

1

2

√
(R′ + 2f)2 − 12f ′R

=

(
3b

2
− a/2

)
p2 +O(p3).

The ODE for φ, linearized now about φm, is similar to
Case 1 with a different exponent:

p′ = η
p

ξ
, η = − a

4b− 2a
. (22)

so p ∼ Kpξ
η. In the equilibrium model, values for a and

b have been derived explicitly [20], which allows the ex-
ponent to be written in a form analogous to Case 1. The
result is

η = − β

2(β + 2)
, β :=

φm(1 + ρsφm) +B(φm − 1)

c1φm(1 + ρsφm)

which arise from linearizing (4) about φm. The exponent
η for both cases is plotted in Figure 9; note that there
is indeed an angle α∗ ≈ 15.4 deg such that φc = φm for
α < α∗ according to the model.

We note that β > −1 is required to ensure that 0 < η <
1/2. But β → −∞ as α→ 0, so there is an α0 such that the
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above estimate is not valid for α < α0 where α0 ≈ 7 deg
is quite small. Due to the dominance of settling at small
angles and the slow speed of propagation, angles in this
small range have not been considered in previous works; it
may be of limited interest because the applicability of the
model is questionable in this regime.

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

α

η

φ c < φ m

φ c = φ m

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

α

γ

Figure 9: Plot of the exponent η in φ(ξ) ∼ Cξη (left) and growth
rate γ of the particle front xp(t) ∼ (Cpt)γ against angle α for the
equilibrium model when φc < φm (solid, from Eq. (20)) and φc = φm
(dashed, from Eq. (22)). The transition occurs at α∗ ≈ 15.4 deg; for
α > α∗, the value of γ is 1/3, and for α < α∗ it is given by Eq. (23).

5.2. Front positions: monodisperse

This can be used to obtain the desired asymptotic be-
havior for the front positions. Again, we consider the two
cases separately.

Case 1 (φc < φm):

Expanding h2λ = ξ to first-order in p using (20) yields

h(ξ) =
ξ1/2√
λ(φc)

− Kpλ
′(φc)

2λ(φc)3/2
ξ1/2+η +O(p2).

Conservation of particles (15), up to the second term, is
then (after some simplification)

φ0 = t

∫ xp(t)/t

0

φc√
λ(φc)

ξ1/2 +K1ξ
1/2+η dξ + · · · ,

K1 =
Kp√
λ(φc)

(
3f(φc)− g′(φc)
R′(φc) + 2f(φc)

)
.

This yields the leading order term, which is exactly the
limiting solution (14), and first correction:

xp(t) ∼ (Cpt)
1
3 + C1,pt

1−2η
3 , C1,p := −K1

√
λcC

(1+η)/3
p

φc (η + 3/2)
.

The leading order expression for the fluid front can then
be determined from fluid conservation (16) to be xf (t) ∼
(Cf t)

1/3 +O(t(1−2η)/3), and the ratio of the fronts is then

xp(t)/xf (t) ∼ (Cp/Cf )1/3 +O(t−2η/3).

Note that the factor η does not affect the leading order
behavior, but controls the time at which the limiting solu-
tion becomes the dominant term; the expansion is in pow-
ers of t−2η/3. Since η is increasing with α (plotted in Fig-
ure 9, left panel), as the inclination angle is decreased, the

correction term becomes larger, even approaching ∼ t1/3

as α approaches the angle for which φc = φm. This long
time scale for the dominance of the leading order asymp-
totics is illustrated in Figure 11; the estimate for the front
ratios is poor for small angles even up to relatively large
times.
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Figure 10: Numerical solution for the monodisperse problem for α =
20 (left) and α = 40 deg (right) with φ0 = 0.3 at a moderate time t =
500. The dashed lines are the limiting solution (14). The agreement
is good for large α but becomes slow to converge as α decreases, in
accordance with the asymptotics.
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Figure 11: Numerically computed front positions (black) compared
to the limiting asymptotics with and without the second term (red
and blue, respectively). The left panel shows the particle front, and
the right panel shows the ratio of the front positions. The constant
Kp is used effectively as a fitting parameter; it is taken to be Kp = 1
for α = 40 deg and Kp = 0.66 for 30 deg and Kp = 0.4 for 20 deg .
Note that the agreement is poor for smaller angles, as expected from
the asymptotics.
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Case 2 (φc = φm):

Here the linearization of h about φm takes a different
form because the denominator of the rarefaction ODE for
h vanishes at φ = φm:

h =

√
ξ√
λ
∼ 1

|Kp|
√

3b/2− a/2
ξ1/2−η.

