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Abstract Our goal is to estimate a probability density based on discrete point data
via segmentation techniques. Since point data may represent certain activities, such
as crime, our method can be successfully used for detecting regions of high activity.
In this work we design a binary segmentation version of the well-known Maximum
Penalized Likelihood Estimation (MPLE) model, as well as a minimization algorithm
based on thresholding dynamics originally proposed by Merriman, Bence and Osher
[21]. We also present some computational examples, including one with actual resi-
dential burglary data from the San Fernando Valley.

Keywords Statistical density estimation · Image segmentation · Thresholding ·
Ginzburg-Landau functional

1 Introduction

The idea to use binary segmentation techniques for density estimates arises from the
need to quickly and accurately locate the regions of higher activity, as well as to cal-
culate the local density. Instead of obtaining a complete density function estimate,
such as seen in [23] and [29], our goal is to segment only one region at a time. Maxi-
mum penalized likelihood estimation models have become standard for estimating a
probability density function d(x) based on point data x1,x2 . . .xN ∈Rn, and they take
a form

d̂(x) = arg max
d(x)≥0∫

d=1

{
N

∑
i=1

log(d(xi))−αR(d)

}
(1)
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where R(d) is a penalty function. A wide variety of different penalty functions are
proposed in the literature, and many of them are designed to impose additional smooth-
ness on the density function. Single variable density estimation with a non-smooth
density function is discussed in [28] and [18] where the authors of both works in-
troduced the TV semi-norm as a penalty function. In their work [23], Mohler et al.
construct the first two dimensional TV norm based MPLE:

d̂(x) = arg max
d(x)≥0∫

d=1

{
N

∑
i=1

log(d(xi))−α

∫
|∇d|

}
. (2)

The authors also create an efficient computational method for minimization of (2)
based on the Split Bregman algorithm [15]. Smith et al. in [29] propose a modification
of the model (2), as well as the model that uses the H1 norm as a penalty function,
and they successfully integrated geographic information of the observed region to get
a more accurate density estimate. The authors use city maps, census data as well as
other types of geographical data to determine the region where the events typically
occur, the valid region D. Knowing that the density function is zero anywhere outside
the valid region, the authors align the zero level sets of the valid region and the density
function. In their modified MPLE model aligning is achieved through addition of the
alignment term, and the model they propose is

d̂(x) = arg max
d(x)≥0∫

d=1

{
N

∑
i=1

log(d(xi))+λ

∫
d∇ · ∇1D

|∇1D|
−α

∫
|∇d|

}
(3)

where 1D is a characteristic function of the valid region. In the case of the weighted
H1 MPLE model, in order to allow the density function d to have sharp jumps on
the border of the valid region, the H1 penalty functional was forced away from the
boundary of the valid region. Thus, the proposed model becomes:

d̂(x) = arg max
d(x)≥0∫

d=1

{
N

∑
i=1

log(d(xi))−α

∫
z2

ε |∇d|2
}
, (4)

where zε is a continuous function such that

zε =

{
1 if distance(x,∂D)> ε

0 if x ∈ ∂D.

In this work we propose the variational MPLE segmentation model using the Ginzburg-
Landau functional as a regularizer to segment the geography and calculate the density
function:

argmin
u(x)

∫
ε|∇u|2 + 1

ε
W (u)dx−µ

∫
w log(d(u))dx (5)

where w is a function that represents the given data, u is a segmentation function, and
d(u) is a two phase density function that can be determined from u. We define w as
a sum of Dirac δ functions w = ∑

N
i δ (xi), where where xi are data points. This func-

tion is introduced for the purpose of more compact notation. Note that in equation
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(5) the maximum likelihood term
∫

w log(d(u))dx involves the data function w, while
in equations (4),(3),(2) and (1) we used the sum ∑

N
i=1 log(d(xi)). The dense region

Σ is located via segmentation function u, i.e. u = χΣ . Using the information on the
data set we obtain through function w, as well as the assumption that density d(u) is
piecewise constant, we calculate the values of d(u) in Σ and ΣC.
This paper is organized as follows, in Section 2 we give some background on varia-
tional methods for image segmentation, in Section 3 we describe the MBO scheme,
in Section 4 we present some background on MPLE models. In Section 5 we discuss
the proposed model in more details, and calculate the time dependent Euler-Lagrange
equation to minimize the functional (5). Section 6 explains the thresholding dynamics
for minimization of our energy functional. Details on the numerical implementation
are presented in Section 7.

