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Abstract. In this paper we propose an active contour model for segmentation based on the
Chan-Vese model. The new model can capture inherent sharp features, i.e., the sharp corners of
objects, which are often smoothed by the regularization term in segmentation. Motivated by the
snaked based method in (Droske and Bertozzi SIAM J. on Image Sci. 2010) that emphasizes straight
edges and corners without regard to orientation, we develop a region-based method with a level set
representation. The model combines the Chan-Vese model with the level set version of a higher order
nonlinear term. We extend this model to multispectral images. Higher order methods can be very
stiff, so we propose a splitting scheme to remove the stiffness and prove its stability and convergence.
Finally we show numerical results on gray, color and hyperspectral images. We can see that the
model is robust to noise.
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1. Introduction. Segmentation is one of the most important tasks in image
processing. The main idea of image segmentation is to detect the objects in the
given image. Usually, this is done by evolving a curve towards the boundary of the
object. Generally speaking, the existing segmentation methods can be divided into
two categories: curve based methods and region based methods. The curve based
methods include the ‘snake’ model by Kass et al [20] and geodesic active contour
model by Caselles et al [8]. The region based methods include Mumford-Shah [23]
and related Chan-Vese [12] methods. We briefly describe these methods.

Kass et al (1988) [20] developed the ‘snake’ or active contour model. In the snake
model, the curve evolution is obtained by minimizing a carefully designed functional
energy. Let Ω be a bounded and open subset of ℝ2, with ∂Ω its boundary. Let 𝑓 be
the given image, as a bounded function defined on Ω with real values. Usually Ω is a
rectangular domain. Let 𝐶(𝑞) : [0, 1] → ℝ2 be a parametrized curve. Then the snake
method is minimizing the following functional energy:

𝐸(𝐶) = 𝛼

∫ 1

0

∣𝐶 ′(𝑞)∣2𝑑𝑞 + 𝛽

∫ 1

0

∣𝐶 ′′(𝑞)∣2𝑑𝑞 − 𝜆

∫ 1

0

∣∇𝑓(𝐶(𝑞))∣2𝑑𝑞. (1.1)

The first two terms, the membrane energy and the elasticity energy, control the
smoothness of the curve. They are called the internal energy. The third term is
the external term and depends on the image data. It is easy to see that the external
energy term is small when the gradient of 𝑓 has a large magnitude, thus pushing the
curve towards edges. Such functions are usually called edge detectors. The active
contour model was further developed by [8, 6, 7, 21, 28] using different edge detec-
tors. For example, Caselles et al [8] introduced a geodesic active contour model by
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minimizing the functional energy

𝐸𝑔(𝐶) = 𝛼

∫ 1

0

∣𝐶 ′(𝑞)∣2𝑑𝑞 + 𝜆

∫ 1

0

𝑔(∣∇𝑓(𝐶(𝑞))∣)2𝑑𝑞 (1.2)

where 𝑔 : ℝ+ → ℝ+ is a decreasing function such that lim𝑥→∞ 𝑔(𝑥) = 0. In the
geodesic active contour model, −∣∇𝑓 ∣2 is replaced by 𝑔(∣∇𝑓 ∣)2. In addition, consid-
ering that the snake model does not allow topology change in the curve evolution,
and consequently can only detect one object in the image, Caselles et al [8] em-
ployed a level set representation building on the pioneering work of Osher and Sethian
[24]. Let 𝜙(𝑡, ⋅) be a level set function such that 𝐶(𝑞) is the zero level set of 𝜙, i.e.,
𝐶(𝑞, 𝑡) = {𝑥 ∈ ℝ2 : 𝜙(𝑡, 𝑥) = 0}, then the level set function can be evolved instead of
the curve. Caselles proposed the following evolution equation for 𝜙

𝜙𝑡 = ∣∇𝜙∣div(𝑔(𝑓) ∇𝜙

∣∇𝜙∣
)
+ 𝑐𝑔(𝑓)∣∇𝜙∣ = 𝑔(𝑐+ 𝜅)∣∇𝜙∣+∇𝜙 ⋅ ∇𝑔,

where 𝜅 is the curvature and 𝑐 is a constant.
Mumford and Shah [23] addressed an active contour model by minimizing the

following energy

𝐸𝑀𝑆(𝑢,𝐶) = 𝜇 ⋅ length(𝐶) + 𝜆

∫
Ω∖𝐶

∣𝑢− 𝑓 ∣2𝑑𝑥+

∫
Ω∖𝐶

∣∇𝑢∣2𝑑𝑥, (1.3)

where the boundary curve 𝐶 is exactly the set of discontinuity of 𝑢. Morel and Solimini
[22] considered the special case that 𝑢 is piecewise constant, thus the gradient term
∇𝑢 is zero on Ω∖𝐶 and the model becomes

𝐸(𝑢,𝐶) = 𝜇 ⋅ length(𝐶) + 𝜆

∫
Ω∖𝐶

∣𝑢− 𝑓 ∣2𝑑𝑥. (1.4)

This model addressed the simplest balance between accuracy of the regions and par-
simony of the boundaries. Morel and Solimini [22] also presented some computational
theories for the piecewise constant model.

Chan and Vese [12] formulated a binary case variant of the piecewise constant
model, and the boundary curve 𝐶 was represented by a level set function 𝜙 satisfying
𝜙 > 0 inside 𝐶 and 𝜙 < 0 outside 𝐶. By defining the Heaviside function 𝐻(𝑥) = 1𝑥⩾0

and the one-dimensional Dirac measure 𝛿 = 𝑑
𝑑𝑥𝐻(𝑥), the functional energy became

𝐸𝐶𝑉 (𝜙, 𝑐1, 𝑐2) = 𝜇

∫
Ω

𝛿(𝜙)∣∇𝜙∣+ 𝜈

∫
Ω

𝐻(𝜙)𝑑𝑥𝑑𝑦

+𝜆1

∫
Ω

(𝑓 − 𝑐1)
2𝐻(𝜙)𝑑𝑥𝑑𝑦 + 𝜆2

∫
Ω

(𝑓 − 𝑐2)
2(1−𝐻(𝜙))𝑑𝑥𝑑𝑦. (1.5)

The gradient descent equation for Chan and Vese active contour model is

𝑐1 =

∫
Ω
𝑓𝐻(𝜙)𝑑𝑥𝑑𝑦∫

Ω
𝐻(𝜙)𝑑𝑥𝑑𝑦

, 𝑐2 =

∫
Ω
𝑓(1−𝐻(𝜙))𝑑𝑥𝑑𝑦∫

Ω
(1−𝐻(𝜙))𝑑𝑥𝑑𝑦

,

𝜙𝑡 = 𝛿(𝜙)
[
𝜇∇ ⋅ ∇𝜙

∣∇𝜙∣ − 𝜈 − 𝜆1(𝑓 − 𝑐1)
2 + 𝜆2(𝑓 − 𝑐2)

2
]
. (1.6)
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with boundary condition 𝛿(𝜙)
∣∇𝜙∣

∂𝜙
∂�⃗� = 0. This model was further extended in [11, 10].

Moreover, there are fast algorithms for solving the Chan-Vese model, including the
methods by Chambolle [9] and Pan et al [25].

All the segmentation models above minimize a functional energy including an edge
detecting term and a regularization term which is usually the length of the curve. As
is known, the regularization terms avoid local minima and ensure the smoothness of
the boundary curve, especially when the image is noisy. However, they often introduce
undesired over-smoothing to the sharp features, especially corners. If the complete
information about the morphology and anisotropy in the image is known, for example,
the orientation of buildings in an aerial photograph, then it is natural to minimize
some anisotropic functional to obtain segmentation with corners. This idea comes
from the study of the Wulff-shapes in material science. Numerical methods have been
developed for anisotropic flows in [1, 5, 14, 15, 16, 18, 19]. However, in a typical
application the orientation and morphology are not known, a prior must be inferred
from the data. Consequently we focus on automatic detection guided by the intrinsic
geometric features in the image.

Droske and Bertozzi [17] proposed a new algorithm based on the snake method
and motivated by the low curvature image simplifier (LCIS), which is known for
preserving jump discontinuity in slope. By combining the geodesic snake construction
with nonlinear diffusion of edges, they are successful in segmenting objects with sharp
corners. However, the method still suffers from other common drawbacks of snake-
based methods. In particular, one can not naturally perform topology changes and
moreover, a multi scale preprocess of the image is required to avoid local minima due
to clusters in the image. This prompts us to develop another segmentation model.

