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Abstract

We extend a recently introduced method for numerically solving partial differential equations on implicit surfaces [M.
Bertalmı́o, L.T. Cheng, S. Osher, G. Sapiro. Variational problems and partial differential equations on implicit surfaces,
J. Comput. Phys. 174 (2) (2001) 759–780] to fourth order PDEs including the Cahn–Hilliard equation and a lubrication
model for curved surfaces. By representing a surface in RN as the level set of a smooth function, /, we compute the
PDE using only finite differences on a standard Cartesian mesh in RN . The higher order equations introduce a number
of challenges that are of less concern when applying this method to first and second order PDEs. Many of these problems,
such as time-stepping restrictions and large stencil sizes, are shared by standard fourth order equations in Euclidean
domains, but others are caused by the extreme degeneracy of the PDEs that result from this method and the general geom-
etry. We approach these difficulties by applying convexity splitting methods, ADI schemes, and iterative solvers. We dis-
cuss in detail the differences between computing these fourth order equations and computing the first and second order
PDEs considered in earlier work. We explicitly derive schemes for the linear fourth order diffusion, the Cahn–Hilliard
equation for phase transition in a binary alloy, and surface tension driven flows on complex geometries. Numerical exam-
ples validating our methods are presented for these flows for data on general surfaces.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Nonlinear partial differential equations; Level set method; Implicit surfaces; Higher order equations; Lubrication theory;
Cahn–Hilliard equation; ADI methods
1. Introduction

Partial differential equations (PDEs) defined on surfaces embedded in R3 arise in a wide range of applica-
tions, including fluid dynamics, biology (e.g., fluids on the lungs), materials science (e.g., ice formation), elec-
tromagnetism, image processing (e.g., images on manifolds and inverse problems such as EEG), computer
graphics (e.g., water flowing on a surface), computer aided geometric design (e.g., special curves on surfaces),
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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and pattern formation. The work in this paper is concerned with fourth order differential equations, which
have interests in all the areas mentioned above. Examples of physical flows modeled by fourth order PDEs
include ice formation [42,43], fluids on lungs [27], brain warping [39,58], and designing special curves on sur-
faces [28,39]. In this paper we extend the work in [8] to these high order flows. We represent the surface with
arbitrary geometry implicitly, as the level set of a smooth function defined in all of the embedding space R3,
and rewrite the relevant equations in terms of Euclidean coordinates and derivatives of the level set function
(see Section 2). This method has been used for solving first and second order equations on static, [8,33,37,38],
as well as dynamic, [2,62], surfaces. In [8], the authors introduced the general framework and showed how to
solve second order linear and nonlinear diffusions and reaction-diffusion equations on implicitly defined sur-
faces. In [33,37], the authors solved the Eikonal equation on surfaces like those in [8] (while in the first paper
the work is for triangulated surfaces, in the second implicit representations are used). In these works, static
surfaces were considered. The authors of [2,62] solve second order diffusion equations on interfaces that
are deforming subject to an extrinsic flow. As discussed in the above papers in detail, implicit representations
provide a natural means for addressing these flows on arbitrary surfaces.

Solving PDEs and variational problems with polynomial meshes involves the non-trivial discretization of
the equations in general polygonal grids, as well as the difficult numerical computation of other quantities like
projections onto the discretized surface (when computing gradients and Laplacians for example). Although
the use of triangulated surfaces is quite popular, there is still no consensus on how to compute simple differ-
ential characteristics such as tangents, normals, principal directions, and curvatures. On the other hand, it is
commonly accepted that computing these objects for iso-surfaces (implicit representations) is simpler and
more accurate and robust. This problem becomes even more significant when we not only have to compute
these first and second order differential characteristics of the surface, but also have to use them to solve var-
iational problems and PDEs for data defined on the surface. Formal analysis of finite difference schemes on
non-Cartesian meshes is a new area [5,12,13,51], whereas finite difference schemes on Cartesian meshes are
better understood. Note also that working with polygonal representations is dimensionality dependent, and
solving these equations for high dimensional (>2) surfaces becomes even more challenging and significantly
less studied. The work here developed is valid for all dimensions of interest. The computational cost of work-
ing with implicit representations is not higher than with meshes, since all the work is performed in a narrow
band around the level-set(s) of interest.

The framework of implicit representations for solving PDEs on them, as introduced in [8,38], enables us to
perform all the computations on the Cartesian grid corresponding to the embedding function. These compu-
tations are, nevertheless, intrinsic to the surface. Advantages of using Cartesian grid instead of a triangulated
mesh include the availability of well studied numerical techniques (that we will extend in this paper, see below)
with accurate error measures, and the topological flexibility of the surface, all leading to simple, accurate,
robust and elegant implementations. The approach is general (applicable to PDEs and variational problems
beyond those derived in this paper) and dimensionality independent as well. We should note of course that the
computational framework here developed is only valid for manifolds which can be represented in implicit form
or as intersection of implicit forms. As mentioned above, several disciplines of sciences have numerous prob-
lems that can be embedded within the implicit framework.