2 Background on variational methods in image segmentation and MBO scheme

Variational segmentation models are widely successful in image processing. In their
pioneering work [24], Mumford and Shah propose the following segmentation model:

min
K⊆D

u:D→R

MS(u,K) =
∫

D\K
|∇u|2dx+µLength(K)+λ

∫
D
(u− f )2dx (6)

where f is an image that should be segmented, and u is a segmentation function. One
of the major results in image segmentation is Chan-Vese algorithm presented in [5],
where authors, inspired by the level set method by Osher and Sethian [25], propose a
method for minimizing the piecewise constant version of (6):

min
Σ⊆D

c1,c2∈R

E(Σ ,c1,c2) = Per(Σ ;D)+λ

∫
Σ

(c1− f )2dx+λ

∫
D\Σ

(c2− f )2dx (7)

where Σ is a segmented region. The level set version of (7) proposed in [5]

min
φ :D→R
c1,c2∈R

∫
D
|∇H(φ)|+λ

{
H(φ)(c1− f )2 +(1−H(φ))(c2− f )2}dx (8)

is obtained by the boundary of Σ being represented as a 0-level set of the function
φ(x) : D→ R. After the optimal values for constants c1 and c2 are determined, the
time-dependent Euler-Lagrange equation for φ is found:

φt = H ′ε(φ)
{

∇ ·
(

∇φ

|∇φ |

)
−λ

{
(c1− f )2− (c2− f )2}} (9)

where Hε is an approximation of the Heaviside function, and a semi-implicit numer-
ical scheme is created to solve (9). Due to the computational complexity of the nu-
merical algorithm that solves equation (9), Gibou and Fedkiw created algorithms that
do not explicitly solve (9). In their work [16], they designed the hybrid k-means level
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set method and applied it to images that were previously processed using the Perona-
Malik diffusion. Another algorithm that successfully minimizes the piecewise con-
stant Mumford-Shah functional without solving the gradient descent equation (9) is
proposed in [31]. Numerous modifications of the piecewise constant Mumford-Shah
model, and different ways to minimize it appeared in the literature (see [2], [6],[9]
[17], [14], [4] and [30]).
The regularization based on the Total Variation semi-norm (TV) is widely used and
established as a standard procedure in numerous image processing applications. It
has been proven in [19] that the Ginzburg-Landau functional converges to the TV
semi-norm in the sense of Γ -convergence. This property justifies the substitution of
the TV norm for the Ginzburg-Landau functional. The reason one might prefer the
GL functional over the TV semi-norm is the simplicity of the minimization numeri-
cal scheme that the GL functional yields. Indeed, the L2 gradient descent of the GL
functional gives us the Allen-Cahn equation

ut = 2ε∆u− 1
ε

W ′(u), (10)

as opposed to having a nonlinear curvature term obtained through minimization of
the TV semi-norm, although the Split Bregman technique [15] successfully resolves
that issue. Models with the GL functional are typically referred to as diffuse interface
models, because the double well potential causes the minimizer of the functional to
have two phases with a diffuse interface between them. The diffuse interface scale is
O(ε). The Ginzurg-Landau functional has appeared in many image processing appli-
cations, such as inpainting [3,7] and segmentation [9,10].

In the case of motion by mean curvature a planar curve moves with a normal
velocity that is proportional to the curvature at any given point. In their work [21],
Merriman, Bence and Osher introduced an intuitive and efficient level set method
to approximate the motion of an interface by its mean curvature flow. The authors
analyzed the motion by mean curvature of the curve C by studying the diffusion
equation χt = ∆ χ , where χ is the characteristic function of the set Σ and ∂Σ = C,
i.e. C represents a sharp front between two phases of the characteristic function. The
appropriate change of coordinates suggested in [21] reveals that, when diffusion is
applied, any point on the front moves with the normal velocity that is equal to the
mean curvature at that point. Simultaneously, the front is radially blurred. However,
the χ = 1

2 level set is invariant to blurring. From there it follows that, the χ = 1
2 level

set yields motion by mean curvature. Based on the previous observation the following
numerical scheme is proposed:

– Step 1 Let v(x) = S(δ t)un(x) where S(δ t) is a propagator by time δ t of the equa-
tion:

vt = ∆v

with appropriate boundary conditions.
– Step 2 Threshold

un+1(x) =
{

0 if v(x) ∈ (−∞, 1
2 ]