This paper is organized as follows. In the next section we review the work of
Droske and Bertozzi [17] discuss the properties of the high order equations. Then
we formulate the corner preserving term in a level set framework. By combining
the corner preserving term with the Chan-Vese model, we obtain a new model that
inherit the merits of Chan-Vese model as well as one that retains the sharp corners.
In addition, we extend this model to the color and hyperspectral images. In section
3 we describe the numerical implementation details of the high order nonlinear PDE.
We also prove the convergence of the time stepping scheme. In section 4 we validate
our model by numerical tests on gray, color and hyperspectral images, and we end
the paper by a brief conclusion section.

2. Chan-Vese with corner preserving term. The new method developed
in [17] is motivated by the 𝑙𝑜𝑤 − 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 (LCIS), which is first
introduced by Tumblin and Turk [32] and later developed by Bertozzi and Greer [3].
As demonstrated in the numerical examples in [32, 3] for one dimensional signal de-
noising problems, the isotropic diffusion will impose oversmoothing on the corners,
while the anisotropic diffusion will generate staircases. Thus neither can handle con-
tinuous signals with some corner-shape transitions. To overcome the drawbacks of
the existing models, Tumblin and Turk proposed the following fourth-order equation

𝑢𝑡 + div(𝑔(Δ𝑢)∇Δ𝑢) = 0. (2.1)

Here 𝑔 is typically a weight function, with 𝑔(0) = 1 and 𝑔(𝑠) → ∞ as 𝑠 → ∞. In

[32, 3], they choose 𝑔(𝑠) =
(
1 + 𝑠2

𝜂2

)−1
by analogy with the Perona-Malik method in

[26], where 𝜂 is a positive parameter.
The high order equation (2.1) imposes stronger smoothness requirement than the

isotropic and anisotropic diffusion models, thus eliminates the stair cases. In addition,



4 W. Gao AND A. Bertozzi

Bertozzi and Greer [3] showed that for one dimensional signal denoising problems,
equation (2.1) could be combined with an 𝐿2 fidelity term to generate “piecewise
linear” solutions. The solution 𝑢 is actually a smooth function and the corners are
understood in an infinitesimal sense. In [3] the authors gradually decreased the grid
size to demonstrate that the transitions are actually smooth if the resolution is high
enough. Although this can be shown for one dimensional signals by using many grid
points, the same resolution in two dimensions would be prohibitively expensive for
out calculation. Moreover, this would require ultra high resolution data which we do
not have.

Furthermore, equation (2.1) is a gradient flow of the non-quadratic energy func-
tional 𝐸𝐺(𝑢) =

∫
Ω
𝐺(Δ𝑢)𝑑𝑥, where 𝐺 is the antiderivative of 𝑔. It also decreases

the 𝐻1 energy 𝐸(𝑢) =
∫
Ω
∣∇𝑢∣2𝑑𝑥. Bertozzi and Greer [3] proved the existence of

global smooth solutions in the one dimension case with the same choice of 𝑔 as in [26].
Nevertheless, the existence of global solutions in higher dimensions remains an open
problem.

Motivated by the corner preserving property and the fact that the contour curve
is actually one-dimensional, Droske and Bertozzi [17] addressed a modified snake
method. By replacing the gradient and Laplace operators by the corresponding in-
trinsic surface gradient and surface Laplace operators, and by choosing the coordinate
𝑥 as the free variable, they obtain a straightforward variant of equation (2.1) as fol-
lows:

𝑥𝑡 − divΓ(𝑔(ℎ)∇ΓΔΓ𝑥) = 0. (2.2)

where ∇Γ, divΓ, ΔΓ are the intrinsic surface gradient, surface divergence and sur-
face Laplace operators respectively. The authors combined this equation with some
classical snake methods and obtained favorable numerical results.

Let �⃗� be the outer normal vector of the surface Γ and ℎ be the mean curvature,
then we have an interesting equality: ΔΓ𝑥 = ℎ�⃗�. By plugging this equality in equation
(2.2) and keeping the dominant fourth order term, we obtain the following equation.

𝑥𝑡 − divΓ(𝑔(ℎ)∇Γℎ)�⃗� = 0. (2.3)

Equation (2.3) is a surface evolution equation with velocity function 𝑔(𝑠) that
only depends on the mean curvature ℎ. Especially, if we take 𝑔(𝑠) ≡ 1, we obtain the
evolution equation of motion by surface Laplacian of mean curvature, which has been
discussed numerically in [27, 30] via level set formulation. Droske and Bertozzi also
pointed out that equation (2.3) behaves quite similarly to equation (2.2). Further-
more, equation (2.3) can preserve the area enclosed by Γ and decrease the length of
Γ like the regular surface diffusion. Therefore, we can use (2.3) to replace the length
regularization term in active contour models, although [17] uses (2.2) for simpler
numerical implementation.

The main purpose of this manuscript is to recast this equation in terms of a
level set formulation, and to illustrate its usefulness in segmenting complex images
with sharp corners. Following the level set representation of the geometric features
in Chopp et al [13] and Bertamio et al [2], we obtain the level set version of equation
(2.3), which is fourth order and nonlinear. While the derivation of the equation is
straightforward, the main challenge in numerical implementation is to develop an
efficient time stepping scheme. For example, explicit schemes usually require that
𝑑𝑡 ∼ 𝑑𝑥4, which is very restrictive. In section 3 we propose an efficient splitting
scheme and prove its convergence.
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Suppose the initial surface is given by the zero level set of a function 𝜙(⋅, 0), or,
Γ(0) = {𝑥 : 𝜙(𝑥, 0) = 0}, and the surface at time 𝑡 is the zeros level set of 𝜙(⋅, 𝑡). The
normal direction is given by �⃗� = ∇𝜙

∣∇𝜙∣ and the mean curvature is given by ℎ = div(�⃗�)

for any point on the curve Γ. Further we need to define the intrinsic surface gradient,
surface divergence and surface Laplacian operators via level set representation. In
[2], Bertalmio et al derived all these operators via level set representation and solved
the PDE on surfaces. According to their work, the surface gradient is simply the
projection of the gradient operator onto the tangent plane:

∇Γ𝜙 = ∇𝜙− (∇𝜙 ⋅ �⃗�)�⃗�.
The surface divergence operator divΓ is the dual operator of the surface gradient
operator, and the surface Laplacian, or the Laplace-Beltrami operator is given by

ΔΓ𝜙 = divΓ(∇Γ𝜙).

Now we only need to convert the corner preserving equation into a level set
formulation. We are more interested in equation (2.3) than (2.2), because of the
length decreasing property and simpler numerical implementation. With the level set
representation above, the level set version of equation (2.3) can be written as:

𝜙𝑡 = −∣∇𝜙∣divΓ(𝑔(ℎ)∇Γℎ). (2.4)

To demonstrate the curve evolution by equation (2.4), we repeat the following
numerical curve evolution test in Droske et al [17]. The initial curve is chosen in
polar coordinates as 𝑟 = 1

2 + 1
10 sin(15𝜃), where 𝑟 and 𝜃 are just the classic polar

coordinate parameters: 𝑟 =
√

𝑥2 + 𝑦2, 𝜃 = arctan 𝑦
𝑥 . The initial level set function

is 𝑢 = 𝑟 − 1
2 − 1

10 sin(15𝜃). The curve evolution is shown in Figure (2.1). Using the
level set representation, the black curve is the zeros level set of the function 𝜙 and the
color in the figure stands for the value of the level set function. During the evolution,
the initial smooth curve develops corners quickly by accentuating the high curvature
parts. The corners keep existing until the curve eventually converges to a circle by
the infinitesimal regularity.

The idea of this manuscript comes from the process above: if the curve evolution
is combined with a fidelity term, we can expect the curve to stop at a stable state with
sharp corners. This prompts us to combine the Chan-Vese model with the equation
(2.4). With the fitting term in Chan-Vese model, we get the following equation.

𝜙𝑡 = −𝛼∣∇𝜙∣divΓ(𝑔(ℎ)∇Γℎ)

+ 𝛿(𝜙)
[
𝜇∇ ⋅ ∇𝜙

∣∇𝜙∣ − 𝜈 − 𝜆1(𝑓 − 𝑐1)
2 + 𝜆2(𝑓 − 𝑐2)

2
]
. (2.5)

For multiband images, let 𝑁 be the number of bands and 𝑓𝑖 be the gray value of
the 𝑖th band. Using the technique in [28, 11], we can similarly calculate the 𝑐1𝑖 and
𝑐2𝑖 of the 𝑖th band with 𝑓𝑖 and the level set function 𝜙, and then we obtain the level
set evolution equation for multi-band images by simply taking the algebraic average
of the gradient descent flow for each band:

𝜙𝑡 = −𝛼∣∇𝜙∣divΓ(𝑔(ℎ)∇Γℎ)

+ 𝛿(𝜙)
[
𝜇∇ ⋅ ∇𝜙

∣∇𝜙∣ − 𝜈 − 1

𝑁

𝑁∑
𝑖=1

𝜆1𝑖(𝑓𝑖 − 𝑐1𝑖)
2 +

1

𝑁

𝑁∑
𝑖=1

𝜆2𝑖(𝑓𝑖 − 𝑐2𝑖)
2
]
. (2.6)
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Fig. 2.1. The evolution of a curve. We can see that corners are formed in early stage.