Note that unlike the first case, h is not asymptotic to
√
ξ

as ξ → 0. As a consequence, (15) suggests that the particle
front to leading order is

xp(t) ∼ (C ′pt)
γ + · · · γ :=

1− 2η

3− 2η
(23)

for some constant C ′p. In contrast, the rarefaction for the

clear fluid is given exactly by
√
ξ, and so volume conser-

vation (16), implies that xf (t) ∼ (Cf t)
1/3 to leading order

for Cf = 9
4 (1 − φ0/φm)2. Thus xp grows asymptotically

slower than xf (t) (since η > 0), so xp/xf → 0 as t → ∞
in contrast to the φc < φm case or the dilute limit. In
the ridged regime, the decrease in the asymptotic front
speed to xp(t) ∼ tγ occurs due to mass accumulation at
the (singular) shock [19]. Here, the deviation is due to
accumulation of particles to the maximum packing frac-
tion in the back of the fluid rather than the front, and
the leading clear fluid front is unaffected. This establishes
two qualitatively different long-term behaviors - for large
angles (φc < φm), the ratio xp(t)/xf (t) approaches a con-
stant as t → ∞ while for small angles (φc > φm) the
particle front lags arbitrarily far behind the fluid front as
the concentration in the particle-laden region approaches
φm. However, because the rate of convergence is so slow,
it may be difficult to verify this distinction between the
two cases in an experiment.

5.3. Long-term behavior: bidisperse

For the bidisperse problem (6), the computations are
made much more cumbersome due to the third equation.
We can, at least, identify the corresponding limiting solu-
tion under the assumption that it exists. Consider initial
conditions as in the monodisperse case, but with n1(x, 0) =
φ1h(x, 0) and n2(x, 0) = φ2h(x, 0) (with φ1 = φ0X0 and
φ2 = φ0(1 − X0)). The initial conditions are assumed to
be settled: φ < φc1, φc2.

It is easy to show that a constant concentration rar-
efaction can only exist if φ = φc(X) and X = 0 or X = 1,
which suggests that the long-time behavior has a rarefac-
tion with only heavier particles (φ = φc,2), then a rarefac-
tion with only lighter particles (φ = φc,1), and finally a
clear-fluid front. Numerical evidence suggests this is the
case (see Figure 12), although convergence of the heavier
particle layer to X = 0 - if at all - is quite slow (even
slower, perhaps, than the already slow convergence of φ to
φc).

By assumption, there exists a unique φc(X) such that
φcf(φc) = g(φc). If λ and r = (r1, r2, r3)T are the eigen-
value/eigenvector for the rarefaction, then h′ = αr1, n

′
1 =
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Figure 12: Numerical solution (solid) and limiting solution (24)
(dashed) for the bidisperse problem at t = 500 with φ0 = 0.3 and
α = 30 deg (top) and α = 40 deg (bottom). The right panels show
φ and X; note that X ≈ 1 in the second rarefaction. For very long
times, X → 0 in the first rarefaction, i.e. the particle species sepa-
rate.

αr2 and n′2 = αr3 where α = 1
Dλ·r . If φ1 and φ2 are

constant then r2/r1 = φ1 and r3/r1 = φ2, so the eigen-
vector is r = (1, φ1, φ2)T . Simplifying Jr = λr where J
the Jacobian (9) then gives 3(f, g1, g2) = λ(1, φ1, φ2), so
we have λ = 3f (as before) along with g1 = φ1f and
g2 = φ2f. Thus g = φf, which implies that φ = φc(X)
with X = φ1/φ. Moreover, it can be checked directly that
the individual equalities cannot hold when φ = φc(X) un-
less X = 0 or X = 1 (where it reduces to the monodisperse
case).