1 if v(x) ∈ ( 1
2 ,∞)
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The reason we are interested in motion by mean curvature flow is due to is its
close relation to the Allen-Cahn equation (10).
It was shown in [26] that limit of the rescaled solutions uε(x, t

ε
),ε → 0+ of the

Allen-Cahn equation yields motion by mean curvature. The modification of the MBO
scheme proposed in [9] by Esedoglu and Tsai particularly interesting. In their paper
[9], the authors proposed a diffuse interface version of (7)

MSε(u,c1,c2) =
∫

D
ε|∇u|2 + 1

ε
W (u)+λ{u2(c1− f )2 +(1−u)2(c2− f )2}dx (11)

for segmenting the image f . The first variation of the model (11) yields the following
gradient descent equation:

ut = 2ε∆u− 1
ε

W ′(u)+2λ{u(c1− f )2 +(1−u)(c2− f )2} (12)

and the adaptation of the MBO scheme was used to solve it. Similarly to the MBO
scheme where the propagation step based on the heat equation is combined with
thresholding, Esedoglu and Tsai proposed the following scheme:

– Step 1 Let v(x) = S(δ t)un(x) where S(δ t) is a propagator by time δ t of the equa-
tion:

wt = ∆w−2λ̃
(
w(c1− f )2 +(1−w)(c2− f )2)

with appropriate boundary conditions.
– Step 2 Set

un+1(x) =
{

0 if v(x) ∈ (−∞, 1
2 ]

1 if v(x) ∈ ( 1
2 ,∞)

Based on the computational experiments, the authors presented their conclusions
about the choice of δ t timestep in the step 1. of the algorithm. If δ t is chosen too
large comparing to the parameter λ−1, the interface tend to be overly smooth. As
the advantage of choosing larger values for δ t they mention faster convergence. The
segmentation could also benefit from the larger values for the parameter λ , as there
is less penalty on high curvature of the interface in this case. The size of the spatial
resolution has to be taken into account when the value for δ t is chosen, as the values
much smaller than the spatial resolution could lead to the stillness of interface. These
observations can also be used as guidance in parameter selection for our algorithm.
The authors also show that MBO thresholding type methods for binary segmentation
can easily be generalized to multi-phase segmentation methods. To accomplish that,
the authors propose the four phase model based on the modified version of (11) with
the sum of the two Ginzburg-Landau functionals built around two different segmen-
tation functions, u1 and u2. In this case, the fidelity term naturally depends on both
u1 and u2. After they find the gradient descent equations with respect to u1 and u2,
they construct the thresholding numerical scheme to solve the obtained system of
parabolic equations. We will adapt ideas by Esedoglu and Tsai to solve our MPLE
problem and illustrate the usefulness of this simple method.Some extension of the
MBO algorithms appeared in [11,12,22] An efficient algorithm for motion by mean
curvature using adaptive grids was proposed in [27].
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3 MPLE methods and proposed model

Let us assume our data consists of n points x1,x2,...,xn and is a sample of n indepen-
dent random variables with common density d0. Maximum likelihood estimation is
a standard method for estimating a density function d0 based on given data. In the
case the of the parametric model, we know that d0 belongs to the family of density
functions D = {d(·,θ) : θ ∈ Θ}, and our goal is to find a parameter θ0 such that
d(·,θ0) = d0(·). This class of problems are known as parametric density estimates. In
1922, According to Fisher’s model [13], an optimal parameter θ0 ∈Θ (where Θ is a
set of all parameters) satisfies the following:

θ0 =−min
θ∈Θ

1
n

n

∑
i=1

logd(xi,θ) (13)

However, in many applications, a parametric model may not be available, or infor-
mation on the family of density functions d0 belongs to may be unknown, in which
case we are dealing with a nonparametric density estimate. The analog of the model
(13) is an ill-posed problem, i.e. finding a probability density function d0 such that

d0 =− min
d:Ω→R∫

d=1

1
n

n

∑
i=1

logd(xi) (14)

has no solution, and thus can not be directly applied. To avoid “rough” density func-
tions, with large values concentrated around data points and small values elsewhere,
the roughness penalization function R(d) was introduced, and this method is known
as maximum penalized likelihood estimation:

d(x) = max
d:Ω→R∫

d=1

{
N

∑
i=1

log(d(xi))−αR(d)