In a number of applications, surfaces are already given in implicit form, see for example [48,54], therefore,
the framework in this paper is not only simple and robust, but it is also natural in those applications. More-
over, in the state-of-the-art and most commonly used packages to obtain 3D models from range data and from
segmented volumetric medical images, the algorithms output an implicit (e.g., distance) function (see for
example graphics.stanford.edu/projects/mich/ and www.itk.org), and it is important to develop computa-
tional frameworks where the surface representation is dictated by the data and application, and not the other
way around. On the other hand, not all surfaces (manifolds) are originally represented in implicit form. For
generic surfaces, we need to apply an algorithm that transforms the given explicit representation into an impli-
cit one. Although this is still a very active area of research, many very good algorithms have been developed;
see for example [21,29,35,64]. This translation needs to be done only once for any surface. For rendering, the
volumetric data can be used directly, without the need for an intermediate mesh representation.

Once the surface is in implicit form, using the results and the basic ‘‘dictionary’’ provided in [8,38], we can
translate PDEs and variational problems based on intrinsic characteristics of the manifold, into PDEs and
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variational problems that depend on the implicit manifold and the embedding space. This translation is done
in a systematic and generic fashion.

In this paper we consider fourth order equations on static surfaces. Although future work will undoubtedly
extend these methods to solve related equations on dynamically changing surfaces, the jump from second (as
in [8,38]) to fourth order equations on static surfaces is a significant computational challenge unto itself. The
computation of fourth order diffusions in flat Euclidean space is far less understood than computation of sec-
ond order diffusions. The literature on numerics for fourth order PDEs is an active area of research
[7,14,25,26,56,61,66]. Some work on solving equations with fourth order diffusions on surfaces has been done
for particular examples (see [43]), but methods for solving general fourth order PDEs on arbitrary smooth
surfaces remains untouched due to the very complicated nature of these high order equations. We present
a significant initial step in this direction. Our work builds upon the methods introduced in [8]. We use similar
schemes and consider analogous examples. More importantly, we maintain the spirit of simplicity in [8] even
while considering the more difficult fourth order equations.

Many difficulties arise when computing any fourth order diffusions. The dynamics depend highly on the
smoothness of initial data. Boundary conditions are often difficult to implement; fourth order equations
require prescribing two boundary conditions in contrast to the one needed for second order diffusions. Time
stepping is perhaps the crucial matter for fourth order diffusions. Stability requirements restrict explicit time
steps for fourth order diffusions to be on the order of h4, where h is the grid size. Compare that to second order
diffusions, where time steps are only restricted to be O(h2). The time step restriction prohibits explicit schemes
in any meaningful simulation of fourth order equations. On the other hand, implicit schemes require the inver-
sion of a linear system of equations that is typically very large for fourth order equations. Furthermore, the
literature on solving fourth order diffusions in arbitrary smooth domains is virtually non-existent. To date, a
number of tools have proved successful for fourth order diffusions occurring in areas such as thin film fluid
flow and materials science, including ADI, spectral, and finite element methods, as well as convexity splitting
[7,14,25,26,56,61,66]. We address each of these methods, and explain how they come into play with our own
problem when addressing general geometries.

In the following section we first provide the basic structure of the problem, explain its challenges, and
describe the particular equations we will address. We also compare and contrast the problem under consider-
ation with level set methods for fourth order geometric motions. The general organization of the paper is
detailed after this.
2. Basics, challenges, and goals

In order to adequately describe the challenge of computing higher order equations on surfaces, we first
summarize the ideas developed in [2,8,62], and then describe where those methods must be modified. Let S

be a smooth closed codimension-one manifold embedded in RN . Let / : RN ! R be a smooth function whose
zero level set is given by S with / < 0 inside S and / > 0 outside S. Thus r/

jr/j gives the outer pointing normal to
S. Letting I denote the identity matrix, define
P :¼ I �r/�r/

jr/j2
; ð1Þ
so that P(x0)v(x0) gives the projection of a vector v at the point x0 2 RN onto the tangent plane to the surface
S ¼ fx 2 R3 : /ðxÞ ¼ /ðx0Þg.

Suppose u is a smooth function defined on S. We use $Su to denote the gradient of u intrinsic to the surface S.
This is simply the projection onto S of the gradient of (the extended) u in the embedded space [55]. We sim-
ilarly use DSf to denote the Laplacian of u intrinsic to S; in other words, DS is the Laplace–Beltrami operator
on S. Now suppose u is a function defined on all of RN . We use $u and Du to denote the the standard Euclid-
ean gradient and Laplacian of u. We calculate $S and DS using P and extrinsic derivatives (i.e., derivatives in
the Euclidean space containing S): for all points x on S,
rSuðxÞ ¼ P ðxÞruðxÞjr/ðxÞj. ð2Þ
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Since / and P are defined in some domain X � R3 containing S, if u is defined in all of X, then Eq. (2) makes
sense in all of X. At each x2X, $Su(x) defined as above corresponds to the gradient of u intrinsic to the level
set of / through x. We compute the Laplace–Beltrami operator in the same manner
DSuðxÞ ¼ 1

jr/ðxÞjr � ðP ðxÞruðxÞjr/ðxÞjÞ. ð3Þ
If / is a signed distance function,
jr/j ¼ 1;
then (2) and (3) simplify to
rSuðxÞ ¼ P ðxÞruðxÞ
and
DSuðxÞ ¼ r � ðP ðxÞruðxÞÞ.
It is thus desirable, though unnecessary, to define / as a signed distance function.