This can also be combined with the segmentation method with spectral angle by Ye
[33], in which the authors used spectral angle for hyperspectral images instead of the
Chan-Vese fidelity term.

As we mentioned above, the corner preserving term can decrease the curve length
and impose regularization on the level set function. Therefore, we can drop the length
term in the Chan-Vese model and only use the corner preserving term. Solving high
order nonlinear equations is usually difficult, since the stability condition is more
restrictive. We will describe the numerical scheme in the next section.

3. Semi-Implicit Numerical Scheme. Equation (2.5) and (2.4) are fourth
order nonlinear equations. For the numerical implementation, if we apply an explicit
numerical scheme, the nonlinear high order equation usually requires a time step
𝑑𝑡 ∼ 𝑑𝑥4, which leads to very slow evolution. If we attempt a fully implicit numerical
scheme, then solving the nonlinear implicit equation at each time step is difficult. As
a result, semi-implicit schemes are preferred for this kind of equation. We consider
the numerical scheme introduced by Smereka, Salac and Lu [27, 30] for the curve
evolution by surface Laplacian of mean curvature. Although this method has been
discovered and implemented numerically in the literature in these papers, a rigorous
proof of convergence remains new. We extend the scheme in [27, 30] to the more
general cases studied here, and prove convergence of the time stepping scheme.

For simplicity, we write the equation (2.5) as 𝜙𝑡 = 𝑆(𝜙). We add a bilaplacian
stabilization term to both sides of the PDE and obtain

𝜙𝑡 + 𝛽Δ2𝜙 = 𝑆(𝜙) + 𝛽Δ2𝜙. (3.1)

with 𝛽 a positive constant. To distinguish the exact solution from the numerical
solution, we use upper case and bold characters for the numerical solution, lower case
for the exact solution. In other words, we write Φ𝑘, h𝑘, ∇Γ and ΔΓ for the numerical
equation at the 𝑘th step, while 𝜙𝑘, ℎ𝑘, ∇Γ and ΔΓ for the exact solution at time 𝑘 ⋅𝑑𝑡.
Let 𝑒𝑘 = 𝜙𝑘 − Φ𝑘 denote the discretization error. Taking the left side bilaplacian at
the new time level and the entire right side at the old time level, we obtain

Φ𝑘+1 − Φ𝑘

𝑑𝑡
+ 𝛽Δ2Φ𝑘+1 = 𝛽Δ2Φ𝑘 + 𝑆(Φ𝑘), (3.2)
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which is equivalent to

(Φ𝑘+1 − Φ𝑘) = 𝑑𝑡(1 + 𝑑𝑡 ⋅ 𝛽Δ2)−1𝑆(Φ𝑘). (3.3)

Here the operator (1 + 𝑑𝑡 ⋅ 𝛽Δ2)−1 is positive definite, thus it works as a smoothing
operator. Empirically we choose the parameter 𝛽 = 1/2 as in [27, 30]. The equation
can be solved with Fast Fourier Transform (FFT). As shown in [27, 30], the numer-
ical experiments suggests that we can take 𝑑𝑡 ∼ 𝑑𝑥2. This is a great improvement
compared to 𝑑𝑡 ∼ 𝑑𝑥4 for explicit schemes.

For image processing problems, we usually take the domain Ω = [0, 1) × [0, 1).
In the following part we outline the discretization of equation (2.5). The right hand
side is composed of two parts, the Chan-Vese energy term and the corner preserving
term. For the Chan-Vese energy term, we simply follow the numerical discretization
in [12]. We focus on the corner preserving term.

With the level set representation, the outer normal direction n⃗ is n⃗ = (n𝑥,n𝑦) =
∇Φ
∣∇Φ∣ , and the mean curvature can be represented as h = div(n⃗). However, in the

actual implementation, we usually use ∣∇Φ∣𝛿 = (Φ2
𝑥 + Φ2

𝑦 + 𝛿2)1/2 instead of ∣∇Φ∣ =
(Φ2

𝑥 + Φ2
𝑦)

1/2 to avoid division by zero, where 𝛿 is a small parameter. Consequently
the modified normal direction and mean curvature are

n⃗𝛿 = (n𝑥
𝛿 ,n

𝑦
𝛿 ) =

∇Φ

∣∇Φ∣𝛿 =

(
Φ𝑥

(Φ2
𝑥 +Φ2

𝑦 + 𝛿2)1/2
,

Φ𝑦

(Φ2
𝑥 +Φ2

𝑦 + 𝛿2)1/2

)
, (3.4)

and

h𝛿 = div(n⃗𝛿) =
ΔΦ

∣∇Φ∣𝛿 − ∇Φ𝑇∇2Φ∇Φ

∣∇Φ∣3𝛿
=

Φ𝑥𝑥 +Φ𝑦𝑦

(Φ2
𝑥 +Φ2

𝑦 + 𝛿2)1/2
− Φ2

𝑥Φ𝑥𝑥 + 2Φ𝑥Φ𝑦Φ𝑥𝑦 +Φ2
𝑦Φ𝑦𝑦

(Φ2
𝑥 +Φ2

𝑦 + 𝛿2)3/2
. (3.5)

For numerical analysis, we make the same modification for the original equations
(2.4) and (2.5), i.e., we use the modified ∣∇𝜙∣𝛿 = (𝜙2

𝑥 + 𝜙2
𝑦 + 𝛿2)1/2 instead of ∣∇𝜙∣ =

(𝜙2
𝑥+𝜙2

𝑦)
1/2, and consequently use modified �⃗�𝛿 and ℎ𝛿 instead of �⃗� and ℎ. As long as

the parameter 𝛿 is small enough, the zero level set of the modified equation is a good
approximation to that of the original equation. In addition, the modified equation
can avoid singularities at the local maxima and minima of the level set function 𝜙.
Therefore, in the following analysis we always discuss the modified equations (2.4) and
(2.5). Since the main difficulty for numerical implementation is the surface Laplacian
term, which is fourth order and nonlinear, we focus on the equation (2.4) rather than
equation (2.5). The modified equation and corresponding numerical scheme goes as
follows.

𝜙𝑡 = −∣∇𝜙∣𝛿divΓ(𝑔(ℎ𝛿)∇Γℎ𝛿), (3.6)

Φ𝑘+1 − Φ𝑘

𝑑𝑡
+ 𝛽Δ2Φ𝑘+1 = 𝛽Δ2Φ𝑘 − ∣∇Φ𝑘∣𝛿divΓ

(
𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿

)
. (3.7)

To compute divΓ(𝑔(h𝛿)∇Γh𝛿), we may take the surface gradient of the mean
curvature h𝛿, and then calculate the surface divergence of 𝑔(h𝛿)∇Γh𝛿. However, we
prefer to calculate the surface Laplacian of 𝐺(h) as in [3], where 𝐺 is the antiderivative
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of 𝑔, or, 𝐺′(𝑠) = 𝑔(𝑠). In our numerical method, we choose 𝑔(𝑠) =
(
1 + 𝑠2

𝜂2

)−1
and

𝐺(𝑠) = 1
𝜂 arctan

(
𝑠
𝜂

)
where 𝜂 is a positive parameter. According to the definition of

surface gradient ∇Γ𝐺 = ∇𝐺 − (∇𝐺 ⋅ n⃗𝛿)n⃗𝛿, we have the following component form
(∇𝐺 ⋅ n⃗𝛿) = n𝑥

𝛿𝐺𝑥 + n𝑦
𝛿𝐺𝑦, where the subscripts on 𝐺 denotes the partial derivatives

in 𝑥 and 𝑦 individually. Therefore we can write the surface gradient as

∇Γ𝐺 = 𝐺𝑥𝑒
𝑥 +𝐺𝑦𝑒

𝑦 − (n𝑥
𝛿𝐺𝑥 + n𝑦

𝛿𝐺𝑦)(n
𝑥
𝛿 𝑒

𝑥 + n𝑦
𝛿𝑒

𝑦)

≡ 𝐴𝑒𝑥 +𝐵𝑒𝑦, (3.8)

where 𝑒𝑥 and 𝑒𝑦 are unit vectors in the 𝑥 and 𝑦 direction respectively. By computing
the surface divergence in a similar way we can obtain the surface Laplacian of 𝐺(h𝛿)

ΔΓ𝐺 = 𝐴𝑥 +𝐵𝑦 − n𝑥
𝛿 (n

𝑥
𝛿𝐴𝑥 + n𝑦

𝛿𝐴𝑦)− n𝑦
𝛿 (n

𝑥
𝛿𝐵𝑥 + n𝑦

𝛿𝐵𝑦). (3.9)

Next we will analyze this semi-implicit scheme with some more details and rigor-
ous estimates for the numerical solution. We use similar technique as in Bertozzi et
al [4] and Schoenlieb et al [29], focusing on discretization in time. Denote ∣𝐷𝑚𝑢∣2 =∑

∣𝛼∣=𝑚 ∣∂𝛼𝑢∣2 and ∥𝐷𝑚𝑢∥2 =
∑

∣𝛼∣=𝑚 ∥∂𝛼𝑢∥2 for any integer 𝑚, where 𝛼 = (𝛼1, 𝛼2),

∣𝛼∣ = 𝛼1+𝛼2, ∂
𝛼 = ∂𝛼1+𝛼2

∂𝑥𝛼1∂𝑦𝛼2
. Due to the high order and nonlinearity, we need several

restrictions on the smoothness of the level set function. The results are summarized
in the following theorem.