}
(15)

Different penalty functionals appeared in literature, such as R(d) =
∫

Ω
|∇
√

d|2, or
R(d) =

∫
Ω
|∇3 logd|2 from [8]. These, and many other standard penalty functional

enforce smoothness on density function, but do not perform well when the density
function has sharp gradients, i.e. is piecewise constant. To resolve this issue, Koenker
and Mizera in [18] as well as Sardy and Tseng in [28] propose the penalty func-
tional to be the TV semi-norm. This approach was also successfully used in [29] and
[23]. In our work, since we assume the density is a step function, choosing a penalty
functional that can successfully handle sharp gradients is crucial. As previously men-
tioned , instead of the TV semi-norm, we chose the Ginzburg-Landau functional to
be the penalty functional.

3.1 General Model

For now are going to focus on the segmentation function u. We assume our segmen-
tation function is the characteristic function of the region Σ , where Σ is an area with
a larger density. For any given data and any given segmentation function there is a
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unique density function corresponding to them. With w being the function that ap-
proximates the data, the total number of events is approximately equal to

∫
w, while

the number of events inside and the number of events outside of the region Σ are ap-
proximated by

∫
wu and

∫
w(1−u), respectively. According to that, the density c1(u)

inside the region Σ is equal to
∫

wu∫
u
∫

w and the density c2(u) in the region ΣC is equal

to
∫

w(1−u)∫
w
∫
(1−u) . Finally, we write the density function as c1(u)u + c2(u)(1− u). The

established correspondence between the segmentation and the density function sug-
gests that building a diffuse interface MPLE model around the segmentation function
is possible. As the segmentation function takes only 0 and 1 values, the Ginzburg-
Landau functional is a natural choice. As the density is a rescaled segmentation func-
tion, using the Ginzburg-Landau functional for u, as opposed to the Ginzburg-Landau
functional for the density seems both reasonable and convenient.
Here we propose the diffuse interface Maximum Penalized Likelihood Estimation
model.

argmin
u(x)

∫
ε|∇u|2 + 1

ε
W (u)dx−µ

∫
w log(c1(u)u+ c2(u)(1−u))dx (16)

where c1(u) =
∫

wu∫
u
∫

w and c2(u) =
∫

w(1−u)∫
w
∫
(1−u) ,w represents the given data, W (u) =

u2(1− u)2 and µ is a parameter. As we already mentioned, the Ginzburg-Landau
functional converges to the TV norm in the sense of Γ convergence, as ε→ 0+. As a
consequence, the diffuse interface model we propose here converges to the TV-based
MPLE that was used in [23],[29], when ε → 0+. Now, variation of energy of (16)
gives us the following cases for the L2 gradient descent equation:

– If both and c1(u) and c2(u) (further we use c1 and c2 instead for simplicity of the
notation) are non-zero:

ut = 2ε∆u− 1
ε

W ′(u)+µw[
c1− c2

c1
u+

c1− c2

c2
(1−u)+(

∫
(1−u)w∫

1−u
−
∫

uw∫
u
)]

(17)
– If c1 is equal to zero:

ut = 2ε∆u− 1
ε

W ′(u)+µ[w(u−1)+(

∫
(1−u)w∫

1−u
−w)] (18)

– If c2 is equal to zero

ut = 2ε∆u− 1
ε

W ′(u)+µ[wu+(w−
∫

uw∫
u
)] (19)

3.2 Special Case Model

For the special case problem the density in the region ΣC is zero, so the density
function is just a rescaled segmentation function. Thus, replacing the density function
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c1(u)u+ c2(u)(1−u) in the MPLE term of our general model by the segmentation u
seems reasonable. Now, the model we propose is:

argmin
u(x)

∫
ε|∇u|2 + 1

ε
W (u)dx−µ ∑

i, j
wi, j log(ui, j) (20)

Once again, assuming w is a function that approximates the data, in order to make
everything well-defined we introduce the model with a small constant ν :

argmin
u(x)

∫
ε|∇u|2 + 1

ε
W (u)dx−µ

∫
w log((1−ν)u+ν(1−u))dx (21)

The Euler-Lagrange equation for the energy functional (21) is:

ut = 2ε∆u− 1
ε

W ′(u)+µw(
1

1−ν
u+

1
ν
(1−u))(1−2ν) (22)

4 Proposed dynamics

We use the following gradient descent equation

ut = 2ε∆u− 1
ε

W ′(u)+A(u(·, t))u+B(u(·, t)) (23)

with A(u(·, t)) and B(u(·, t)) being non-linear functions. Each of the gradient descent
equations, (17), (18), (19) and (22) can be given in the form (23), where A(u(·, t))
and B(u(·, t)) take different vales in different cases.

