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Abstract

We construct a continuum model for biological aggregations in which individuals
experience long-range social attraction and short range dispersal. For the case of one
spatial dimension, we study the steady states analytically and numerically. There
exist strongly nonlinear states with compact support and steep edges that corre-
spond to localized biological aggregations, or clumps. These steady state clumps are
approached through a dynamic coarsening process. In the limit of large population
size, the clumps approach a constant density swarm with abrupt edges. We use
energy arguments to understand the nonlinear selection of clump solutions, and to
predict the internal density in the large population limit. The energy result holds
in higher dimensions, as well, and is demonstrated via numerical simulations in two
dimensions.
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1 Introduction

Biological aggregations such as insect swarms, ungulate herds, fish schools,
and bacterial colonies are widespread examples of self-organization in nature
(Parrish and Hamner, 1997; Ben-Jacob et al., 2000; Okubo and Levin, 2001;
Camazine et al., 2001). These groups often arise as social phenomena, without
direction from a leader or influence of external stimuli such as food and light
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sources. Social forces among organisms include attraction, for group cohesion,
and repulsion, for collision avoidance (Breder, 1954; Mogilner and Edelstein-
Keshet, 1999). The resulting aggregations can confer benefits such as protec-
tion and mate choice to their members (Parrish and Edelstein-Keshet, 1999).

Mathematical models of social aggregations can be classified into Lagrangian
and Eulerian types. The Lagrangian approach treats each organism as a parti-
cle obeying a nonlinear difference or differential equation (Sakai, 1973; Suzuki
and Sakai, 1973; Okubo et al., 1977; Vicsek et al., 1995; Levine et al., 2001;
Schweitzer et al., 2001; Couzin et al., 2002; Erdmann et al., 2002; Parrish
et al., 2003; Aldana and Huepe, 2003; Erdmann and Ebeling, 2003; Mogilner
et al., 2003). Alternatively, the Eulerian approach describes the local flux of
individuals with an advection-diffusion equation for a continuum population
density field (Kawasaki, 1978; Okubo, 1980; Mimura and Yamaguti, 1982;
Passo and Demottoni, 1984; Ikeda, 1984; Alt, 1985; Ikeda, 1985; Satsuma and
Mimura, 1985; Ikeda and Nagai, 1987; Hosono and Mimura, 1989; Grünbaum
and Okubo, 1994; Edelstein-Keshet et al., 1998; Toner and Tu, 1998; Flierl
et al., 1999; Mogilner and Edelstein-Keshet, 1999; Topaz and Bertozzi, 2004).
A variety of methods can be used to connect the two formulations. The usual
method involves a Fokker-Planck approximation which relates the distribu-
tion of jump distances made by individuals to terms in the advection-diffusion
equation (Okubo and Levin, 2001). Since the social communications between
organisms often take place at large distances via sight, sound, or smell, models
may be nonlocal in space (Kawasaki, 1978; Alt, 1985; Ikeda, 1985; Satsuma and
Mimura, 1985; Ikeda and Nagai, 1987; Hosono and Mimura, 1989; Grünbaum
and Okubo, 1994; Flierl et al., 1999; Mogilner and Edelstein-Keshet, 1999;
Okubo et al., 2001; Topaz and Bertozzi, 2004).

Biological aggregations can form distinct groups with sharp edges as they
move (Parrish and Hamner, 1997; Parrish and Edelstein-Keshet, 1999). We
refer to this phenomenon as clumping. While clumping has been observed
in two-dimensional numerical numerical (Levine et al., 2001) and analytical
(Topaz and Bertozzi, 2004) models, recent mathematical analyses of swarming
behaviors (Mogilner and Edelstein-Keshet, 1999) were unable to find the same
kind of clumping from biologically reasonable one-dimensional models. As we
will describe below, earlier one-dimensional models which support clumping
behavior include assumptions about biological interactions which are unlikely
to be met in nature.

Our goal in this paper is to investigate how clumping can arise in a simple, re-
alistic nonlocal model for biological aggregation, both in one spatial dimension
and in higher dimensions. Our Eulerian model is an integrodifferential conser-
vation law with two movement terms. One describes nonlinear degenerate dif-
fusion arising from anti-crowding behavior, and the other describes attractive
nonlocal social interactions. In contrast to previous studies (Mimura and Yam-
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aguti, 1982; Nagai and Mimura, 1983; Edelstein-Keshet et al., 1998; Mogilner
and Edelstein-Keshet, 1999), we do not seek traveling solutions, which would
correspond to cohesive group movement. Rather, we are concerned with sta-
tionary solutions. Our formulation relates to several earlier models that have
appeared in the mathematical literature. We discuss these now, and then state
our main results and outline the remainder of this paper.

Many nonlocal continuum models for biological aggregation may be cast in
the form

∂ρ

∂t
=

∂

∂x

(
D

∂ρ

∂x
− vaρ

)
. (1)

Here x is the one-dimensional space coordinate, t is time, ρ(x, t) is the local
population density, D measures diffusion, and va is the nonlocal, density-
dependent speed.

The earliest models take D constant, and va = K ∗ u. The asterisk denotes
spatial convolution and K is an odd spatial weighting function which drops
off with distance and has finite mass (Kawasaki, 1978; Grünbaum and Okubo,
1994). K models attractive social forces, which can give rise to spatial instabil-
ities leading to a unique steady state with a non-uniform spatial distribution
of the population (Grünbaum and Okubo, 1994). However, these patterns do
not include clumps (aggregations with compact support).