Theorem 3.1. Let 𝜙 be the exact solution of (3.6) and 𝜙𝑘 = 𝜙(𝑘𝑑𝑡) be the exact
solution at time 𝑘𝑑𝑡 for a time step 𝑑𝑡 > 0 and 𝑘 ∈ ℕ. Let Φ𝑘 be the kth iterate of
(3.7). Assume that there exits a constant 𝐿 such that ∣𝑔(𝑠)∣ ⩽ 𝐿, ∣𝑔′(𝑠)∣ ⩽ 𝐿, and the
discrete solution exists up to time 𝑇 , then we have the following statements:

(i) Under the assumption that ∥𝜙𝑡𝑡∥−1, ∥∇Δ𝜙𝑡∥2, ∥∇𝜙∥∞ and ∥𝜙𝑡∥−1 are bounded,
the numerical scheme (3.7) is consistent with the modified continuous equa-
tion (3.6) and first order in time.

(ii) Let further 𝑒𝑘 = 𝜙𝑘 − Φ𝑘 be the discretization error. If

∥∂𝛼𝜙𝑘∥∞ ⩽ 𝐾, ∥∇Φ𝑘∥∞ ⩽ 𝐾,

for a constant 𝐾 > 0 and all ∣𝛼∣ ⩽ 3, 𝑘𝑑𝑡 ⩽ 𝑇 , then the error 𝑒𝑘 converges
to zero with first order in time.

Remark: 1. Although the following convergence proof only requires 𝑑𝑡 smaller
than some constant which is independent of 𝑑𝑥, the assumption that the derivatives of
𝜙 are bounded may impose additional restriction on the time step 𝑑𝑡. In fact, for the
most commonly used level set function, the signed distance function, ∣∇𝜙∣ is usually
unbounded. In addition, all the constants depend on the choice of 𝛿. However, we
have to take 𝛿 small to make sure that the solution of the modified equation is close to
the solution of the original equation. We may have to take 𝑑𝑡 small enough to obtain
desired accuracy.

Remark: 2. Solving the equation in a narrow band of the zero level set may
reduce the singularity of the level set function. For example, the signed distance
function is singular in the whole domain, but it is smooth in a small neighborhood
of the zero level set, as long as the zero level curve is smooth. In addition, in the
numerical implementation, we impose an upper bound 𝐾 for ∣∇Φ∣. As soon as ∣∇Φ∣
exceeds 𝐾, we reinitialize the level set function.

The proof of the theorem above is split into three propositions. We first introduce
the following lemmas, and then state the three propositions.
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Lemma 3.2. Let 𝜙 be a smooth function and surface Γ = {(𝑥, 𝑦) : 𝜙(𝑥, 𝑦) = 0}
be the zero level set of 𝜙. Then for any function 𝑢, 𝑣 ∈ 𝐿2(Ω), the modified surface
gradient operator ∇Γ satisfies

∣∇Γ𝑢∣2 ⩽ ∣∇𝑢∣2 ⩽ ∣∇𝑢∣2𝛿 .

Proof. If we use the original ∇Γ𝜙, then it is a projection of ∇𝜙 on the tangent
plane, the inequality means the length of the projection is smaller than the original
vector, which is true automatically. But the modified operator is no longer projection.
However, the modified operator satisfies

∇Γ𝑢 = ∇𝑢− (∇𝑢 ⋅ �⃗�𝛿)�⃗�𝛿,

Therefore, we have

∣∇Γ𝑢∣2 = ∇Γ𝑢 ⋅ ∇Γ𝑢

= (∇𝑢− (∇𝑢 ⋅ �⃗�𝛿)�⃗�𝛿) ⋅ (∇𝑢− (∇𝑢 ⋅ �⃗�𝛿)�⃗�𝛿)

= ∇𝑢 ⋅ ∇𝑢− 2(∇𝑢 ⋅ �⃗�𝛿)
2 + (∇𝑢 ⋅ �⃗�𝛿)

2(�⃗�𝛿 ⋅ �⃗�𝛿)

= ∣∇𝑢∣2 − (∇𝑢 ⋅ �⃗�𝛿)
2(2− ∣�⃗�𝛿∣2)

⩽ ∣∇𝑢∣2 ⩽ ∣∇𝑢∣2𝛿 .

by the fact 0 ⩽ ∣�⃗�𝛿∣2 ⩽ ∣�⃗�∣2 = 1. In addition, we can verify this is also true for the
discretized solution.

Lemma 3.3. We have the following inequalities

∥𝐷2𝑢∥22 ⩽ ∥Δ𝑢∥22 ⩽ 2∥𝐷2𝑢∥22,
∥𝐷3𝑢∥22 ⩽ ∥∇Δ𝑢∥22 ⩽ 3∥𝐷3𝑢∥22,
∥𝐷2𝑢∥22 ⩽ ∥∇𝑢∥2 + ∥𝐷3𝑢∥2.

Proof. Integrate by parts for ∥Δ𝑢∥22 and we obtain

∥Δ𝑢∥22 =

∫
(𝑢2

𝑥𝑥 + 2𝑢𝑥𝑥𝑢𝑦𝑦 + 𝑢2
𝑦𝑦)𝑑𝑥𝑑𝑦 =

∫
(𝑢2

𝑥𝑥 + 2𝑢2
𝑥𝑦 + 𝑢2

𝑦𝑦)𝑑𝑥𝑑𝑦.

The second part can be verified in a similar way. For the third part, we have∫
𝑢2
𝑥𝑥𝑑𝑥𝑑𝑦 = −

∫
𝑢𝑥𝑢𝑥𝑥𝑥𝑑𝑥𝑑𝑦 ⩽ 1

2

(∫
𝑢2
𝑥𝑑𝑥𝑑𝑦 +

∫
𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑦

)
.

Do the same to
∫
𝑢2
𝑥𝑦𝑑𝑥𝑑𝑦 and

∫
𝑢2
𝑦𝑦𝑑𝑥𝑑𝑦, we can come to the conclusion.

Lemma 3.4. For any 𝑢, there exist some constant 𝐶 = 𝐶(Ω) such that

∥𝐷2𝑢∥24 ⩽ 𝐶∥∇𝑢∥∞∥𝐷3𝑢∥2.

Proof. By Gagliardo-Nirenberg inequality as in [31], for any 𝑓 we have

∥𝐷𝑓∥24 ⩽ 𝐶∥𝑓∥∞∥𝐷2𝑓∥2.
By taking 𝑓 = Φ𝑥 and 𝑓 = Φ𝑦 we obtain the inequality.
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Proposition 3.5. (Consistency) Under the same assumptions as in Theorem
3.1, the numerical scheme (3.7) is consistent with equation (2.4) with local truncation
error ∥𝜏𝑘∥−1 = 𝑂(𝑑𝑡).