A(u(·, t)) =−µw
(c1− c2)

2

c1c2
B(u(·, t)) = µw

c1− c2

c2
+(c2− c1)

∫
w in the equation (17)

A(u(·, t)) = µw B(u(·, t)) = µ(c2

∫
w−2w) in the equation (18)

A(u(·, t)) = µw B(u(·, t)) = µ(w− c1

∫
w) in the equation (19)

A(u(·, t)) =−µw
(2ν−1)2

(1−ν)ν
B(u(·, t)) = µw

1−2ν

ν
in the equation (22)

Motivated by the MBO scheme for solving the Allen-Cahn equation, we propose
a thresholding scheme to approximate the solution of the equation (23). Esedoglu
and Tsai used a similar approach to minimize the Mumford-Shah segmentation func-
tional in [9]. The first step we need to take toward generating a thresholding scheme
is finding a good way to split the equation (23) into two steps analogous to those pro-
posed in the MBO scheme. In that regard, finding a way that successfully deals with
the non-linear forcing term of the equation (23) is critical. Inspired by the algorithm
presented in [9] we propose the following dynamics:

– Step 1. Let v(x) = S(δ t)un(x) where S(δ t) is a propagator by time δ t of the
equation:

yt = ∆y−A(y(·, t))y+B(y(·, t))
with appropriate boundary conditions.
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– Step 2. Set

un+1(x) =
{

0 if v(x) ∈ (−∞, 1
2 ]

1 if v(x) ∈ ( 1
2 ,∞)

5 Numerical implementation

In the propagation phase of the algorithm we solve the following PDE:

vt = ∆v−A(v(·, t))v+B(v(·, t))

with the un being an initial condition. To generate the numerical results we denote the
timestep by δτ is a timestep, and approximate the Laplacian by its five-point stencil,
which gives us the following scheme:

vn+1− vn

δτ
= ∆vn+1 +A(vn(·, t))vn +B(vn(·, t))

As the linear linear system described above is circulant we find the Fast Fourier trans-
form (FFT) a convenient way solve it. We are aware that other solvers with even better
computational complexity than the FFT, such as multigrid algorithm, could be used.
In the propagation phase our goal is not to achieve steady state, and iterations are re-
peated only until the total propagation time reached δ t. After the propagation phase,
a thresholding step is necessary to complete the iteration:

un+1
i, j =

{
0 if vl

i, j ∈ (−∞, 1
2 ]

1 if vl
i, j ∈ ( 1

2 ,∞)

where l is a total number of iterations we made in the propagation phase. The small
relative change of the L2 norm between two consecutive iterations was used as a stop-
ping criterion.
In this implementation, the data function w is used as an initial condition, along with
Dirichlet or Neumann boundary conditions.

5.1 Adaptive timestepping

The choice of timestep in the propagation phase, a “sub-timestep”, can be chosen
to optimize performance. In the early stage of computation, it is important to keep
the sub-timestep small in order to obtain a good estimate in the propagation phase.
However, as our algorithm is approaching steady state, a large number of iterations in
the propagation phase pose a burden on the computational time. To successfully speed
up the convergence of our algorithm, we used adaptive timestepping, a modified form
of the scheme proposed in [1].
The scheme uses a dimensionless local truncation error calculated in every iteration,
and the timestep is increased when the error is smaller then a chosen tolerance.The
error at time tn uses solution at three consecutive timesteps tn−1, tn and tn+1.Let us
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define en+1 = (vn+1−vn)
vn and en = (vn−vn−1)

vn , as well as ∆ told = tn− tn−1. The previous
definitions allow us to define a dimensionless estimate of the local truncation error:∥∥∥∥en+1− ∆ t

∆ told
en
∥∥∥∥

L2
. (24)