2.1. Example: The heat equation

Consider the heat equation on a given surface S. This equation arises from the gradient descent [8] of the
energy
EðuÞ ¼
Z

S

1

2
jrSuj2 ds; ð4Þ
which is given by
ut ¼ rS � rSu ¼ DSu. ð5Þ
We combine (5) with an initial condition,
uðy; 0Þ ¼ f ðyÞ for y on S; ð6Þ
to derive the heat equation on the surface S. We assume / is a distance function as discussed above and use (3)
to write (5) in terms of Euclidean derivatives
ut ¼ r � ðPruÞ. ð7Þ
Eq. (7) is defined in all of RN and can therefore be computed on a Cartesian grid. Solving (7) in all of RN is
equivalent to solving (5) on each level set of /. In particular, it will be necessary to define an initial condition
u0 on the entire computational domain (a band around S) that is equal to f on S. Eq. (7) is discussed and com-
puted in [2,8,62].

2.2. Example: Linear fourth order diffusion

This paper centers on fourth order equations, the simplest example being linear fourth order diffusion:
ut ¼ �DSDSu; ð8Þ
uðx; 0Þ ¼ u0.
Eq. (8) is the gradient descent of the energy
EðuÞ ¼ 1

2

Z
S
jDSuj2.
If S is given by the level set of a distance function /, then we can compute (8) in the Euclidean space contain-
ing S (and then use Cartesian numerics) by the equation:
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ut ¼ �r � ðPrðr � ðPruÞÞÞ; ð9Þ
uðx; 0Þ ¼ u0;
where P is the projection operator given by (1).

2.3. Basic observations and challenges

Eq. (9) shares a number of challenges with (7). These are problems that have been addressed for the second
order problem, but take on additional features and challenges in the high order equation:

1. Domain. We first note a key element of Eqs. (7) and (9) as compared with Eqs. (5) and (8). The new PDEs
are defined in all of RN . This is both the advantage of the method and one of its main challenges. Since the
new PDEs are defined in Eulerian coordinates, we can use a Cartesian grid and apply the usual finite dif-
ference schemes for solving these surface equations. However since the PDEs are defined in all of RN , we
have increased the problem by a dimension. We minimize the additional work by computing only in a band
around the surface. Fixing c > 0 and considering a signed distance function /(x), we compute only in the
band |/(x)| 6 c. Unfortunately, this requires computing on unusual domains with curved boundaries, while
to date, most simulations of fourth order equations have been done on rectangular domains. Thus, we must
simultaneously develop methods for solving fourth order equations on Cartesian grids with complicated
boundaries.We also need to choose appropriate initial data for (7) and (9). For the underlying problem,
our initial data is only defined on the surface. We must extend these values to a function defined in the
entire band.

2. Degeneracy. Consider Eq. (7). At each point x 2 RN , (7) defines a diffusion that is degenerate in one direc-
tion. There is no diffusion in the direction normal to S, so the equation is extremely anisotropic. Similar
anisotropic second order diffusions have been thoroughly studied; consider for example anisotropic diffu-
sions used for image processing. One might argue that the fourth order equation (9) is even more degenerate,
since it is a higher order diffusion with absolutely no diffusion in one direction. To our knowledge, no such
equation has been studied. The closest example we know of is surface diffusion.This degeneracy plays a cen-
tral role in our choice of computational methods. It leads us to consider convexity splitting methods similar
to those used in [62] to deal with the degeneracy of the second order problem. In Appendix B we look at an
ADI method that has been previously suggested for fourth order diffusions [61]. We examine this scheme and
show why the degeneracy of the fourth order problem prohibits a direct application of this method. We also
show how the second order degeneracy is better behaved, as it is amenable to the same approach. Although
ADI cannot be applied directly to Eq. (9), we do use it to invert the linear biharmonic operator in convexity
splitting schemes that we discuss in Section 4.

3. Boundary conditions. Suppose we are solving on the domain Sc = {x |/(x) 6 c}. No boundary conditions
are required to solve the above PDEs in Sc, since no information is shared between level sets. The values
of u on the boundaries / = ±c thus have no effect on u in the interior of the band. However, since we dis-
cretize on a Cartesian grid, any numerical solution will depend on the boundary, though this dependence
should decrease as h,Dt! 0. We also note that solving fourth order PDEs on bounded domains requires
prescribing two boundary conditions; for example one might fix u and Du, or $u Æ m and $Du Æ m on the
boundary (with normal m).

Although we build upon previous work on equations like (7), we do not simply re-apply those methods. Eq.
(9) inherits all of the complications of other fourth order equations and has a few that are particular to its
nature as a higher order surface PDE. These complications have not been addressed in the work on second
order surface PDEs, and in fact many of them are central to current research on the computation of general
higher order equations:

1. Dependence on high derivatives. This obvious difference between Eqs. (7) and (9) presents many difficulties
that were not apparent in the works discussed above. Eq. (9) depends on fourth derivatives of not only u,
but of / as well. This high order dependence places severe restrictions on u and /. Both must be smooth
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and accurate to a high enough degree that they possess smooth numerical derivatives. As we shall see, level
set functions / that are smooth enough to use in computations of second order PDEs might not be smooth
enough for their fourth order counterparts. The initial condition u0 must also be sufficiently smooth. This
plays a particularly important role when extending the initial condition on S to a band containing S. See
Section 3.2 for more details.