Extensions by Mogilner and Edelstein-Keshet (1999) consider group drift by
including a local, density-dependent velocity as well as by including an even
component in K, giving rise to traveling swarms. These swarms are not stable
over long periods of time, having a tendency to break down by losing individu-
als at the rear of the swarm (Mogilner and Edelstein-Keshet, 1999). However,
the authors note (via analysis and numerical experiments) that nonlinear dif-
fusion has a tendency to stabilize the swarms.

On the other hand, earlier extensions of the work of Kawasaki (1978) by
Mimura and Yamaguti (1982), Nagai and Mimura (1983), Alt (1985), Ikeda
(1985) and Ikeda and Nagai (1987) include density dependent (rather than
constant) diffusion, still coupled to long-range advective attraction. The model
of Alt (1985) is inspired by chemotactic locomotion, and includes nonlinear
diffusion which is degenerate for finite ρ. In contrast, in the work of Mimura
and Yamaguti (1982), Nagai and Mimura (1983), Ikeda (1985) and Ikeda and
Nagai (1987), the diffusion in (1) takes the form D = pρp−1. The parameter p
determines the degree of nonlinearity of the diffusion, and may be freely var-
ied. In all of these works, the aggregative weighting function K does not meet
our previous assumptions of having a finite mass and decaying with distance.
Further, it has support ℓ which is either a tunable parameter Ikeda (1985);
Ikeda and Nagai (1987) or is infinite (Mimura and Yamaguti, 1982; Nagai and
Mimura, 1983). The model of Hosono and Mimura (1989) is similar, but adds
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reaction-type terms modeling logistic growth and predation. Depending on p
and ℓ, the nonlinear diffusion models have stationary (Ikeda, 1985; Ikeda and
Nagai, 1987; Hosono and Mimura, 1989) and traveling (Mimura and Yam-
aguti, 1982; Nagai and Mimura, 1983) clump solutions. Although this class of
models exhibits the desirable behavior of clump formation, its limitation arises
from the biologically unrealistic assumption of strong attractive interactions
between individuals over arbitrarily large distances.

In this paper we modify the classic model of Kawasaki (1978) to include
density-dependent diffusion. We show that this modification is sufficient to
give rise to clumped solutions with very sharp edges. These solutions can be
understood using classical applied mathematical methods of weakly nonlin-
ear analysis, phase plane analysis, and energy methods. Furthermore, using
asymptotic and scaling arguments, we show how, in the large population size
limit, the clumps have constant internal population density. The preferred
density is predicted by analyzing the energy. The constant internal density
property is typical of biological groups (see Parrish and Edelstein-Keshet,
1999 and the extensive discussion in Mogilner et al., 2003) but has not been
found in other realistic continuum models. Our model has this property not
only in one spatial dimension, but in higher dimensions as well.

The remainder of this paper is organized as follows. We formulate our model
in Section 2. In Section 3, we outline its basic features, including its con-
servation properties, linear stability, and energy. In Section 4, we pose the
model on a periodic one-dimensional domain and perform an in-depth study
for a particular choice of the aggregative weighting function K. We analyze
instabilities of trivial population profiles using weakly nonlinear methods. We
then use phase plane methods to deduce the qualitative structure of swarm
patterns. We extend the analysis of the qualitative structure through the nu-
merical calculation of nonlinear steady-state solutions, and the construction of
numerical bifurcation diagrams. Interestingly, for fixed population size, the al-
lowed clumps solutions are not unique. We use energy methods discover which
stationary solutions are preferred, allowing us to deduce the pattern selection
mechanisms that drive the dynamical system. We also investigate the effects
of domain size and population size, and perform numerical simulations which
display the model’s coarsening behavior. Section 5 contains a brief extension
in which we perform numerical simulations in two spatial dimensions to show
clump formation. Finally, we summarize and conclude in Section 6.

2 Mathematical model

Consider a population density ρ(x, t) ≥ 0 which moves with velocity v(x, t),
x,v ∈ R

n, t ≥ 0. We assume that birth, death, immigration, and emigration
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of organisms are negligible on the time scale of interest. Then ρ satisfies the
standard conservation equation

ρt + ∇ · (vρ) = 0. (2)

The members of the population move towards and away from each other fol-
lowing basic biological principles of aggregation and dispersal, i.e.

v = va + vd. (3)

We now develop a kinematic model (Edelstein-Keshet et al., 1998; Mogilner
and Edelstein-Keshet, 1999; Topaz and Bertozzi, 2004) which assumes that
the attractive and dispersive velocities va and vd depend only on properties
of ρ at the current time.

Though the particulars of aggregation vary from species to species, the sensing
mechanism responsible (e.g. sight or smell) typically has a characteristic range,
which we call ℓ, and degrades over distance. For simplicity, we assume that
the sensing is spatially isotropic, and that organisms sense an averaged nearby
population. We then associate with an individual in the population at position
x the sensing function

s(x) =
∫

Rn

K(x − y)ρ(y) dy ≡ K ∗ ρ. (4)

The ∗ operator denotes convolution. The kernel K incorporates the sensing
range and degradation for the particular species under consideration. We as-
sume, without loss of generality, that K is normalized such that

∫
Rn K(x) dx =

ℓn. Individuals aggregate by climbing gradients of the sensing function s(x).
We denote the species-specific characteristic attractive movement speed by V .
The attractive velocity, then, is

va =
V ℓ

α
∇(K ∗ ρ). (5)

Here, α is a characteristic density. Dimensional arguments dictate that the
factor of ℓ/α must appear, so that va has the correct units of velocity. Since
density has units of number of organisms per unit space, we form the charac-
teristic density

α =
1

ℓn
. (6)

That is to say, we take the characteristic density to be the one for which the
spacing between organisms is the characteristic sensing range.