This algorithm is both quick and practical. Even though other more accurate ways
to estimate the measure of error are available, such as step doubling, they are often
much more computationally expensive.
We used adaptive timestepping at two different levels, in the propagation phase of
the algorithm we adapt the sub-timestep, as well as adapting an initial sub-timestep
for the future iterations. In the propagation phase of any iteration, we calculate a di-
mensionless truncation error estimate for different propagation times. Once an error
is smaller than a given tolerance Tol1 for a certain number of the consecutive itera-
tions, we increase the timestep by 10%. We also estimate the dimensionless error in
every iteration of the algorithm, and if we find an error to be smaller than Tol2 the
initial sub-timestep in the propagation phase of the next iteration will be increased
be 10%. However, we never allow the initial sub-timestep to be larger than 1

8 of the
timestep. Notice that we are not adapting the timestep, the total propagation time in
each iteration is the same.

5.2 Adaptive resolution

Another way to improve the computational time is to use adaptive resolution. As we
mentioned before, we use the data function w as an initial condition when solving the
equation (23). It is reasonable to assume that the more the initial condition “resem-
bles” the solution, the less iterations the algorithm would take to obtain the solution.
The main idea is to generate a lower resolution form of the data set, then use a low
resolution solution to create a good initial guess for the high resolution solution. Pro-
viding a good initial guess for the higher resolution problem is particularly useful as
the iterations when the algorithm is applied to the higher resolution versions of the
data set tend to be slower. In this implementation, we typically applied this procedure
several times on some sparse data sets. At each step we create the coarser form of the
given data set, until we reach the version of the data set that has a satisfying density.
Our experiments show that data sets with the total density between 0.05 and 0.2 are
optimal for this algorithm. Once a sufficiently dense low resolution version of the
data set is obtained, we run our algorithm to get the low resolution solution, and start
working our way up from there. The higher resolution approximation of the solution
is then generated, and used as an initial condition in the next step. In the next step,
we are solving the problem on the data set that has a higher resolution. It is important
to mention that this process does not alter the original data set. We call this process
n-step adaptive resolution where n is the total number of times we reduced the reso-
lution of the original data set. The number of steps, n, is closely related to our choice
of timestep. In case we are segmenting the region of higher density in our data, we
noticed, through multiple experiments, that the timestep often can be given as ω2n,
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where n is the number of levels in adaptive resolution, and ω ∈ [0.15,0.2]. In case we
are locating the valid region, we usually allow a smaller timestep, but also a larger
number of levels in adaptive resolution. However, starting with a problem that has a
significantly lower resolution comparing to the original one, we might run into some
problems. Decreasing resolution significantly may result in a very different looking
data set, thus segmentation would not perform in an expected way, i.e. this first initial
guess would not be a good approximation of the solution we are trying to find.

6 Computational Examples

6.1 Test Shapes

To verify the performance of our algorithm, we constructed three examples of the
probability density maps featuring three shapes and they are shown in the figures
1(a), 2(a) and 3(a). Each of the densities were sampled, and the toy data sets are
obtained, and presented in the figures 1(b) , 2(b) and 3(b) respectively. We applied
the general version of our algorithm to solve these problems, and the results are shown
in images 1(c), 2(c) and 3(c). Adaptive timestepping was used in all of the examples
with three shapes, while the adaptive resolution was not used, given the small scale
of these examples.

(a) (b) (c)

Fig. 1: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse
region are 3.3943 and 0.3927, respectively. Image (b) is a plot of the data set, in
a 100× 100 pixel image, with 1449 events. Image (c) shows the contours of the
segmented dense region. In the process of generating this result we used the timestep
1.6 along with the parameter µ = 0.13. The densities of our estimated dense and
sparse regions are 3.4811 and 0.3649.

6.2 Orange County Coastline

In their work [29] Smith et al. constructed several test data sets using the spatial
information of the Orange County coastline obtained from Google Earth. The authors
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(a) (b) (c)

Fig. 2: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse
region are 3.145 and 0.456, respectively. Image (b) is a plot of the data set, in a 100×
100 pixel image, with 1539 events. Image (c) shows the contours of the segmented
dense region. The choice of parameters was 1.6 for the timestep, and µ = 0.15. The
densities of our estimated dense and sparse regions are 3.311 and 0.422.