2. Stencil size. In one dimension, the standard centered difference discretization of the biharmonic operator
has a stencil width of 5 grid points. In three dimensions, the stencil size is 33 grid points. Compare that
to the 7 grid points in the standard discretization of the three-dimensional Laplacian. The stencil size
becomes especially problematic when solving PDEs on a surface. In all likelihood, all but one or two of
these grid points will lie on neighboring contours of / (/ 6¼ 0), and not on the surface of interest (/
= 0). Thus we must extend the initial data off of S carefully. We pick u0 to be constant in directions per-
pendicular to S for this reason. Choosing u to be non-constant in this direction could significantly increase
the discretization error.Stencil size also plays a central role in computation speed. Discretizing the Lapla-
cian requires far fewer operations than discretizing the biharmonic. There is an even greater difference in the
number of operations required between (7) and (9). Computing (7) requires at least one matrix multiplica-
tion by P at each time step, whereas Eq. (9) requires at least two such multiplications. We must take this
need for heavy computation into consideration when considering the domain of computation, much more
so than in the case of (7).

3. Time stepping. Explicit methods for fourth order diffusions have a time step restriction requiring the time
step k to be on the order of h4, where h denotes the grid cell width. This restriction is far worse than the
stability requirement for second order diffusions. Due to this drawback of explicit schemes, we turn to
implicit schemes that require the inversion of a linear system at each time step. Since fourth order equations
depend on high derivatives, we desire a highly resolved grid for accuracy, however refined grids are detri-
mental to time stepping. Explicit schemes would be too slow, while the necessary inversion for implicit
schemes might be too computationally expensive. Time stepping remains a major challenge for solving
fourth order equations.

2.4. Level set methods for fourth order geometric motions

An obvious comparison may be drawn between the fourth order equations we consider here and fourth
order geometric motions approximated by level set methods. Level set methods combined with finite differ-
ences or finite elements have been used to calculate both surface diffusion [11,56] and Willmore flow [18].
These PDEs share difficulties such as stiffness of time stepping schemes and a need for highly accurate level
set functions. There are, however, significant differences between level set equations for geometric motions
and the PDEs considered here. In geometric motion, the dynamic variable of interest is / itself. The level sets
of / change dynamically as a fourth order PDE. Due to the lack of a maximum principal, level sets may cross
or spontaneously appear. This might make the level set equation invalid for approximating the geometric
motion, and as a result various tricks must be used to avoid this [11].

The situation is very different for the PDE calculations done here, in which the level set function plays a
much simpler role. We use an implicit representation of the surface primarily to establish a coordinate system
with which to solve the surface PDEs. Restricted to the surface, the Eulerian equations such as (7) and (9) are
exactly the PDEs we wish to solve for u. The PDEs we solve depend on the properties of / and its derivatives,
much as in level set methods, but in our case / is completely unaffected by the dynamics; in particular, the level
sets of / do not depend on any high order evolution. Since / is unchanged by the dynamics of u, the equations
remain valid.

As with other fourth order problems, the lack of a maximum principal is a concern, but not in the same way
as for geometric motions. In the context of our work, the lack of a maximum principal is an issue when solving
nonlinear problems like the thin film model we consider. It would be valuable to discover schemes similar to
the positivity preserving schemes in [26,66] that apply to the various geometries considered here.

There are some ways in which the problems we consider are more difficult than computing geometric
motions. In the case of level set methods for surface diffusion, the dynamics quickly smooth the surface



222 J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246
while damping regions of high curvature. In our case, those regions of high curvature remain unchanged
and stay an integral part of the PDEs that we solve. Since the computational domains of the PDEs we solve
are complicated with curved boundaries, we cannot use FFT methods directly to quickly solve our schemes
as done in [56]. The PDEs we consider here have degeneracy not present in many fourth order geometric
motions. There is absolutely no diffusion in the direction normal to the surface, resulting in schemes that are
difficult to solve.

2.5. Goals

In this paper, we develop a method for solving fourth order PDEs on surfaces that may be applied to a wide
variety of surfaces and equations. Despite the complicated nature of the problem under consideration, we
stress simplicity wherever possible. The primary advantage of finite difference schemes lies in their ease of
use, especially when compared with finite element methods, which often require highly technical program-
ming. We intend to maintain the simplicity of finite differences wherever possible, fully aware that methods
of higher accuracy may be derived at the expense of this simplicity.

The method presented here may be easily applied to a wide variety of problems without using powerful
computational packages such as FEMLAB. We demonstrate this advantage by applying the method to three
fundamental fourth order problems with very different dynamics: linear fourth order diffusion,
ut ¼ �DSDSu;
the Cahn–Hilliard equation for phase transitions in a binary alloy,
ut ¼ DSð��2DSuþ u3 � uÞ;

and a PDE derived in [52] for the motion of thin films driven on a surface by gravity and surface tension,
of
ot
¼ � 1

3
rS � u2frS ~j� 1

2
u4ðjI� KÞ � rj

� �
� 1

3
BorS � u3ĝs � u4ðjIþ 1

2
KÞ � ĝs þ ĝnu3rSu

� �
. ð10Þ
In Eq. (10), k1 and k2 are the principle curvatures of the substrate, j = k1 + k2, ~j is curvature of the free sur-
face, f ¼ u� 1

2
ju2 þ 1

3
k1k2u3, and K is the curvature tensor for the curved substrate. The Bond number Bo

quantifies the relative strength of gravity to surface tension. The vector ĝs is the component of gravity tangent
to the surface S, and ĝn is the magnitude of the component of gravity normal to S.