Dispersal is assumed to arise as an anti-crowding mechanism, and operates
over a much shorter length scale (Breder, 1954; Mogilner and Edelstein-Keshet,
1999). Correspondingly, we take it to be spatially local and in the opposite
direction of population gradients. Moreover, anti-crowding motion is assumed
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to decrease as the population thins. The simplest model describing these effects
is linear in both ρ and ∇ρ, i.e.

vd = −V rℓ

α2
ρ∇ρ (7)

Here, r quantifies the ratio of typical aggregative to repulsive velocities. The
factor of ℓ/α2 arises from dimensional arguments, similar to those above for
the aggregative velocity.

Combining (2), (3), (5), (6) and (7), we obtain an integrodifferential equation
for ρ, namely

ρt + ∇ ·
(
V ℓn+1ρK ∗ ∇ρ − V rℓ2n+1ρ2∇ρ

)
= 0 (8)

where we have used the commutativity of convolution and differentiation. This
model is related to the one-dimensional models proposed by Mimura and Ya-
maguti (1982), Nagai and Mimura (1983), Ikeda (1985) and Ikeda and Nagai
(1987) (those models may be put in the same form as ours by using commuta-
tivity of differentiation and convolution). In those models, the dispersal rate
is a (tunable) power of the density, and the sensing kernels K grow linearly in
space with a possible cutoff at a finite range (Ikeda, 1985; Ikeda and Nagai,
1987). Our model is also similar to that in Mogilner and Edelstein-Keshet
(1999). However, there, the aggregation and repulsion effects depend directly
on the same sensing function. Our goal in this paper is to present a model that
is valid in higher dimensions and incorporates biologically reasonable assump-
tions about aggregation and dispersal, in particular that the former occurs on
a longer scale than the latter.

We rescale the variables as x̃ = (1/ℓ)x, t̃ = (V/ℓ)t, ρ̃ = (1/α)ρ and let
K̃(x̃) = K(x). Substituting into (8) and dropping the tildes for convenience,
we arrive at the dimensionless governing equation

ρt + ∇ · (ρK ∗ ∇ρ − rρ2∇ρ) = 0. (9)

Due to our rescaling, the characteristic distance of attraction in K is now one,
and

∫
Rn K(x) dx = 1.

As previously discussed, K should reflect that biological sensory mechanisms
have limited spatial extent. Common choices (Mogilner and Edelstein-Keshet,
1999; Okubo et al., 2001) include the decaying exponential and the character-
istic function:
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Ke
n(x)≡αn e−|x|, αn =





1/2, n = 1

1/(2π), n = 2

1/(4π2), n = 3

(10a)

Kc
n(x)≡ (1/2n)χSn, Sn =





[−1, 1], n = 1

[−1, 1] × [−1, 1], n = 2

[−1, 1] × [−1, 1] × [−1, 1], n = 3

. (10b)

The exponential function Ke
n arises from assuming a constant rate of transmis-

sion failure of sensory data per unit distance (i.e. the constant hazard function
assumption). More complex behavioral models for Ke

n also include differential
weighting given to stimuli received from different distances. The characteristic
function Kc

n, on the other hand, arises under the assumption of an identical
response to all individuals within a fixed distance.

In order to fully define the model, we must specify a domain D along with
suitable boundary conditions for (9). We consider three choices. The first is
no flux boundary conditions, which implies that the members of population
cannot enter or leave the domain. The second choice is periodic boundary
conditions, which are mathematically convenient. For this case, the kernel K
must be modified to be periodic in order for the model to make sense. The final
choice is to solve the problem in free space, i.e. D = R

n, which corresponds
to a biological population with no nearby physical barriers. In Section 4 we
present a case study in one spatial dimension with periodic boundary condi-
tions. In that section, we discuss how this choice also includes the case of no
flux boundary conditions, and how it may be used to approximate the free
space problem.

3 Basic model characteristics

The n-dimensional model (9) has a number of useful general properties which
we describe in this section. In particular, we discuss conservation properties of
the model and its linear stability. We also show the existence of a Lyapunov
functional (or energy) which is dissipated under the dynamics of the govern-
ing equation (9). This is, to our knowledge, the first time such an energy has
been introduced. We use the energy later to understand the selection of non-
linear swarm states, and to obtain a quantitative prediction of the equilibrium
population density for large swarms.

Conservation of moments. We first discuss the model’s conservation prop-
erties (temporarily restricting attention to the free space problem, i.e. D =
R

n). By construction (see Section 2) (9) conserves the zeroth moment of ρ,
namely the total population size or mass M =

∫
D ρ dx. Equation (9) also
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conserves the first moment, or scaled center of mass, M (1) =
∫
D xρ dx. For

convenience, we define the inner product (a,b) =
∫
D a · b dx, where the dot

product must be interpreted appropriately in the case that a and/or b are
scalars. To show that M (1) is conserved, we consider

M
(1)
t =(ρt,x) (11a)

= (−∇ · [ρK ∗ ∇ρ − rρ2∇ρ],x) (11b)

= (ρK ∗ ∇ρ − rρ2∇ρ, 1) (11c)

= (ρK ∗ ∇ρ, 1) − (rρ2∇ρ, 1) (11d)

= (ρK ∗ ∇ρ, 1) − (r∇ρ3/3, 1) (11e)

= (K ∗ ∇ρ, ρ) − 0 (11f)

where we have assumed that there is no population contained at infinity. Equa-
tion (11b) comes from substituting (9), and (11c) and (11f) come from inte-
gration by parts. We then note that (K ∗∇ρ, ρ) = (∇[K ∗ρ], ρ) = −(K ∗ρ,∇ρ)
by commutativity of differentiation and convolution, and integration by parts.
Also, we have that (K ∗∇ρ, ρ) = (∇ρ, K ∗ ρ) = (K ∗ ρ,∇ρ) since the convolu-
tion may be moved across the inner product. Since (K∗ρ,∇ρ) = −(K∗ρ,∇ρ),

M
(1)
t = 0 and hence the center of mass is conserved. It follows directly that (9)

does not support any solution, including unidirectional traveling solutions, in
which the population undergoes a net translation. Such solutions could exist
if we included additional advective terms, for instance those due to gradients
in food sources. We omit such advective terms since we are primarily inter-
ested in studying the balance of aggregative and dispersive effects. Equation
(9) does not conserve higher moments. For instance, the spread of the popu-
lation is free to change under the dynamics of (9), and indeed, will do so as
the populations clumps (see Section 4.4).