Proof. The local truncation error is defined as

𝜏𝑘 =
𝜙𝑘+1 − 𝜙𝑘

𝑑𝑡
+ 𝛽Δ2(𝜙𝑘+1 − 𝜙𝑘)− ∣∇𝜙𝑘∣𝛿∇Γ

(
𝑔(ℎ𝑘

𝛿 )∇Γℎ
𝑘
𝛿

)
. (3.10)

Taking the Taylor series of 𝜙 at 𝑘𝑑𝑡 and assuming that ∥𝜙𝑡𝑡∥−1, ∥∇Δ𝜙𝑡∥2, ∥∇𝜙∥∞
and ∥𝜙𝑡∥−1 are bounded, we obtain that

∥𝜏𝑘∥−1 = 𝑂(𝑑𝑡).

thus the local truncation error is first order in time.
Proposition 3.6. (Stability) Under the same assumptions as Theorem 3.1 and

assume ∥∇Φ𝑘∥∞ ⩽ 𝐾 for all 𝑘𝑑𝑡 ⩽ 𝑇 , then the numerical solution Φ𝑘 satisfies

∥∇Φ𝑘∥22 + 𝑑𝑡𝐾1∥∇ΔΦ𝑘∥22 ⩽ 𝑒𝐾2𝑇
(∥∇Φ0∥22 + 𝑑𝑡𝐾1∥∇ΔΦ0∥22

)
,

for some constant 𝐾1, 𝐾2.
Proof. We multiply (3.7) with ΔΦ𝑘+1 and integrate over Ω, then we obtain

⟨Φ𝑘+1,ΔΦ𝑘+1⟩ − ⟨Φ𝑘,ΔΦ𝑘+1⟩
𝑑𝑡

+ 𝛽
(⟨Δ2Φ𝑘+1,ΔΦ𝑘⟩ − ⟨Δ2Φ𝑘+1,ΔΦ𝑘⟩)

= − 〈divΓ(𝑔(h𝑘
𝛿 )∇Γh

𝑘
𝛿

)
, ∣∇Φ𝑘∣𝛿ΔΦ𝑘+1

〉
. (3.11)

Integrate by parts for both sides, then we obtain

⟨∇Φ𝑘+1,∇Φ𝑘+1⟩ − ⟨∇Φ𝑘,∇Φ𝑘+1⟩
𝑑𝑡

+ 𝛽
(∥∇ΔΦ𝑘+1∥22 − ⟨∇ΔΦ𝑘+1,∇ΔΦ𝑘⟩)

= − 〈𝑔(h𝑘
𝛿 )∇Γh

𝑘
𝛿 ,∇Γ(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)

〉
.

Applying Cauchy’s inequality we obtain

⟨Φ𝑘+1,Φ𝑘⟩ ⩽ 1

2

(∥Φ𝑘+1∥22 + ∥Φ𝑘∥22
)
.

Consequently, we have

∥Φ𝑘+1∥22 − ⟨Φ𝑘+1,Φ𝑘⟩ ⩽ 1

2

(∥Φ𝑘+1∥22 − ∥Φ𝑘∥22
)
.

Similarly, we have

∥ΔΦ𝑘+1∥22 − ⟨ΔΦ𝑘+1,ΔΦ𝑘⟩ ⩽ 1

2

(∥ΔΦ𝑘+1∥22 − ∥ΔΦ𝑘∥22
)
.

Therefore, we obtain the following inequality by lemma 3.2:

∥∇Φ𝑘+1∥22 − ∥∇Φ𝑘∥22
2𝑑𝑡

+
𝛽

2

(∥∇ΔΦ𝑘+1∥22 − ∥∇ΔΦ𝑘∥22
)

= −⟨𝑔(h𝑘
𝛿 )∣∇Φ𝑘∣𝛿∇Γh

𝑘
𝛿 ,∇Γ(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿⟩

⩽ 1

2𝜀

∥∥𝑔(h𝑘
𝛿 )∣∇Φ𝑘∣𝛿∇Γh

𝑘
𝛿

∥∥2
2
+

𝜀

2

∥∥∇Γ(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿
∥∥2
2

⩽ 𝐿

2𝜀

∥∥∣∇Φ𝑘∣𝛿∇Γh
𝑘
𝛿

∥∥2
2
+

𝜀

2

∥∥∇Γ(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿
∥∥2
2

⩽ 𝐿

2𝜀

∥∥∣∇Φ𝑘∣𝛿∇h𝑘
𝛿

∥∥2
2
+

𝜀

2

∥∥∇(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿
∥∥2
2
. (3.12)
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Then we estimate ∇h𝑘
𝛿 . Similar to the original level set representation of mean cur-

vature ℎ, the modified ℎ𝛿 has the following representation.

h𝑘
𝛿 = ∇ ⋅ ( ∇Φ𝑘

∣∇Φ𝑘∣𝛿
)
=

ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
,

and

∣∇Φ𝑘∣𝛿∇h𝑘
𝛿 = ∣∇Φ𝑘∣𝛿∇

( ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
)

= ∇ΔΦ𝑘 − ΔΦ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣2𝛿
− 2∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣2𝛿
− ∇Φ𝑘∇(∇2Φ𝑘)∇Φ𝑘

∣∇Φ𝑘∣2𝛿
+

3(∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣4𝛿
.

In addition, we have

∇(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿 = ∇ΔΦ𝑘+1 +ΔΦ𝑘+1∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣2𝛿
.

By the fact that ∣∇Φ𝑘∣𝛿 ⩾ 𝛿 for all 𝑘, we have

∣∇h𝑘
𝛿 ∣∣∇Φ𝑘∣𝛿 ⩽ ∣∇ΔΦ𝑘∣+ 6∣∇2Φ𝑘∣2

𝛿
+ ∣𝐷3Φ𝑘∣,

and

∣∇(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)∣/∣∇Φ𝑘∣𝛿 ⩽ ∣∇ΔΦ𝑘+1∣+ 1

𝛿
∣ΔΦ𝑘+1∣∣𝐷2Φ𝑘∣.

Consequently,

𝐿
∥∥∣∇Φ𝑘∣𝛿∇h𝑘

𝛿

∥∥2
2
⩽ 𝐶1∥𝐷3Φ𝑘∥22 + 𝐶2∥𝐷2Φ𝑘∥44,

and∥∥∇(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿
∥∥2
2

⩽ ∥∇ΔΦ𝑘+1∥22 + 𝐶4∥ΔΦ𝑘+1∇2Φ𝑘∥22
⩽ 𝐶3∥𝐷3Φ𝑘+1∥22 + 𝐶4∥𝐷2Φ𝑘+1∥44 + 𝐶4∥𝐷2Φ𝑘∥44.

Therefore, we have the following estimate with lemma 3.3 and 3.4:

𝐿
∥∥∣∇Φ𝑘∣𝛿∇h𝑘

𝛿

∥∥2
2
⩽ 𝐶5∥𝐷3Φ𝑘∥22 ⩽ 𝐶6∥∇ΔΦ𝑘∥22, (3.13)

and ∥∥∇(∣∇Φ𝑘∣𝛿ΔΦ𝑘+1)/∣∇Φ𝑘∣𝛿
∥∥2
2
⩽ 𝐶7∥∇ΔΦ𝑘+1∥22 + 𝐶8∥∇ΔΦ𝑘∥22. (3.14)

By plugging into (3.12) we obtain

∥∇Φ𝑘+1∥22+(𝛽−𝐶7𝜀)𝑑𝑡∥∇ΔΦ𝑘+1∥22 ⩽ ∥∇Φ𝑘∥22+(𝛽+𝐶6+𝐶8𝜀)𝑑𝑡∥∇ΔΦ𝑘∥22. (3.15)

By choosing 𝜀 = 𝛽
2𝐶7

we obtain

∥∇Φ𝑘+1∥22 +
𝛽

2
𝑑𝑡∥∇ΔΦ𝑘+1∥2 ⩽∥∇Φ𝑘∥22 +

(
𝛽 + 𝐶6 +

𝛽𝐶8

2𝐶7

)
𝑑𝑡∥∇ΔΦ𝑘∥2

⩽(1 + (1 + 2𝐶6/𝛽 + 𝐶8/𝐶7)𝑑𝑡)(∥∇Φ𝑘∥22 +
𝛽

2
𝑑𝑡∥∇ΔΦ𝑘∥2).
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Taking 𝐾1 = 𝛽/2 and 𝐾2 = (1 + 2𝐶6/𝛽 + 𝐶8/𝐶7)𝑑𝑡, then we have the following
inequality by induction.

∥∇Φ𝑘∥22 +𝐾1𝑑𝑡∥∇ΔΦ𝑘∥2 ⩽(1 +𝐾2𝑑𝑡)(∥∇Φ𝑘−1∥22 +𝐾1𝑑𝑡∥∇ΔΦ𝑘−1∥2)
⩽(1 +𝐾2𝑑𝑡)

𝑘(∥∇Φ0∥22 +𝐾1𝑑𝑡∥∇ΔΦ0∥2)
⩽𝑒𝐾2𝑇 (∥∇Φ0∥22 +𝐾1𝑑𝑡∥∇ΔΦ0∥2).

which gives the boundedness of the numerical solution.
In this proposition we make the assumption that ∥∇Φ𝑘∥∞ ⩽ 𝐾. This assumption

is reasonable when we are using a level set method for curve evolution problems. We
should keep the level function smooth to avoid any undesired singulary, thus we always
reinitialize the level set function once ∥∇Φ𝑘∥∞ reaches the given upper bound 𝐾. The
assumption ∥∇Φ𝑘∥∞ ⩽ 𝐾 is used in the proof of convergence. The convergence of
the discrete solution to the continuous solution as 𝑑𝑡 → 0 is included in the following
proposition.