For these problems, we address each of the issues discussed in Section 2.3, describe the methods we used to
deal with those issues, and mention some areas of possible future research. We compare with second order
problems throughout the discussion. In Section 3 we discuss the basic issues for the Eulerian representation
of surface PDEs, including computational domain, boundary conditions, extension of the initial data off of
S, and intermittent re-extension of the surface data. Although, these elements have been discussed previously
in [2,8,62], they take on new features and challenges with the fourth order problem. Section 4 concerns time
stepping of the fourth order highly degenerate diffusions. We discuss convexity splitting methods that have
been successful for other fourth order equations and consider their relation to our problem. The new chal-
lenges here include the extreme degeneracy of these surface equations and the unusual computational
domains. Section 5 discusses two methods for solving the semi-implicit schemes derived in Section 4. We con-
sider both iterative methods and ADI schemes.

The remaining sections demonstrate the generality of our methods by applying them to each of the
above equations. In Section 6 we discuss the basic groundwork of implementation, including data struc-
tures and visualization of the PDE solutions. In Section 7 we consider linear fourth order diffusion (9) on
the unit circle in R2, the unit sphere in R3, and the Stanford Bunny [36]. We give pseudo-code describing
the basic steps of the method. We also check convergence in the case of fourth order diffusion on a circle,
for which we know exact solutions. Section 8 concerns the Cahn–Hilliard equation. We give a numerical
scheme and discuss changes to the algorithm given for the linear problem. These changes are minor, since
the highest order term is still linear. Finally, in Section 9 we apply these methods to a fully nonlinear
model for thin film fluid flow on surfaces. We consider flows driven by gravity and flows driven by
curvature alone.



J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246 223
3. The embedded equation

We first describe issues related to the embedding of the surface PDE, including the computational domain,
boundary conditions, and extension of the initial data to the embedding domain. We pay close attention to
modifications of the methods in [2,8,62] needed to compute higher order PDEs. The ideas discussed here apply
to many different PDEs on a variety of geometries.

We assume that we are given a level set function / that determines S by S = {x |/(x) = 0} with /(x) > 0 for
points x outside of S and /(x) < 0 for x inside S. Works such as [48,50,57] and the papers mentioned in the
introduction discuss means of producing such an implicit representation (e.g. via highly accurate WENO
schemes). For fourth order equations, very high accuracy is required for the level set function since we must
take fourth order derivatives of / as well as of u. As noted in Section 2, choosing / to be a signed distance
function simplifies the PDEs.

3.1. Computational domain: a band containing S

To reduce computational costs, we restrict calculations to a band around the surface,
Fig. 1.
Sc ¼ fj/ðxÞj 6 cg; c > 0;
in which $/ is well-defined. For example, to solve linear fourth order diffusion on the unit circle, we would
compute (9) in the annulus
1� c 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 cþ 1.
See Fig. 1. Every smooth closed embedded manifold has a band of this type in which / is smooth. The
maximal width of such a band is determined by the maximum curvature of the surface – surfaces of higher
curvature require smaller bands to ensure that $/ is smooth throughout the band. We refer interested readers
to [3,4,37] for further discussion. This restriction to a band is similar in spirit to the local level set method
[1,50]. Note that Sc will typically be a complicated domain with curved boundary. Finite difference schemes
are often difficult to apply on such domains, and we will do our best to work around this.

3.2. Extension of initial surface data

Since u0 is assumed to be defined only on the surface S, we must extend u0 to the other level sets of / within
the band. We extend u0 by requiring
ru0 � r/ ¼ 0. ð11Þ
cφ = 
cφ = −

S
(φ = 0)

Sc

S denotes the surface corresponding to the zero level set of /, and Sc is a band around that surface used for the computations.
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In other words, we require u0 to be constant perpendicular to the surface. In our simple example of the annu-
lus, condition (11) states that in polar coordinates (r,h), u is a function of h alone.

One way of forcing (11) is to solve
otu0 þWhð/Þ
r/
jr/j � ru0 ¼ 0 ð12Þ
to steady-state within the band, where Wh(s) is a smoothed version of the signum function depending on the
grid size h, and satisfying Wh(0) = 0.

Evolving (12) leaves the values on S unchanged while propagating the surface data both inside (where
Wh(/) < 0) and outside (Wh(/) > 0) the surface. Discussion of this method, including the selection of Wh,
can be found in [48,50]. We do remark however, that while it is suggested in [48,50,57] to use
WhðsÞ ¼
sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ h2
p ; ð13Þ
we found that this selection leads to poor results (as we will shortly demonstrate). We believe that Wh defined
by (13) does not adequately resolve the zero level set of / for the extension procedure. We instead used
WhðsÞ ¼
sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ h
1
2

p ð14Þ
in our computations.
For second order equations on surfaces, Eq. (12) can be solved using simple first order up-winding. How-

ever this is inadequate for our purposes, as such simple integration results in an extended u0 that has very noisy
high derivatives. We compute (12) using fifth-order WENO [31,32] for spatial derivatives and integrate in time
with second order Runge–Kutta.