Linear stability. Equation (9) admits steady states with constant density
ρ0 ≥ 0. To analyze their stability, we let ρ = ρ0 + ρ̂ eiq·x+σt where q is a per-
turbation wave vector and σ is the linear growth rate. Note that the admissi-
ble q depend on the chosen boundary conditions. For the free space problem,
q ∈ R

n. For the case of periodic boundary conditions, i.e. when D is n-torus of
size L, q ∈ Z

n ·2π/L. For the case of no-flux boundary conditions, q ∈ Z
n ·π/L.

Substituting into (9) and retaining only the terms linear in ρ̂, we obtain the
dispersion relation

σ(q) = ρ0q
2(K̂(q) − rρ0). (12)

where q = |q| and K̂ denotes the Fourier transform of K. Note that σ(0) = 0
for all ρ0 due to the conservative structure of (9) (Cross and Hohenberg,
1993). We determine the neutral stability curve q(ρ0) by setting σ = 0 in (12).
Figure 1 shows examples for n = 1 spatial dimension in free space. We consider
both choices of interaction kernel from (10a), for which K̂e

1 = 1/(1 + q2) and
K̂w

1 = (1/q) sin(q). For the latter case, K̂w
1 is oscillatory, so there may be
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Fig. 1. (a) Neutral stability curve for (9) calculated from the dispersion relation σ(q)
in (12) with K = Ke

1 from (10a). The region below the curve corresponds to linear
instability. (b) Like (a), but with K = Kw

1 from (10a). Since Kw
1 is discontinuous,

σ(q) is oscillatory and the neutral curve has multiple branches. The regions inside
the curves correspond to linear instability. For both (a) and (b), r = 1 in (9).

multiple bands of unstable q which are manifest as the multi-branch curve in
Figure 1b. The former case will be considered in Section 4.

Energy. Finally, we note that (9) possesses a Lyapunov function or energy

E(ρ) =
∫

D

r

3
ρ3 − ρK ∗ ρ dx (13)

where the first term arises from avoidance and the second from aggregation.
This energy is dissipated under the dynamics of (9). To see this, we note

Et =(ρt, rρ
2) − (ρt, K ∗ ρ) − (ρ, K ∗ ρt) (14a)

= (ρt, rρ
2) − (ρt, K ∗ ρ) − (ρt, K ∗ ρ) (14b)

= (ρt, rρ
2) − 2(ρt, K ∗ ρ) (14c)

= (ρt, rρ
2 − 2K ∗ ρ) (14d)

= (−∇ · [ρK ∗ ∇ρ − rρ2∇ρ], rρ2 − 2K ∗ ρ) (14e)

= (ρK ∗ ∇ρ − rρ2∇ρ, 2rρ∇ρ − 2K ∗ ∇ρ) (14f)

=−2
∫

D
ρ(|K ∗ ∇ρ| − rρ|∇ρ|)2 dx ≤ 0 (14g)

where (14b) follows from moving the convolution across the inner product,
(14e) follows from substituting (9), (14f) follows from integration by parts, and
the inequality in (14g) follows since ρ ≥ 0 because it is a density. Although
Lyapunov functions appear in earlier analysis of one-dimensional swarming
models (Alt, 1985), the particular energy (13) has not been discussed before.
This non-convex functional is composed of a positive avoidance term

∫
D

1
3
ρ3 dx

and a negative aggregation term − ∫D ρK ∗ ρ dx which have different nonlin-
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ear dependence on ρ and different length scales. This is the hallmark of many
pattern-forming systems in nature. Non-biological examples include the Cahn-
Hilliard equation, which models the spinodal decomposition of binary alloys
(Cahn, 1968; Eilbeck et al., 1989; Bates and Fife, 1990), droplet formation
in dewetting fluid films (Bertozzi et al., 2001; Oron and Bankoff, 2001; Glas-
ner and Witelski, 2003), and self-aggregation of finite-sized particles (Holm
and Putkaradze, 2005). These models are well-known to exhibit coarsening
dynamics, in which small localized clumps form and merge into larger clumps
over time. We will demonstrate that (9) exhibits similar behavior.

4 Case study in one spatial dimension

We now consider in detail (9) posed in one spatial dimension, i.e. n = 1. Our
primary goal is to determine the possible steady states for different popula-
tion sizes, and thus we conduct a bifurcation study with the population size
M as the bifurcation parameter. We derive analytical expressions for weakly
nonlinear solutions, and use phase plane, energy, and numerical methods to
investigate the more nonlinear clumped solutions. We take K = Ke

1 , the expo-
nential kernel in (10a), because of the biologically reasonable constant hazard
function assumption that leads to it. For mathematical convenience, we begin
by considering a periodic domain, which requires that Ke

1 be modified so that
it is likewise periodic. A simple way to do this is to note that in free space,
the operator Ke

1∗ is the inverse of the operator I − ∂2
x. Thus, a natural modi-

fication is to choose a periodic kernel which is precisely the inverse of I − ∂2
x

on a periodic box. This way, the free-space and periodic kernels have Fourier
transforms which coincide (or more precisely, the continuous transform of the
free-space kernel interpolates the discrete transform of the periodic one). In
Section 4.5, in order to approximate (9) in free space, we take the limit of
large domain lengths L. Furthermore, we note that to study the case of no-
flux boundary conditions, one may simply construct an even extension of the
problem, which then has periodic boundary conditions.