(a) (b) (c)

Fig. 3: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse
region are 2.605 and 0.592, respectively. Image (b) is a plot of the data set, in a 100×
100 pixel image, with 1696 events. Image (c) shows the contours of the segmented
dense region. The choice of parameters was 1.6 for the timestep, and µ = 0.1. The
densities of our estimated dense and sparse regions are 2.780 and 0.573.

determined the boundary between the valid and the invalid region by locating the
ocean, rivers, parks and other features the valid region of a residential crimes map
naturally excludes. Then, inside the valid region, they constructed three other regions
and assigned different densities to them, which is shown on the density map in Figure
10, and we also, inspired by their examples, constructed the density maps shown in
Figure 4 as well as in Figure 7. Sampling from these density functions we generated
data sets shown in Figures 5(a), 6(a), 8(a), 9(a) and 11(a). A segmentation of the
corresponding dense region is shown next to each data set. Note that there are four
different levels of densities in Figure 10. The solution in Figure 11 shows that the
different choice of the parameter µ can lead to segmentation of the dense regions at
different levels. All images in this section have resolution of 600×1000 pixels.
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Fig. 4: The toy density map of the Orange County Coastline, featuring two discon-
nected dense regions.

(a) (b)

Fig. 5: A 2000 event sample of the density function from Figure 4 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters
is: µ = 0.1, timestep is 13.0 with the 3-step adaptive resolution. The data points in
this figure are manually enhanced for the purpose of more clear display of the image.

(a) (b)

Fig. 6: An 8000 event sample of the density function from Figure 4 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters
is: µ = 0.092, timestep is 8.0 with the 2-step adaptive resolution. The data points in
this figure are manually enhanced for the purpose of more clear display of the image.
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Fig. 7: The toy density map of the Orange County Coastline, featuring three discon-
nected dense regions.

(a) (b)

Fig. 8: A 2500 event sample of the density function from Figure 7 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters
is: µ = 0.11, timestep is 11.0 with the 3-step adaptive resolution. The data points in
this figure are manually enhanced for the purpose of more clear display of the image.

(a) (b)

Fig. 9: A 10000 event sample of the density function from Figure 7 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters
is: µ = 0.075, timestep is 7.5 with the 2-step adaptive resolution. The data points in
this figure are manually enhanced for the purpose of more clear display of the image.
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Fig. 10: The toy density map of the Orange County Coastline, featuring two discon-
nected dense regions, and one sparse region.

(a) (b)

Fig. 11: A 20000 event sample of the density function from Figure 10 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters
is: µ = 0.03, timestep is 2.2 with the 2-step adaptive resolution.

6.3 San Fernando Valley Residential Burglary Data

We may also consider a special case of our problem, the case when we assume all
events are located inside the region Σ , and our goal is to segment the region. The
region Σ would represent a valid region of the given data set. In absence of geo-
graphic data that describe the location of the valid region, an accurate estimate of it
can dramatically improve accuracy of the density estimation, see [29] and [23]. In
the following example, our goal was to, without using any spatial information, seg-
ment the valid region from the San Fernando Valley residential burglary data. The
events in Figure 12(a) represent locations where burglaries took place during 2004
and 2005. The contour of our valid region estimate obtained by applying the special
case model is also shown in Figure 12(a). Smith et al. in [29] performed the valid
region estimate using census and other types of data to locate the residential area in
the region of interest, and their result is Figure 12(b). They incorporated the valid
region estimate from Figure 12(b) in their Weighted H1 MPLE model to obtain the
density estimate results from 12(c). The TV MPLE algorithm developed by Mohler
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(a) (b)

(c) (d)

Fig. 12: San Fernando Valley residential burglary: (a) A plot of the data set with the
contours of the solution, the red contour bounds the dense region, while the blue one
bounds the valid region . The size of the original data set is 605×525 pixels. We used
a timestep 2.0 with µ = 1.1 and 3-step adaptive resolution to find the valid region, and
µ = 0.08, a timestep 3.5 with 1-step adaptive resolution to locate the dense region.
The data points in this figure are manually enhanced for the purpose of more clear
display of the image. (b) A valid region estimate from [29]. (c) and (d) are density
estimates form [29] and [23] respectively.

et al. in [23], was used to generate the density estimate in 12(b). This method did not
use any additional spatial information to locate the valid region.