This suggests that the long-time behavior should con-
sist of a rarefaction with only heavier particles (φ = φc,2),
then a rarefaction with only lighter particles (φ = φc,1),
and finally a clear-fluid front. Numerical evidence suggests
this is the case (see Figure 12), although convergence of
the heavier particle layer to X = 0 - if at all - is quite slow
(even slower, perhaps, than the already slow convergence
of φ to φc). The precise solution is essentially the same as
(14) so long as φc,i < φm for i = 1, 2:

h(x, t) =


0 ξ < 0 or xf/t < ξ
√

2A2ξ 0 < ξ < x2(t)/t
√

2A1ξ x2(t)/t < ξ < x1(t)/t
√
ξ x1(t)/t < ξ < xf (t)/t

(24)

where 2, 1, f denote the fronts for the heavier particle,
lighter particle and fluid, respectively. The constants are
A2 = 1

6f(φc2,0) and A1 = 1
6f(φc1,1) . The fronts are xi(t) =

(Cit)
1/3 for i = 1, 2 and xf (t) = (Cf t)

1/3 where

C2 =
9φ2

2

8A2φ2
c2

, C1 =
9φ2

1

8A1φ2
c1

(
1 +

φc1
φc2

√
A1

A2

(1−X0)

X0

)2

.
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Finally the constant for the fluid is

Cf =
9

4

(
1−

∑2
i=1

φi
φc,i

(
1−

√
1/2Ai

))2

.

Typical solutions are shown in Figure 12. The convergence
is not very fast and we need to have X → 0 (or X → 1) as
well as φi → φc,i in the appropriate regions. For X0 < 1,
the ratio of the front positions for the particles is

lim
t→∞

xp2(t)

xp1(t)
=

(
1 +

X0

(1−X0)

φc2
φc1

√
f(φc1, 1)

f(φc2, 0)

)−2/3

.

As in the monodisperse case, if φc,i > φm then we expect
the limiting ratio xp,i/xf to be zero.

6. Discussion

We have presented a conservation law model for bidis-
perse suspensions on an incline, extending the model of
Murisic et. al. [12] to multiple species. The Riemann
problem exhibits triple shock solutions that describe the
evolution of the particle and fluid fronts. The addition
of a second species leads to separation between the two
types of particles, producing a trailing shock across which
the composition of particles changes from mostly heavier
to mostly lighter particles while the total concentration is
nearly constant. The structure of the Riemann problem is
otherwise similar to the single-species case, including the
distinction between settled and ridged regimes and the for-
mation of singular shocks [19, 20]. In the case of multiple
species, the first shock (for the heavier particles) is always
present while the singular shock can only appear for the
front of lighter particles.

We have studied constant-volume solutions in the set-
tled regime, which correspond to experiments where a fixed
volume of a mixture is released down the incline. In the
model, solutions are three rarefaction-shock pairs with mostly
heavier particles, then lighter particles, then clear fluid.
Preliminary comparison to experimental data shows rea-
sonable qualitative agreement; the general structure of
three shocks separating the two particle species and the
fluid front is observed in the settled regime, but the front
positions are consistently under-predicted by the model.
Because the model relies on the assumption that particles
are in equilibrium, it cannot be compared to the exper-
imental data at early to moderate times where the sus-
pension may still be partly mixed. A model appropriate
to the transient phase may be necessary to better under-
stand the system at early times, and make comparison
easier at later times when the model should be applicable.
The discrepancies between the current bidisperse model
and experiments seem to suggest that the model could be
improved; a long transient time due to mixing between the
two species is a significant concern.

An adjustment to the equilibrium model by way of
different physics would manifest itself as a change in the

fluxes for the dynamic equations, producing a similar qual-
itative behavior. While simple, the general diffusive flux
model from which we obtain the fluxes has been successful
in comparing to experiments in the monodisperse case. It
is not always an accurate reflection of the physics of the
problem, particular at concentrations near the maximum
packing fraction where models based on normal stress dif-
ferences are more appropriate [13, 14]. This is primarily
a concern in the ridged regime (which is not the focus
here), where the particle concentration approaches φm at
the front, and in the derived asymptotics for small angles,
where this occurs in the back of the particle rarefaction.

In the constant-volume case, we have derived the asymp-
totic behavior of the front positions for the monodisperse
model in the settled regime and applied this to find the
leading order behavior for bidisperse suspensions. The
front positions are shown to evolve as t1/3 except at small
angles, where the concentration approaches the maximum
packing fraction in the rarefaction and ratio of particle to
fluid fronts tends to zero. The slow rate of convergence,
however presents a significant challenge for experimental
comparison, as the time scale at which the asymptotic be-
havior becomes dominant is large (perhaps prohibitively
so) except at large angles α ≈ 40 deg). It would be inter-
esting, though, to see if this transition could be observed
in experiments.
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