4.1 Weakly nonlinear analysis

We pose (9) on a periodic box D = [0, L] of length L = 2π/q and consider the
instability of the constant density steady state as the total population size M
is decreased through the critical value

M c = Lρc =
2πρc

q
=

2πK̂(q)

qr
(15)
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where ρc is the critical constant density for the given box size, as determined
by the dispersion relation (12). We seek weakly nonlinear solutions of (9) via
a multiple-scales perturbation expansion, letting

∂t → ∂t + ǫ2∂T (16a)

M = Mc + ǫ2m (16b)

ρ(x, t) = ρ0 + ǫρ1(x, T ) + ǫ2ρ2(x, T ) + ǫ3ρ3(x, T ) . . . . (16c)

Here, ǫ ≪ 1 is a small bookkeeping parameter, T is a slow time scale, and
m is the deviation from the critical population size. The ρi do not evolve
on the fast time scale t, and so the t dependence is henceforth eliminated
from our calculation. The perturbation expansion allows us to compute a
solution to the nonlinear homogeneous problem (9) in terms of the expansion
functions ρ0(x, T ), ρ1(x, T ) and so on, where these functions satisfy linear
nonhomogeneous equations. Also,

ρ0 = M/L (17)

by definition, and
ρ1 = z(T ) eiqx +c.c. (18)

where c.c. stands for complex conjugate and z is the slowly varying amplitude
of the solution, for which we will derive an amplitude equation.

At O(ǫ), (9) becomes the linear problem

ρcK ∗ ρ1,xx − rρ2
cρ1,xx = 0 (19)

which simply recovers the dispersion relation (12). At O(ǫ2), we obtain

ρcK ∗ ρ2,xx − rρ2
cρ2,xx =−ρ1,xK ∗ ρ1,x − ρ1K ∗ ρ1,xx (20)

+ 2rρc(ρ1,x)
2 + 2rρcρ1ρ1,xx

which has the particular solution

ρ2 = − r

2K̂(q) − 2K̂(2q)
z2(T ) e2iqx +c.c. . (21)

At O(ǫ3), we obtain

ρcK ∗ ρ3,xx − rρ2
cρ3,xx = − ρ1,T − ρ1,xK ∗ ρ2,x − ρ2,xK ∗ ρ1,x (22)

− ρ1K ∗ ρ2,xx − (m/L)K ∗ ρ1,xx

− ρ2K ∗ ρ1,xx + 4rρcρ1,xρ2,x + 2rρ1(ρ1,x)
2

+ 2rρcρ1ρ2,xx + rρ2
1ρ1,xx + 2rρcρ2ρ1,xx

+ 2r(m/L)ρcρ1,xx.
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The right hand side of (22) contains terms with spatial dependence eiqx which
lie in the solution space of the left hand side. To guarantee that ρ is periodic,
we must eliminate these secular terms. Enforcing this solvability condition
leads to the amplitude equation

dz

dT
= λz + a|z|2z, λ = −mK̂(q)q2/L, a =

rq2K̂(q)

2K̂(q) − 2K̂(2q)
. (23)

This result is valid for any K satisfying the assumptions made in Section 2.

Equation (23) describes a pitchfork bifurcation (Crawford, 1991) from the con-
stant density state to a spatially-periodic pattern with steady-state amplitude
determined by |z|2 = −λm/a. For K = Ke

1 from (10a), a > 0 and so the
patterned state bifurcates subcritically, and hence unstably. In fact, this is the
case for any K and q satisfying K̂(q) > K̂(2q).

In Section 4.3 we will compare the result in (23) with numerically obtained
results. The quantity we will study is the amplitude A = maxD ρ − minD ρ.
Keeping the first two terms in our perturbation expansion, i.e. ρ = ρ0 + ǫρ1,
and substituting (23), we arrive at the weakly nonlinear prediction

A =
4

r

√
2

L

(
Mr − K̂(q)L

) (
K̂(q) − K̂(2q)

)
. (24)

It follows that the amplitude of the periodic pattern is inversely proportional
to r, or directly proportional to the ratio of typical attractive speed to typical
repulsive speed.

4.2 Phase plane analysis for steady states

We set the flux in (9) equal to 0 and divide by ρ (discarding the trivial solution)
to obtain the steady state problem Ke

1 ∗ ρx − rρρx = 0. Inverting Ke
1 yields

the local steady state equation

ρx = rρρx − r(ρρx)xx (25)

which may be integrated once to obtain ρ = rρ2/2−r(ρρx)x +C/2, where C/2
is the constant of integration. This equation has an exact solution in terms of
elliptic integrals, but it is difficult to analyze. Instead, we study the equivalent
phase-plane problem

ρ̇ = φ, φ̇ = −1

r
+

ρ

2
− φ2

ρ
+

C

2rρ
(26)

E(ρ, φ, C) =
ρ3

3
− rρ4

8
+

rρ2φ2

2
− Cρ2

4
(27)
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Fig. 2. (a) - (d): phase portraits for (26) corresponding to different values of C for
the cases cases I,III,V,VII described in detail in the text. The phase plane problem
describes the steady states of (9). The stable and unstable manifolds of the fixed
point F+ are indicated by the broken line, and the critical touchdown solution T is
indicated by the dotted line.

where φ = ρx, the dot represents d/dx, and E is the “energy” (different from
the energy functional in equation 13) which is constant on trajectories of the
steady state problem (26). We classify the solutions as the parameter C is
varied. Cases I, III, V, and VII below are depicted in Figure 2.