7 V -fold cross validation

The choice of the smoothing parameter µ and the timestep can affect the performance
of this algorithm. Our experiments show that in case we are segmenting the high den-
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sity region the optimal value of the parameter µ is not larger than 0.2. When our
goal is to estimate the valid region, we typically assign larger values to the parame-
ter µ . To estimate the value of the smoothing parameter we implemented a version
of the V -fold cross validation algorithm. In their work [28] Sardy and Tseng pro-
posed the V -fold cross validation based on the Kullback-Leibler information. In the
V -fold cross validation, the original data set is partitioned into V disjoint subsets
xv = {xi, i ∈ Sv} where Sv consists of all indexes of data points from the partition
v = 1, . . .V . Set x−v = {xi, i /∈ Sv} is used as a training set, i.e. the algorithm is ap-
plied on x−v with some particular value µ̂ , and the density d̂µ̂,−v is estimated. Set
xv is a validating set, which means that {d̂µ̂,−v(xi)}i∈Sv is used to estimate the den-
sity on xv. Following these observations, the authors of [28] proposed the following
estimate of Kullback-Leibler information CV (µ̂) = −∑

V
v=1 ∑i∈Sv d̂µ̂,−v(xi), and af-

ter the search of the set of parameters µ̂ the one that minimizes this quantity is se-
lected. However, CV (µ̂) uses only the log-likelihood to predict the performance of
the model for some value µ̂ of the smoothing parameter, but does not take the H1

norm of the segmentation function of the estimated density into account. We denote
the segmentation function that corresponds to the density d̂µ̂,−v by ûµ̂,−v. Since the
segmentation function is a binary function, the descrete H1 and the descrete TV norm
are equivalent, thus the H1 norm also measures the length of the front between two
phases. In some applications, such as the case when the dense and the surrounding
sparse region have similar densities, the values of CV (µ) for the different values of
µ tend to be similar. It is useful in those cases to also measure the H1 norm of the
obtained segmentation ûµ̂,−v, and incorporate that information in the V -fold cross
validation. Because of that, we propose a slightly different technique, where we eval-
uate CVH1(µ̂) = −∑

V
v=1(∑i∈Sv d̂µ̂,−v(xi)− ξ

∫
|∇ûµ̂,−v|2) for each value of µ̂ from

some proposed set of parameters, and select the value that minimizes it. The results
do not appear to be very sensitive to ξ , we used small values, comparable to those
of µ̂ . The evaluation of CVH1(µ) for a single value of parameter µ requires V dif-
ferent density estimates, which could cause the V -fold cross validation to be very
computationally intense. However, all density estimates that have to be performed
are independent of each other, which makes the V -fold cross validation a perfect can-
didate for parallelization. In this implementation, we used 10-fold cross validation,
and the process of calculating CVH1 is parallelized using 10 threads, which reduces
the computational time of one evaluation of CVH1 down to the computational time
needed for one density estimate. The computational time one density estimate takes
varies from 0.2s in the small scale examples (100×100 pixels) to around one minute
in the large scale examples (600× 1000 pixels). To demonstrate the performance of
the proposed algorithm, Figures 13 and 14 show some computational examples
with segmentations generated using a model with the smoothing parameter obtained
through 10-fold cross validation. To find the parameter µ we performed the linear
search of intervals.
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(a) (b) (c) (d)

Fig. 13: The data set shown in 3 and the results obtained using different values of
µ:(a) Smoothing parameter is too small µ = 0.12. (b) We used µ obtained through
our 10-fold cross validation with the H1 norm, we evaulated CVH1 . (c) 10-fold cross
validation from [28], CV (µ), was applied to obatain µ used in this example. (d)
Smoothing parameter µ = 0.3, the value is larger than optimal.

(a) (b)

Fig. 14: 10-fold cross validation was applied on the data sets displayed in 6(a) and
9(a) to select the parameter µ . The data sets with the countours of the respective
dense regions obtained using those values of µ are shown.

8 Conclusion

This work demonstrates that threshold dynamics methods for image segmentation
are a powerful tool for statistical density estimation for problems involving two di-
mensional geographic information. The efficiency of the method, especially when
combined with multi-resolution techiques makes this a practical choice for parameter
estimation involving V -fold cross validation, especially when parallel platforms are
available. The method is a binary segmentation method that also determines density
values. However, it can be naturally generalized to multi-level segmentation. One
way to achieve that may include representing the segmentation function as a linear
combination of the multiple binary components, similarly to the idea used for gener-
alizing binary to grayscale inpainting in [7].However, this requires sufficient data to
warrant a multi-level segmentation.
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