Proposition 3.7. (Convergence) Under the same assumptions as in Theorem
3.1, the discretization error 𝑒𝑘 = 𝜙𝑘 − Φ𝑘 with 𝑘𝑑𝑡 ⩽ 𝑇 for a fixed 𝑇 > 0 satisfies

∥∇𝑒𝑘∥22 +𝐾1𝑑𝑡∥∇Δ𝑒𝑘∥22 ⩽ 𝑇𝑒𝐾2𝑇 ⋅ 𝐶𝑑𝑡2

for some constants 𝐶,𝐾1,𝐾2.
Proof. Subtracting (21) from (22) we obtain

𝑒𝑘+1 − 𝑒𝑘

𝑑𝑡
+𝛽Δ2𝑒𝑘+1−𝛽Δ2𝑒𝑘 = −∣∇𝜙𝑘∣𝛿∇Γ

(
𝑔(ℎ𝑘

𝛿 )∇Γℎ
𝑘
𝛿

)
+∣∇Φ𝑘∣𝛿∇Γ

(
𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿

)
+𝜏𝑘.

We use the same technique as the proof of proposition 2. Multiplying both sides
with Δ𝑒𝑘+1 and integrating by parts, we obtain

∥∇𝑒𝑘+1∥22 − ⟨∇𝑒𝑘,∇𝑒𝑘+1⟩
𝑑𝑡

+ 𝛽
(∥∇Δ𝑒𝑘+1∥22 − ⟨∇Δ𝑒𝑘+1,∇Δ𝑒𝑘⟩)

=− 〈𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 ,∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)

〉
+
〈
𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿 ,∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)

〉
+ ⟨∇Δ−1𝜏𝑘,∇Δ𝑒𝑘+1⟩

=⟨∇Δ−1𝜏𝑘,∇Δ𝑒𝑘+1⟩ − 〈𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 − 𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿 ,∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)

〉
− 〈𝑔(ℎ𝑘

𝛿 )∇Γℎ
𝑘
𝛿 ,∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)−∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)

〉
.

For the difference terms above, we split them into five terms:

𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 − 𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿

=(𝑔(ℎ𝑘
𝛿 )− 𝑔(h𝑘

𝛿 ))∇Γℎ
𝑘
𝛿 + 𝑔(h𝑘

𝛿 )(∇Γ −∇Γ)ℎ
𝑘
𝛿 + 𝑔(h𝑘

𝛿 )∇Γ(ℎ
𝑘
𝛿 − h𝑘

𝛿 )

=(𝐼) + (𝐼𝐼) + (𝐼𝐼𝐼),

∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)−∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)

=(∇Γ −∇Γ)(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1) +∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1 − ∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)

=(𝐼𝑉 ) + (𝑉 ).

Now we estimate (𝐼)− (𝑉 ). First we estimate ℎ𝑘
𝛿 − h𝑘

𝛿 :

ℎ𝑘
𝛿 − h𝑘

𝛿 =
( Δ𝜙𝑘

∣∇𝜙𝑘∣𝛿 − (∇Φ𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
)− ( ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
)

=
( Δ𝜙𝑘

∣∇𝜙𝑘∣𝛿 − ΔΦ𝑘

∣∇Φ𝑘∣𝛿
)− ( (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
− (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
)
.
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With the fact ∣∇𝜙∣𝛿 > 𝛿, ∣∇Φ∣𝛿 > 𝛿 and the assumption ∥∂𝛼𝜙∥∞ ⩽ 𝐾 for ∣𝛼∣ ⩽ 3,
∥∇Φ∥∞ ⩽ 𝐾, we obtain∣∣ Δ𝜙𝑘

∣∇𝜙𝑘∣𝛿 − ΔΦ𝑘

∣∇Φ𝑘∣𝛿
∣∣ = ∣∣Δ𝜙𝑘 −ΔΦ𝑘

∣∇Φ𝑘∣𝛿 +
Δ𝜙𝑘(∣∇Φ𝑘∣𝛿 − ∣∇𝜙𝑘∣𝛿)

∣∇𝜙𝑘∣𝛿∣∇Φ𝑘∣𝛿
∣∣

⩽ ∣Δ𝜙𝑘 −ΔΦ𝑘∣
∣∇Φ𝑘∣𝛿 +

∣Δ𝜙𝑘∣∣∣∣∇Φ𝑘∣𝛿 − ∣∇Φ𝑘∣𝛿
∣∣

∣∇𝜙𝑘∣𝛿∣∇Φ𝑘∣𝛿
⩽ ∣Δ𝑒𝑘∣

∣∇Φ𝑘∣𝛿 +
∣Δ𝜙𝑘∣∣∇𝑒𝑘∣

∣∇Φ𝑘∣𝛿∣∇Φ𝑘∣𝛿
⩽ ∣Δ𝑒𝑘∣

𝛿
+

∣∇𝑒𝑘∣∣𝐷2𝜙𝑘∣
𝛿2

,

and ∣∣ (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
− (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
∣∣

⩽
∣∣ (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
− (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣ (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
− (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
∣∣

⩽
∣∣ (∇𝜙𝑘 −∇Φ𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣ (∇Φ𝑘)𝑇∇2𝜙𝑘(∇𝜙𝑘 −∇Φ𝑘)

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣ (∇Φ𝑘)𝑇 (∇2𝜙𝑘 −∇2Φ𝑘)∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
∣∣

+ ∣(∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘∣∣∣ (∣∇𝜙𝑘∣𝛿 − ∣∇Φ𝑘∣𝛿)(∣∇𝜙𝑘∣2𝛿 + ∣∇𝜙𝑘∣𝛿∣∇Φ𝑘∣𝛿 + ∣∇Φ𝑘∣2𝛿)
∣∇𝜙𝑘∣3𝛿 ∣∇Φ𝑘∣3𝛿

∣∣
⩽
∣∣ (∇𝑒𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣ (∇Φ𝑘)𝑇∇2𝜙𝑘∇𝑒𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣ (∇Φ𝑘)𝑇∇2𝑒𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
∣∣

+ ∣(∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘∣∣∣ (∣∇𝑒𝑘∣𝛿)(∣∇𝜙𝑘∣2𝛿 + ∣∇𝜙𝑘∣𝛿∣∇Φ𝑘∣𝛿 + ∣∇Φ𝑘∣2𝛿)
∣∇𝜙𝑘∣3𝛿 ∣∇Φ𝑘∣3𝛿

∣∣
⩽ 𝐶(∣Δ𝑒𝑘∣+ ∣∇𝑒𝑘∣). (3.16)

Therefore, we have the following inequalities:

∣ℎ𝑘
𝛿 − h𝑘

𝛿 ∣ ⩽ 𝐶1(∣Δ𝑒𝑘∣+ ∣∇𝑒𝑘∣),
and

∣𝑔(ℎ𝑘
𝛿 )− 𝑔(h𝑘

𝛿 )∣ = ∣𝑔′(ℎ∗)(ℎ𝑘
𝛿 − h𝑘

𝛿 )∣
⩽ 𝐿𝐶1(∣Δ𝑒𝑘∣+ ∣∇𝑒𝑘∣),

and

∣(∇Γ −∇Γ)ℎ
𝑘
𝛿 ∣ =

∣∣((𝐼 − ∇𝜙𝑘∇(𝜙𝑘)𝑇

∣∇𝜙𝑘∣2𝛿
)− (𝐼 − ∇Φ𝑘∇(Φ𝑘)𝑇

∣∇Φ𝑘∣2𝛿
))∇ℎ𝑘

𝛿

∣∣
=
∣∣(∇𝜙𝑘∇(𝜙𝑘)𝑇

∣∇𝜙𝑘∣2𝛿
− ∇Φ𝑘∇(Φ𝑘)𝑇

∣∇Φ𝑘∣2𝛿
)∇ℎ𝑘

𝛿

∣∣
⩽ 𝐶2∣∇𝑒𝑘∣.

To estimate ∣∇(ℎ𝑘
𝛿 − h𝑘

𝛿 )∣, recall that we represent ∇h𝛿 by

∇h𝛿 =
∇ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − ΔΦ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− 2∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− ∇Φ𝑘∇(∇2Φ𝑘)∇Φ𝑘

∣∇Φ𝑘∣3𝛿
+

3(∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣5𝛿
,
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and we have the corresponding one for ∇ℎ𝑘
𝛿 . Then the estimate goes as follows.

∣∇(ℎ𝑘
𝛿−h𝑘

𝛿 )∣ ⩽
∣∣∇ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − ∇Δ𝜙𝑘

∣∇𝜙𝑘∣𝛿
∣∣+ ∣∣ΔΦ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− Δ𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
∣∣

+ 2
∣∣∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− ∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣∇Φ𝑘∇(∇2Φ𝑘)∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− ∇𝜙𝑘∇(∇2𝜙𝑘)∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
∣∣

+ 3
∣∣ (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣5𝛿
− (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣5𝛿
∣∣.