Case I: C > 1/r. There are no finite attractors. All trajectories are unbounded.

Case II: C = 1/r. A fixed point is born at (ρ, φ) = (1/r, 0).

Case III: 8/(9r) < C < 1/r. There are two fixed points F± correspond-
ing to constant density populations, located at (ρ, φ) = (ρ±, 0), ρ± = (1 ±√

1 − rC)/r. F+ is a saddle whose stable/unstable manifold W s,u forms a ho-
moclinic loop which is bounded away from the φ axis. F− is a nonlinear center,
and lies inside W s,u. Between F− and W s,u lies a continuous family of periodic
orbits which correspond to smooth, patterned populations.

Case IV: C = 8/(9r). W s,u collides with the origin.

13



Case V: 0 < C < 8/(9r). The homoclinic loop is destroyed, i.e. W s,u no longer
self-intersects. Periodic orbits are destroyed as they collide with the origin.
There exists a critical orbit corresponding to a population with peak density
ρmax = (4 −

√
16 − 18rC)/3. This touchdown solution just touches down to

ρ = 0 and does so with finite slope φT = ±
√

C/(2r). The region bounded by
the touchdown trajectory, the φ-axis, and W s,u contains a continuous family
of trajectories which approach (ρ, φ) = (0,±∞). For ρ ≪ 1 and |φ| ≫ 1, (26)
is approximately ρρ̈ + (ρ̇)2 = 0, which has positive nontrivial solutions of the
form

√
ax + b. Thus, solutions in S reach ρ = 0 for finite x and correspond to

compactly supported swarm-like populations which touch down with infinite

slope.

Case VI: C = 0. F− collides with the origin.

Case VII: C < 0. The periodic orbits are destroyed. The only bounded solu-
tions are the compactly supported ones, lying between W s,u and the φ-axis.

In summary, for 8/(9r) < C < 1/r, only trivial (constant density) and periodic
solutions are possible. For 0 < C < 8/(9r), trivial, periodic, and clumped
solutions are possible. For C < 0, only trivial and clumped solutions are
possible. Note that the solutions of (26) actually form a two parameter family.
One parameter is the mathematical constant of integration C, which selects
a particular phase portrait. The other parameter may be taken to be the
“initial condition” in that phase portrait, which selects a particular trajectory.
More biologically relevant parameters include the total population size M , the
peak density ρmax, and the period or support of the steady solution. In fact,
fixing any two of these quantities determines the third. Unfortunately, the
relationship between these biological quantities and the mathematical ones we
have used for our phase plane study cannot be determined by the qualitative
analysis we have carried out in this section. In order to understand the role
of the biologically relevant quantities, we perform a numerical investigation in
the next section.

4.3 Numerical solution and bifurcation diagram

We fix L and construct the bifurcation diagram describing the steady state
solutions of (9). An example for L = 2π with r = 1 is given in Figure 3a, which
shows the solution amplitude A = maxD ρ−minD ρ as the population size M
is varied. Solution profiles corresponding to different values of M along the
bifurcation curve are sown in Figure 3b. The bifurcation diagram and solution
profiles are obtained in the following way.

For the periodic and touchdown solutions, we compute trajectories of (26)
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Fig. 3. (a) Bifurcation diagram for (9) with K = Ke from (10a) depicting solution
amplitude A versus the total population size M . The size of the periodic box is
L = 2π, and we take r = 1. The different solution types are stable constant den-
sity (horizontal sold line), unstable constant density (dashed line), periodic (open
circles), touchdown periodic (x), and compactly supported (dots). The solid curve
is the bifurcation curve predicted by (23), the result of a weakly nonlinear analysis.
(b) Steady state solutions for different values of M corresponding to different points
along the bifurcation curve in (a).

numerically using the Runge-Kutta (4,5) method, locate the trajectory with
period L, and measure M (using the trapezoidal rule) and A. This process is
performed different values of C. We perform a similar procedure for the clump
solutions. However, for fixed C, any clump solution with the correct mass and
with support that fits inside D is allowed. Thus, for fixed M , there is not a
unique clump, but rather a continuous one-parameter family, of which each
member has a different length and peak density. There is a selection mechanism
which prefers one member of this family for each M (in particular, the member
represented in Figure 3a). We discuss this mechanism in Section 4.5.

Figure 3a reveals that the subcritical branch of periodic solutions connects
to the clump solutions at the touchdown solution. The subcritical branch of
clump solutions turns around, and eventually terminates at the empty pop-
ulation solution M = 0. From the bifurcation diagram we see that as M is
decreased through the bifurcation point and the trivial state destabilizes, the
transition will involve a jump to a large-amplitude swarm. One interesting bi-
ological prediction which follows is that of hysteretic transitions for organisms
in a confined environment (in which case the appropriate no-flux boundary
conditions may be related to the periodic ones we use here; see previous dis-
cussion). Large, homogeneous populations will not form clumps. If sufficiently
many organisms are removed, so as to bring the population size below the
critical one, clumping will occur. Then, if organisms are added back in, the
population may remain clumped even for population sizes above the critical
one (so long as not too many are added).
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Fig. 4. Peak density ρmax versus population size M of clump solutions as computed
on periodic domains of length L = 2π (dots) and 4π (x’s), both with r = 1. The
two data sets coincide for small M , but diverge for larger M when “wraparound”
effects due to periodicity come into play. The L = 2π branch terminates for smaller
M since compactly supported solutions with larger M do not fit in the domain.
The dotted vertical line indicates the critical population size for L = 2π, namely
Mc = π (cf. Figure 3).