To demonstrate the need for care in selecting an extension scheme, we performed the following experiment.
We set / to be the signed distance function to the unit circle and solved (12) to steady-state in the band j/j 6 1

2

with u0(Æ ,0) = /. With this initial condition, the limiting steady-state solution of (12) is u0 ” 0 in the band. We
computed in the square [�2,2] · [�2,2] with a 400 · 400 grid and a time step of k ¼ 3

4
h, where h is the grid size

(note that this selection satisfies the CFL condition for (12)). Computations with other grid sizes and time
steps gave similar results. We performed the same computation with both first order upwinding and WENO.
We also varied the selection of Wh, including (13), (14), and
Whð/ðxÞÞ ¼ 2H h
/ðx; yÞ
�hðx; yÞ

� �
� 1; ð15Þ
where
HhðwÞ ¼
0 w 6 �1;
1
2
ðwþ 1Þ �1 6 w 6 1;

1 1 6 w

8><
>:
and
�hðx; yÞ ¼
j/xðx; yÞj þ j/yðx; yÞj

jr/ðx; yÞj h.
Unlike (13) and (14), (15) is numerically consistent with sign(/) as h! 0. Elaboration of (15) may be found in
[19].

Table 1 lists the point-wise maximum errors of u0 and discretizations of $u0, Du0, and D2u0 for each scheme
and Wh. We are particularly interested in accuracy of the higher order derivatives. Among the cases consid-
ered, only WENO discretization with Wh given by (14) gave adequate results.



Table 1
Comparison of errors for upwinding and WENO schemes of (12) with different selections of Wh

Wh(/) 2Hhð/�h
Þ � 1 /ffiffiffiffiffiffiffiffiffiffi

/2þh2
p /ffiffiffiffiffiffiffiffiffiffi

/2þh
1
2

p
Scheme Upwind WENO Upwind WENO Upwind WENO

ku0kL1 6.9 · 10�6 4.2 · 10�4 3.9 · 10�4 3.0 · 10�4 3.5 · 10�4 2.70 · 10�5

kru0kL1 1.5 · 10�4 0.031 0.019 0.014 1.3 · 10�3 9.9 · 10�5

kDu0kL1 0.031 4.3 1.2 1.6 0.15 3.8 · 10�4

kD2u0kL1 960 3.8 · 104 2.6 · 104 3.2 · 104 5.3 · 103 3.3 · 10�3
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3.3. Boundary conditions

Consider Eq. (9) defined in the band Sc = {x | |/(x)| 6 c} (see Fig. 1). Since its boundary is given by level
sets of /, the PDE does not require prescribing boundary conditions to solve analytically. Any discretization
of (9), however, requires prescribing numerical boundary conditions to solve the resulting linear system. These
boundary conditions certainly affect the numerical solution. However for short times and a large enough band
size, we expect the boundary conditions to have minimal effect on the value of the solution at the surface itself
(this is in fact demonstrated by the results in Section 7.1). We thus have some choice in the selection of the
numerical boundary conditions on the edge of the band; in this paper, we use boundary conditions that
are easier to calculate.

Consider solving the second order problem (7) in Sc. Since we extend u off of S in such a way that $u Æ $/
= 0, Neumann conditions might seem to be the correct boundary conditions to apply, however, $u(t) Æ $/ 6¼ 0
for t > 0, and applying Neumann boundary conditions actually enforces a jump in the derivative of u at the
boundary. In fact, the most natural boundary conditions to apply are
Pru � r/ ¼ 0. ð16Þ

Such a boundary condition is highly appropriate for a finite element method as in [10], but solving a finite
difference scheme with (16) holding on complicated curved boundaries is extremely difficult, since the linear
systems resulting from (16) are highly non-trivial. Computations are even more difficult for the analogous
fourth order problem which requires an additional boundary condition, such as
PrDSu � r/ ¼ 0. ð17Þ

We choose a method that avoids solving (16) and (17) on the extremely complicated boundaries. Instead, we
pick Dirichlet boundary conditions, which are easier to implement for the fourth order problem. Moreover,
Dirichlet boundary conditions assure us of a symmetric matrix when we invert the linear biharmonic operator,
thus allowing the use of efficient iterative solvers like Jacobian conjugate gradient method. We prescribe u and
DSu on the boundary, which is more natural in computations than prescribing u and Du on the boundary –
otherwise we will be required to compute DSu from Du. Our choice for DSu on the boundary actually results
from extending the initial condition far enough past the boundary to compute a finite difference approxima-
tion of DSu.

3.4. Re-extension of surface data

It has been noted [62] that in practice, u must be intermittently re-extended off of the surface, due to the
development of variations in u in the direction of $/. Since the values of u on non-zero level sets of / will
strongly affect any finite difference schemes, we would like to minimize such variations. This need to frequently
re-extend data off of the surface further suggests that the method used to compute (12) must be both accurate
and efficient, further suggesting the use of a high order WENO scheme.

The numerical values of u near the band boundary are often strongly affected by the boundary conditions.
Regularly extending the values of u off of S (and re-initializing the Dirichlet conditions based on this re-extension)
reduces the effects of our artificial boundary conditions. By re-extending u up to the boundary, we will have a
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more appropriate boundary condition of u for the next time-step. By re-extending u at least one grid cell
beyond the boundary, we can compute more appropriate values of DSu for the next time step.