With similar analysis as above, we have∣∣∇ΔΦ𝑘

∣∇Φ𝑘∣𝛿 − ∇Δ𝜙𝑘

∣∇𝜙𝑘∣𝛿
∣∣ ⩽ 𝐶(∣∇Δ𝑒𝑘∣+ ∣∇𝑒𝑘∣),

and ∣∣∇Φ𝑘∇(∇2Φ𝑘)∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− ∇𝜙𝑘∇(∇2𝜙𝑘)∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
∣∣ ⩽ 𝐶(∣𝐷3𝑒𝑘∣+ ∣∇𝑒𝑘∣).

In addition, we use the fact that ΔΦ𝑘 = Δ𝜙𝑘 −Δ𝑒𝑘 and ∇2Φ𝑘 = ∇2𝜙𝑘 −∇2𝑒𝑘

to estimate the other three difference terms. Here we use again the assumption that
the derivatives of 𝜙 is bounded. We have

ΔΦ𝑘∇2Φ𝑘 = (Δ𝜙𝑘 −Δ𝑒𝑘)(∇2𝜙𝑘 −∇2𝑒𝑘)

= Δ𝜙𝑘∇2𝜙𝑘 −Δ𝜙𝑘∇2𝑒𝑘 −Δ𝑒𝑘∇2𝜙𝑘 +Δ𝑒𝑘∇2𝑒𝑘.

Therefore, we obtain the following estimate.∣∣ΔΦ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− Δ𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
∣∣

⩽
∣∣ (ΔΦ𝑘∇2Φ𝑘 −Δ𝜙𝑘∇2𝜙𝑘)∇Φ𝑘

∣∇Φ𝑘∣3𝛿
∣∣+ ∣∣Δ𝜙𝑘∇2𝜙𝑘(∇Φ𝑘 −∇𝜙𝑘)

∣∇Φ𝑘∣3𝛿
∣∣

+
∣∣Δ𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇Φ𝑘∣3𝛿
− Δ𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3𝛿
∣∣

⩽ 𝐶(∣𝐷2𝑒𝑘∣2 + ∣𝐷2𝑒𝑘∣+ ∣∇𝑒𝑘∣).
Similarly, we have∣∣∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
− ∇2Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣3𝛿
∣∣ ⩽ 𝐶(∣𝐷2𝑒𝑘∣2 + ∣𝐷2𝑒𝑘∣+ ∣∇𝑒𝑘∣),

and∣∣ (∇Φ𝑘)𝑇∇2Φ𝑘∇Φ𝑘∇2Φ𝑘∇Φ𝑘

∣∇Φ𝑘∣5𝛿
− (∇𝜙𝑘)𝑇∇2𝜙𝑘∇𝜙𝑘∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣5𝛿
∣∣ ⩽ 𝐶(∣𝐷2𝑒𝑘∣2+∣𝐷2𝑒𝑘∣+∣∇𝑒𝑘∣).

Thus we obtain the following estimate:

∣∇(ℎ𝑘
𝛿 − h𝑘

𝛿 )∣ ⩽ 𝐶3(∣𝐷3𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣2 + ∣∇𝑒𝑘∣).
Consequently, the estimation for (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) are

∣(𝐼)∣ ⩽ ∣𝑔(ℎ𝑘
𝛿 )− 𝑔(h𝑘

𝛿 )∣∣∇ℎ𝑘
𝛿 ∣ ⩽ 𝐶4(∣Δ𝑒𝑘∣+ ∣∇𝑒𝑘∣),
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∣(𝐼𝐼)∣ = ∣𝑔(h𝑘
𝛿 )(∇Γ −∇Γ)ℎ

𝑘
𝛿 ∣ ⩽ 𝐿𝐶1∣(∇Γ −∇Γ)ℎ

𝑘
𝛿 ∣ ⩽ 𝐶5∣∇𝑒𝑘∣,

∣(𝐼𝐼𝐼)∣ = ∣𝑔(h𝑘
𝛿 )∇Γ(ℎ

𝑘
𝛿 − h𝑘

𝛿 )∣ ⩽ 𝐿∣∇(ℎ𝑘
𝛿 − h𝑘

𝛿 )∣
⩽ 𝐶6(∣𝐷3𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣2 + ∣∇𝑒𝑘∣).

Estimating (𝐼𝑉 ) and (𝑉 ) is slightly different. We have

∇(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1) =
∇Δ𝑒𝑘+1

∣∇𝜙𝑘∣𝛿 +Δ𝑒𝑘+1∇2𝜙𝑘∇𝜙𝑘

∣∇𝜙𝑘∣3 .

Therefore,

∣(𝐼𝑉 )∣ = ∣(∇Γ −∇Γ)(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)∣

=
∣∣(∇𝜙𝑘∇(𝜙𝑘)𝑇

∣∇𝜙𝑘∣2𝛿
− ∇Φ𝑘∇(Φ𝑘)𝑇

∣∇Φ𝑘∣2𝛿
)∇(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)

∣∣
⩽ 𝐶7∣∇𝑒𝑘∣∣∇(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)∣
⩽ 𝐶8∣∇𝑒𝑘∣(∣𝐷3𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣),

∣(𝑉 )∣ = ∣∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1 − ∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣
⩽ ∣∇(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1 − ∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣
⩽ ∣∇Δ𝑒𝑘+1∣∣∣∣∇𝜙𝑘∣𝛿 − ∣∇Φ𝑘∣𝛿

∣∣+ ∣Δ𝑒𝑘+1∣∣∇(∣∇𝜙𝑘∣𝛿 − ∣∇Φ𝑘∣𝛿)∣
⩽ 𝐶9(∣𝐷3𝑒𝑘+1∣∣∇𝑒𝑘∣+ ∣𝐷2𝑒𝑘+1∣∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘+1∣∣∇𝑒𝑘∣).

In addition, we use ∇2Φ𝑘 = ∇2𝜙𝑘−∇2𝑒𝑘 again and obtain the following estimate

∣∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣ ⩽ ∣∇(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣

⩽ ∣∇Φ𝑘∣𝛿∣∇Δ𝑒𝑘∣+ ∣Δ𝑒𝑘∣ ∣∇
2Φ𝑘∇Φ𝑘∣
∣∇Φ𝑘∣2𝛿

⩽ 𝐶10(∣𝐷3𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣∣𝐷2𝑒𝑘∣)
⩽ 𝐶10(∣𝐷3𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣2 + ∣𝐷2𝑒𝑘∣2).

Thus we obtain the following estimate:

∣𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 − 𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿 ∣ ⩽ 𝐶11(∣𝐷3𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣2 + ∣∇𝑒𝑘∣)

∣∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)−∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣ ⩽ 𝐶12(∣𝐷3𝑒𝑘+1∣∣∇𝑒𝑘∣+ ∣𝐷2𝑒𝑘+1∣∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘+1∣∣∇𝑒𝑘∣)
⩽ 𝐶12(∣𝐷3𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣)(∣𝐷2𝑒𝑘∣+ ∣∇𝑒𝑘∣).

Consequently applying lemma 3.3 and 3.4, and the fact ∣∇𝑒𝑘∣ ⩽ ∣∇𝜙𝑘∣+ ∣∇Φ𝑘∣ ⩽
2𝐾, we obtain

− ⟨𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 − 𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿 ,∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)⟩

⩽ ⟨∣𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 − 𝑔(h𝑘

𝛿 )∇Γh
𝑘
𝛿 ∣, ∣∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1)∣⟩

⩽ 𝐶13⟨∣𝐷3𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣+ ∣𝐷2𝑒𝑘+1∣2 + ∣𝐷2𝑒𝑘∣2, ∣𝐷3𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣+ ∣𝐷2𝑒𝑘∣+ ∣∇𝑒𝑘∣⟩
⩽ 𝐶13𝜀(∥𝐷3𝑒𝑘+1∥22 + ∣𝐷2𝑒𝑘+1∣22 + ∣𝐷2𝑒𝑘+1∣44 + ∣𝐷2𝑒𝑘∣44)

+ 𝐶13/𝜀(∣𝐷3𝑒𝑘∣22 + ∣𝐷2𝑒𝑘∣22 + ∣𝐷3𝑒𝑘∣44 + ∣∇𝑒𝑘∣22)
⩽ 𝐶14𝜀(∥𝐷3𝑒𝑘+1∥22 + ∣∇𝑒𝑘+1∣22 + ∥𝐷3𝑒𝑘∥22 + ∣∇𝑒𝑘∣22) + 𝐶14/𝜀(∣𝐷3𝑒𝑘∣22 + ∣∇𝑒𝑘∣22)
= 𝐶14𝜀(∥𝐷3𝑒𝑘+1∥22 + ∣∇𝑒𝑘+1∣22) + (𝐶14𝜀+ 𝐶14/𝜀)(∣𝐷3𝑒𝑘∣22 + ∣∇𝑒𝑘∣22),
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and similarly

∣(𝑔(ℎ𝑘
𝛿 )∇Γℎ

𝑘
𝛿 ,∇Γ(∣∇𝜙𝑘∣𝛿Δ𝑒𝑘+1)−∇Γ(∣∇Φ𝑘∣𝛿Δ𝑒𝑘+1))∣

⩽𝐶15𝜀(∥𝐷3𝑒𝑘+1∥22 + ∣∇𝑒𝑘+1∣22) + 𝐶15/𝜀(∣𝐷3𝑒𝑘∣22 + ∣∇𝑒𝑘∣22).