The particular form of the connection to the connection of the periodic branch
to the branch of clumps is an artifact of having a finite periodic domain. As
discussed in Section 2, for the periodic problem, the kernel Ke

1 must be made
periodic, and hence depends on the domain length L. Therefore, steady state
solutions of identical mass, but on different domains, will not necessarily be
identical. Figure 4 demonstrates this effect. We plot the maximum density
ρmax versus population size M of compactly supported solutions as computed
on periodic domains of length L = 2π and 4π. The two results agree for
small M , but diverge for larger M . One intuitive way of understanding this
phenomenon is to imagine that for clumps with sufficiently large support, the
left and right sides of the clump may interact strongly due to the nonlocal
aggregative term in (9) and the periodic boundary conditions.

4.4 Coarsening

It is of interest to investigate how the steady state clumps just discussed
are approached. Numerical simulations reveal that our model displays “coars-
ening” dynamics. We use a fully implicit numerical scheme. Derivatives are
calculated using central finite differences, and the convolution operator Ke

1∗
is computed as (I − ∂2

x)
−1, as discussed previously. The nonlinear problem is

solved via Newton iteration.

As an example, we perform simulations on a periodic box of length L = 8π
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Fig. 5. Snapshots showing the coarsening of an initially randomly-distributed pop-
ulation with M = 10 on a domain of length L = 8π. Here, r = 1 in (9).

and choose a random initial condition with total integral M = 10. Figure 5
shows a series of snapshots of the solution as it is evolved according to (9).
The irregular initial profile is rapidly smoothed. Then a more slow transition
occurs, in which the smooth profile breaks up, in this case into three distinct
clumps of organisms. However, due to the long-range social attraction modeled
in K, each clump can feel the presence of the others. The two rigthmost clumps
move slowly towards each other and merge into a larger group. Then, this large
group and the remaining group are attracted together, though the motion
occurs over an even slower time scale. Eventually, the two groups merge into
one large group, and steady state is reached.

The coarsening dynamics are of special interest to us given the widely held view
that “social behaviors that on short time scales lead to the formation of social
groups. . . at the largest time and space scales [have] profound consequences
for ecosystem dynamics and for the evolution of behavioral, morphological,
and life history traits” (Okubo et al., 2001). The vast majority of models for
splitting and joining of social groups on long time and space scales are stochas-
tic, and involve quantities such as the probability of a group splitting into k
smaller groups, which may be extremely difficult to measure experimentally.
Coarsening dynamics are a natural context in which to study the splitting and
merging of groups. Moreover, this formulation has the advantage that results
(such as the coarsening rate) could be explicitly tied to the rules for movement
(for example, the properties of the interaction kernel K, or the value of the
speed ratio r).

4.5 Nonlinear selection and large-domain, large-population asymptotics

As discussed in Section 4.2, for fixed population size M there is a continuous
family of clump solutions. However, as stated previously, and as demonstrated
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Fig. 6. (a) Members of the continuous family of compactly supported steady state
solutions to (9) having total population size M = 2.51. Solutions are obtained
from numerical integration of the phase-plane problem (26). The thick broken line
corresponds to the profile having the minimum energy E in (13), which is the one
observed in simulations of (9). (b) Energies of the solutions in (a), parameterized
by maximum density ρmax. The minimum is indicated by an “x”. For this example,
r = 1 in (9).

by the simulations of Section 4.4, one member of this family is preferred by the
dynamics of (9), and it is precisely the one which minimizes the energy (13).
Figure 6 verifies this selection mechanism. Figure 6a shows some members
of the continuous family, calculated from (26) for M = 2.51 with r = 1 in
(9). The minimum-energy solution appears as a thick broken line. Figure 6b
shows the energy E of the solutions, parameterized by their maximum density
ρmax. To verify the energy argument, we evolve a random initial condition with
M = 2.51 according to (9) using an implicit, central in space (1, 2)-accurate
finite difference method. When plotted on Figure 6a, the steady state achieved
in the simulation is indistinguishable from the energy-minimizing solution in
6a calculated from (26).

Though thus far we have considered small periodic domains, it is perhaps
more biologically relevant to consider the steady states of (9) for the free
space problem, i.e. with D = R. We approximate these solutions by taking
an extremely large domain length L. We calculate the clump solutions for
different population sizes M with L taken to be large enough for each M so
that the previously discussed finite-domain effect is negligible (a rule of thumb
is that for a fixed L, we calculate only those clumps with M ≤ 0.5M c). In
Figure 7a, we plot ρmax as a function of M . Selected density profiles are shown
in Figure 7b. For small values of M , e.g. M = 2 and M = 7, the clumped
solutions have small ρmax and a narrow, rounded shape. For larger population
sizes, e.g. M = 20, ρmax is around 1.5, and the shape of the profile is still
quite rounded. For much larger population sizes, e.g. M = 50 and M = 80,
the clumps approach a rectangular shape, i.e. they have a nearly constant
internal density, deviating only very close to the edges of the group which go
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Fig. 7. Peak density ρmax versus population size M of clump solutions computed
on periodic domains of very large length L so as to approximate solutions on R (see
text for details). In the large M limit, density profiles have ρmax = 1.5 as predicted
by the energy (13). (b) Density profiles for various values of M . Only the center of
the domain, which contains the entire support of the clumps, is shown.

steeply to ρ = 0. Interestingly, as M is made larger and larger, ρmax stays at
1.5 (see Figure 7a) and the rectangular profile simply becomes wider.