The frequency of re-extension depends on the time steps used to integrate the surface PDE. If large time
steps are taken, we re-extend each time step by solving (12) to steady-state. In practice, we do the re-extensions
before significant variations occur normal to the surface, so it is in fact only the level sets closest to the band
boundaries that need to be updated by the re-extension method. When we do the re-extension frequently
enough, we observe sufficient results by computing only a few iterations of the WENO scheme for (12). If
re-extensions are done infrequently, (12) needs to be solved for a long enough time to advect information from
the zero level set all the way to the boundary. The need to re-extend surface data is also discussed in [62].

This re-extension of surface data is directly analogous to intermittent extension of velocity fields in typical
level set methods (for example mean curvature flow [65] or surface diffusion [11]). In standard level set meth-
ods, the zero level set and its velocity are the only important variables. Everything off of the zero level set is in
some sense arbitrary, and may be chosen to the users advantage. For curve motion, better performance is
often seen by frequently re-extending the velocity field off of the zero level set [11,48,54,65]. That is exactly
the case here, but instead of extending a velocity, we are extrapolating the surface values of u to the embedding
domain.

4. Time stepping

Consider solving
ut ¼ D2
Su ð18Þ
in the non-rectangular domain, Sc. Two methods for time stepping (18) immediately come to mind: Forward
and Backward Euler. Forward Euler is of course the simplest way to time step, since there is no need to invert
any linear system. Due to this easy implementation, explicit schemes are often used for second order diffusion
equations, and to date they are the most commonly used schemes for these surface problems [2,8]. For fourth
order diffusions, however, stability considerations restrict explicit time steps to be on the order of h4. This se-
vere restriction prohibits calculating on fine meshes by explicit schemes. We thus turn to implicit schemes like
Backward Euler, which have no time step restriction for linear fourth order diffusion. On the other hand, solv-
ing the implicit scheme may require extensive computation. Inverting the matrices for solving fourth order dif-
fusions in three dimensions is computationally expensive due to the 33 point stencil of the biharmonic
operator. Nonlinear systems are even more difficult to solve, as they require repeated Newton iterations,
and time steps may be restricted by convergence of the Newton method.

Now consider using Backward Euler on (18). This would require inverting
LS ¼ I � D2
S ;
which is a highly non-symmetric operator. The operator is also far less sparse than L = (I � D2), due to the
number of cross-terms in D2

Su. Furthermore, nothing is known about inverting LS. Taking these issues into
account, we choose a method that avoids inverting LS directly – convexity splitting [20]. Convexity splitting
has the advantages of being effective for strongly degenerate PDEs and being easy to implement and robust to
changes in both the PDE and computational domain. Convexity splitting has proved successful for the Cahn–
Hilliard equation [20], degenerate fourth order diffusions including Hele–Shaw flow [23] and surface diffusion
[56], and for second order diffusions on surfaces [62]. By using convexity splitting, we only need to invert
(I � CD2) instead of inverting LS. We next describe convexity splitting for PDEs, then apply it to (18) in
Section 4.2.
4.1. Convexity splitting

Given a gradient flow PDE of the form
ut ¼ F ðuÞ;

we split it into two parts
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ut ¼ F 1ðuÞ þ F 2ðuÞ; ð19Þ
where F1 has a strictly convex energy and F2 has a strictly concave energy. Note this decomposition is non-
unique. We update each time step by integrating F1(u) implicitly and F2(u) explicitly; for example, we might
use the scheme
unþ1 ¼ un þ kðF 1ðunþ1Þ þ F 2ðunÞÞ; ð20Þ
where un denotes the value of u after n time steps of size k. Scheme (20) is unconditionally stable in many cases,
and it has an O(k) error [20,23,56,59,62]. For gradient flows, this low time stepping accuracy is not an issue,
since the objective is to reach a local minimum of the energy. Although (20) may be unconditionally stable,
larger time steps do not necessarily bring the solution to this minimum any faster, rather there is typically
an optimal finite k for obtaining a local minimum of the gradient flow’s energy.

In our examples, we apply convexity splitting in the following manner: consider the equation
ut ¼ �r � ðaðxÞrDuÞ.

Instead of computing this equation directly, we rewrite it as
ut ¼ �CDDuþr � ððC � aðxÞÞrDuÞ. ð21Þ

If C is chosen large enough, then we can set
F 1ðuÞ ¼ �CDDu
and
F 2ðuÞ ¼ r � ððC � aðxÞÞrDuÞ

to derive the semi-implicit scheme
unþ1 � un

k
¼ �CDDunþ1 þr � ððC � aðxÞÞrDunÞ. ð22Þ
Though choosing C large enough ensures stability of (22), taking large values of C can slow the dynamics of
(22). This may be seen by rewriting (22) as
unþ1 ¼ ACun
where
ACun ¼ ðI þ kCDDÞ�1ðI þ kr � ððC � aðxÞÞrDunÞÞ.

Standard asymptotic calculations show that AC converges to the identity operator as C!1.

Convexity splitting has been used for fourth order PDEs including surface diffusion [56], the Cahn–Hilliard
equation [20,59], and Hele–Shaw flow [23]. Xu and Zhao used the same idea to compute second order diffusion
on surfaces in [62]. We describe exactly how C is chosen for each of our numerical examples in later sections.