Now we come to the following estimate

∥∇𝑒𝑘+1∥22 − ⟨∇𝑒𝑘,∇𝑒𝑘+1⟩
𝑑𝑡

+ 𝛽
(∥∇Δ𝑒𝑘+1∥22 − ⟨∇Δ𝑒𝑘+1,∇Δ𝑒𝑘⟩)

⩽𝐶16𝜀(∥∇𝑒𝑘+1∥22 + ∥∇Δ𝑒𝑘+1∥22) + (𝐶16𝜀+ 𝐶16/𝜀)(∥∇𝑒𝑘∥22 + ∥∇Δ𝑒𝑘∥22) +
1

𝜀
∥𝜏𝑘∥2−1,

where 𝜀 is an arbitrary constant. Applying Cauchy’s inequality to the left hand side
we obtain

(1− 𝐶16𝜀𝑑𝑡)∥∇𝑒𝑘+1∥22 + (𝛽 − 𝐶16𝜀)𝑑𝑡∥∇Δ𝑒𝑘+1∥22
⩽ (1 + 𝐶16/𝜀𝑑𝑡)∥∇𝑒𝑘∥22 + (𝛽 + 𝐶16𝜀+ 𝐶16/𝜀)𝑑𝑡∥∇Δ𝑒𝑘∥22 + 1/𝜀∥𝜏𝑘∥2−1.

We take 𝜀 = 𝛽
2𝐶16

. Then we can take 𝐾1 = 1+ 𝛽 and 𝐾2 = 𝛽 +𝐶16𝜀+𝐶16/𝜀, as
long as 𝑑𝑡 is small enough, we have

∥∇𝑒𝑘+1∥22+𝐾1𝑑𝑡∥∇Δ𝑒𝑘+1∥22 ⩽ (1+𝐾2𝑑𝑡)(∥∇𝑒𝑘∥22+𝐾1𝑑𝑡∥∇Δ𝑒𝑘∥22)+
𝛽

𝐶10
𝑑𝑡∥𝜏𝑘∥2−1.

By induction, we obtain the following estimate:

∥∇𝑒𝑘∥22 +𝐾1𝑑𝑡∥∇Δ𝑒𝑘∥22 ⩽ 𝑇𝑒𝐾2𝑇 ⋅ 𝐶𝑑𝑡2.

We can see that ∥∇𝑒𝑘∥2 converges with first order in time.
When using a level set method for curve evolution problems, the existence of

corners break the smoothness of the level set function. However, as in the previous
discussion, this corner preserving model generalizes the LCIS equation, for which the
corners are known to be in the infinitesimal sense. In Bertozzi and Greer [3] it has
been proved in one dimension that the solutions of LCIS equations are smooth and
never develop corners in finite time. We conjecture that it is also true for our model,
as long as the curve has no self-intersections, although this has not been proven. In
addition, our goal is to evolve the curve, which only involves a small neighborhood of
the zero level set, so we only need to compute the corner preserving term of equation
(2.5) in a narrow band around the zero level set of 𝜙. This can save computational
time. We may reinitialize 𝜙 to be the signed distance function, but not necessarily.
According to our analysis, we impose an upper bound 𝐾 for ∣∇Φ𝑘∣. If ∣∇Φ𝑘∣ exceeds
𝐾, reinitialization is required.

In two dimension images the operator (1+𝑑𝑡 ⋅𝛽Δ2)−1 can be computed using the
Fast Fourier Transform (FFT) very easily and efficiently. The evolution is still some-
what slow when comparing with Chan-Vese model due to the time step restriction.
The Chan-Vese model only requires 𝑑𝑡 ∼ 𝑑𝑥 while our method requires 𝑑𝑡 ∼ 𝑑𝑥2. In
fact we can take advantage of fast methods for Chan-Vese by first solving Chan-Vese
to steady state and using this as the initial guess for our method. Since we start with
a initial guess that is close to the final result, the reinitialization process during the
level set evolution is optional.

The full algorithm is:
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Step 0. Solve Chan-Vese model and obtain the steady state 𝜙.

Step 1. Initialize the level set function 𝜙 to the signed distance function.

Step 2. Compute 𝑐1 and 𝑐2 for equation (2.5) and the Chan-Vese energy
term.

Step 3. Compute the corner preserving term in a narrow band around
the zero level set of 𝜙 and set it to be 0 in other places. Usually
we choose the narrow band as points within 3 or 4 grid size to
the zero level set.

Step 4. Update 𝜙 with equation (2.5).

Step 5. Reinitialize the level set function 𝜙 to be the signed distance
function if ∣∇Φ𝑘∣ exceeds 𝐾. Repeat step 2 until convergence.

4. Numerical Results. In this section we show some numerical results for im-
age segmentation with the equation (2.5). Although we employ semi-implicit schemes,
the spatial discretization of the nonlinear high order equation may impose additional
time step restrictions. Usually we take 𝑑𝑡 ∼ 𝑑𝑥2. For faster convergence, we do not
directly solve equation (2.5) with a random initialization, but we start from the steady
state of Chan-Vese method and then solve equation (2.5). The time step for equation
(2.5) is chosen as 𝑑𝑡 = .1𝑑𝑥2, while the time step for preprocessing with Chan-Vese
method is 𝑑𝑡 = .1𝑑𝑥. As for the computational time, the regular Chan-Vese method
takes 2 seconds and our methods takes 21 seconds for the building image in Figure
4.2 of size 128 × 110 using C++. For the hyperspectral image in Figure 4.3 of size
100 × 80 below, the Chan-Vese method takes 4 seconds and our methods takes 35
seconds.

Figure 4.1 shows the segmentation of a simple shape. (I) is the originally image.
(II) shows the segmentation with equation (2.5) and (III) shows the segmentation
without corner preserving term. Since the noise is strong in this image, the length
regularization term has to be chosen large to avoid the local minima and small noisy
pieces. We can see the corners are much better kept with the corner preserving term.

(I) Initial image (II) Segmentation without corner (III) Segmentation
with corner

Fig. 4.1. Comparison of Segmentation with and without corner term on a simple shape.

Figure 4.2 shows the segmentation of a building from Google maps. This is a
3-band color image. To avoid detecting the pieces on the roof, we have to use a strong
regularization. The segmentation with equation (2.5) is better than the segmentation
without the corner preserving term. And we also see that the two pieces enclosed by
the building are also captured by the level set based segmentation method.

Figure 4.3 shows the segmentation of a Walmart building from a hyperspectral
image with 163 bands. We can see that our approach also works for this high dimen-
sional data. Here we can use the evolution as specified in equation (2.6). Note that
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(I) Segmentation without corner (II) Segmentation with corner

Fig. 4.2. Comparison of Segmentation with and without corner term on a building.

we perform a simple binary segmentation which includes both the building and part
of the ground. The corner preserving method more accurately segments these two
features.

(I) Segmentation without corner (II) Segmentation with corner

Fig. 4.3. Comparison of Segmentation with and without corner term on a building.

5. Conclusion. In this paper we propose a modification of the Chan-Vese model.
Motivated by the low curvature image simplifier, we add a corner preserving term to
the Chan-Vese model following a method developed in Droske and Bertozzi [17] for
image snakes. With the new model we can capture the sharp corners in the image
while we can still manage the complex topology. To solve the high order nonlinear
equation, we employ the numerical technique of adding a bilaplacian term and using
semi-implicit schemes, which improves the time step restriction from 𝑑𝑡 ∼ 𝑑𝑥4 to
𝑑𝑡 ∼ 𝑑𝑥2. We also prove the stability and convergence of the semi-implicit time
stepping scheme. We validate our model by numerical tests on color and hyperspectral
images. The numerical results also show that this new model is robust to noise. One
issue is that due to the nonlinearity and high order, we have to use smaller time steps
when comparing with the original Chan-Vese model. Future work could involve faster
numerical schemes to speed up this method, or the application of this model to surface
representation and reconstruction as in [17].

Acknowledgements. We thank Jian Ye and Stanley Osher for useful conversa-
tions on the fast algorithm for Chan-Vese model.
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