The asymptote at ρmax = 1.5 in Figure 7a may be understood from scaling and
energy arguments. If we assume that the steady solution has a characteristic
density ρ∗ and a characteristic length scale L∗, then the left side of the steady
state equation (25) scales as ρ∗/L∗, the first term on the right hand side
scales as ρ2

∗/L∗, and the remaining term scales as ρ2
∗/L

3
∗. In the limit of “long”

solutions, the balance is between the left hand side and the first term on
the right hand side, with the remaining term being a much smaller O(1/L2)
correction. Then we have ρ∗/L∗ ∼ ρ2

∗/L∗, and so ρ∗ is an O(1) constant. If
we assume the population profile approaches a rectangular shape, we may use
the energy (13) to determine the height ρ∗ of the rectangle. For rectangular
solutions, (13) yields

E =
∫

D

r

3
ρ3
∗ − ρ∗K ∗ ρ∗ dx. (28)

K has characteristic length scale 1 (see Section 2), and so for sufficiently large
L∗, K resembles a δ-function and convolution with K acts as the identity.
Then we have
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E =
∫

D

r

3
ρ3
∗ − ρ2

∗ dx (29a)

=L∗

(
r

3
ρ3
∗ − ρ2

∗

)
(29b)

=
M

ρ∗

(
r

3
ρ3
∗ − ρ2

∗

)
(29c)

=M
(

r

3
ρ2
∗ − ρ∗

)
(29d)

where we recall that for a rectangular solution, M = ρ∗L∗. As previously dis-
cussed, for fixed M , the dynamically preferred steady state is the one which
minimizes E. Minimizing (29d) with respect to ρ∗, we find ρ∗ = 3/(2r), in
agreement with our numerical observations for r = 1. From the inverse de-
pendence of ρ∗ on r, we have the general result that the constant density of
large rectangular groups is directly proportional to the ratio of characteristic
attractive to repulsive velocities. Note that all of the above arguments are
independent of the particular choice of interaction kernel K after rescaling.

5 Simulations in two spatial dimensions

The energy argument given above is, in fact, independent of the number of
dimensions, and so the preferred density for large clumps is always expected
to be ρ∗ = 3/(2r). This is demonstrated by numerical simulations. We conduct
our simulations on a periodic box. We use a hybrid numerical method with
adaptive time stepping. The attraction term is treated explicitly and pseu-
dospectrally. The dispersal term is treated implicitly, with operator splitting.
For each time iteration, dispersal in the x and y directions are implemented
successively (the order is alternated). The derivatives are approximated using
central finite differences, and the resulting nonlinear problem is solved with
Newton iteration.

Figure 8 shows a numerical simulation of (9) in a two dimensional box with
each side L = 40. The population size is M = 600 and the speed ratio r = 1.
We take N = 300 points along each axis. The initial condition (Figure 8a) con-
sists of two disjoint discs, with a randomly distributed population in each one.
The density profile within each disk rapidly smooths out (Figure 8b). Over a
slower time scale, the two discs merge (Figure 8c). The resulting population
clump retains a thin interfacial region outside of which ρ = 0. The interface
evolves on a very slow time scale, and the internal population density becomes
nearly constant (Figure 8d). Because the evolution of the group boundary is
very slow, we terminate the simulation before steady state is reached. Nonethe-
less, Figure 9 shows the peak density ρmax as a function of time, and confirms
that it approaches 1.5, as predicted by the energy arguments.
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Fig. 8. (a-d) Population density profiles under the dynamics of (9). The initial con-
dition consists of two disjoint discs, with the population randomly distributed in
each. The population in each disc rapidly smooths out, and the two discs merge
over a slower time scale, and form a group with a nearly constant internal popu-
lation density. The simulations are conducted with population size M = 600 and
characteristic repulsive to attractive speed ratio r = 1 on a box of size L = 40 with
N = 300 gridpoints on each axis.

6 Conclusion

The purpose of this paper is to demonstrate how population clumping can
occur in a realistic, minimal model for the movement of organisms. We have
focused on a kinematic model, i.e. one in which the velocity is a functional of
the density (as opposed to a dynamic grouping model, which would include
inertial forces). We have shown that the balance between nonlinear diffusion
and nonlocal social attraction (which decays with distance) is sufficient for
the formation of localized groups from initially disperse population profiles.
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Fig. 9. Peak density ρmax as a function of time for the simulation shown in Figure 8.
The peak density approaches 1.5, as predicted by energy arguments.

Our focus has been on stationary, rather than traveling, solutions. Following
the ideas in Topaz and Bertozzi (2004), group motion may be incorporated
into the model by incorporating additional social interaction terms of incom-
pressible form, which have been shown to provide cohesive group motion while
preserving the properties of constant density and compact support. Alterna-
tively, group motion may be provided by considering external factors such as
movement up food gradients. Of course, our model can also be interpreted
simply as one for the formation of stationary clumps of organisms.

Our case study in one spatial dimension uncovered three key properties which
agree with biological observation:

(1) The groups are truly localized, i.e. they have well defined boundaries
outside of which the population density is 0.

(2) The density drops steeply to 0 at the edge, i.e. the density profile has
infinite slope at the boundary.

(3) For sufficiently large populations, there is a preferred density (or in the
parlance of discrete models, a preferred inter-organism spacing) indepen-
dent of the population size itself, i.e. adding more members to the group
does not change the “packing” of organisms, but simply increases the
spatial extent of the group.

Furthermore, for the case of two spatial dimensions, simulations revealed so-
lutions which also have compact support, steep edges, and a constant inter-
nal population density. Finally, we have connected a macroscopic property of
the population clumps, namely the preferred internal population density, to
a property of the movement rules, namely the ratio of typical dispersive to
attractive speeds, by analyzing an energy associated with the aggregation.
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