4.2. Example: Linear fourth order diffusion

We first demonstrate convexity splitting methods applied to linear fourth order diffusion on surfaces,
ut ¼ �D2
Su. ð23Þ
Assume |$/| = 1 and let P denote the projection matrix of Section 2, so that (23) can be rewritten as
ut ¼ �r � ðPrDSuÞ.

Noting that P = I � N where N is a matrix projecting onto the surface normal, $/, we see
D2
Su ¼ D2u�r � ðNrDSuÞ. ð24Þ
Eq. (24) also results from setting C = 1 in (21). At each time step, we integrate the first term on the right side of
(24) implicitly and the remaining term explicitly
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unþ1 � un

k
¼ �D2unþ1 þr � ðNrDSunÞ. ð25Þ
To simplify (25), we use an approach suggested in [61]. Let L = (I + kD2), subtract Lun from both sides of (25),
and group terms to get
Lðunþ1 � unÞ ¼ �kD2un þ kr � ðNrDSunÞ. ð26Þ

We define vn + 1 = un + 1 � un and notice the right side of (26) is �kD2

Sun to derive the O(k) scheme,
Lvnþ1 ¼ �kD2
Sun. ð27Þ
When solving with Dirichlet boundary conditions, v ” 0 on the boundary, thus simplifying L. Boundary
conditions only affect the explicit term, �D2

Sun, which suggests fixing DSu on the boundary, instead of Du,
as discussed in Section 3.3. Note that solving the original form (25) requires using the boundary values of both
Du and DSu: the boundary values of Du are required to define L near the boundary and DSu is needed to com-
pute the explicit term near the boundary. We discuss the discretizations of all the spatial operators in Appen-
dix A. As the reader will notice, we use standard finite difference stencils.

5. Solving the linear systems

Our remaining challenge may be the most difficult. We wish to solve our convexity split scheme with a
method that is fast and applicable to non-rectangular domains. In this paper, we present two possible methods
for solving schemes like (22). The first method is to simply solve (22) with a standard iterative solver, and we
discuss this in Section (5.1). The second method is a more novel approach. We use an alternate direction impli-
cit (ADI) method to solve (22). Though ADI schemes have been applied to both second and fourth order
PDES, to our knowledge they have not been combined with convexity splitting. They are also rarely used
on non-rectangular domains like Sc. We discuss our implementation of ADI schemes in Section 5.2.

Before discussing our two methods for solving convexity split schemes, we remark on one of the most com-
monly used methods for solving them. Since they computed in rectangular domains, the authors of [23,56]
were able to use fast Fourier transform (FFT) methods effectively to solve PDES similar to (22). We exper-
imented with similar methods for our particular problem, and found computing in a three-dimensional box
with FFT to be slower than using the methods we present here for computing in a narrow band around
the surface.

5.1. Iterative solver: conjugate gradient method

On domains with Dirichlet boundary conditions, the standard stencil for D2u is symmetric, so we may solve
(27) with various iterative linear solvers and preconditioners. We used the code provided by ITPACK [34] for
both conjugate gradient with Jacobi preconditioning (JCG) and symmetric successive over-relaxation semi-
iteration (SSORSI). Table 2 displays the number of iterations needed to compute the example discussed in
Section 7.1 on a 200 · 200 grid up to t = 1. We compare the number of iterations needed for each time step
for both methods, and for different time steps, k. We found that both methods typically take a large number of
iterations to converge, but SSORSI performs substantially better than JCG.
2
rgence rates of iterative solvers for fourth order linear diffusion on the unit circle (Section 7.1)

d SSORSI JCG

er of iterations Max Min Average Max Min Average

h2 217 200 212 526 429 460
205 185 196 517 420 439

h2 180 158 180 417 399 414

ble lists average number of iterations needed at each time step along with maximum and minimum number of iterations observed,
erent size time steps, k. We use h to denote the length of one side of each grid cell. These computations were performed using the
oints in the band j/ðxÞj 6 1

10 on a 200 · 200 grid ðh � 1
50Þ.
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In cases where time steps are not limited by stability, the large number of iterations is not prohibitive, and
this method is a tremendous improvement over explicit schemes. However, if the time steps taken must be very
small (as we found to be the case for surfaces with regions of high curvature), this method provides little, if
any, improvement over explicit methods, which require no iteration at each time step. As a result, SSORSI and
JCG work well for the problems considered here on simple geometries such as the sphere or torus, but we
found the situation to be different for problems on complicated surfaces, such as the bunny used in later
examples.

5.2. ADI schemes

As discussed above, iterative solvers may require a large number of iterations to converge. This becomes
prohibitive when forced to take small time steps, as we found to be the case for solving PDEs on surfaces with
regions of high curvature (see Section 6.2). As an alternative to iterative solvers, we examine alternate direc-
tion implicit (ADI) schemes. ADI schemes involve the inversion of banded matrices, requiring only O(M)
operations for an M · M matrix. ADI schemes have been used for both second and fourth order PDEs
[15–17,61,63]. For example, assume we are solving the heat equation on a rectangle with an implicit scheme
unþ1 � un

k
¼ unþ1

xx þ unþ1
yy . ð28Þ
The following is an O(k) approximation of (28):
ðI� ko2
xÞðI� ko2

yÞunþ1 ¼ un. ð29Þ
Unlike (28), Eq. (29) only requires the inversion of tridiagonal matrices.
Linear fourth order diffusion,
ut ¼ �D2u; ð30Þ

is more difficult to implement with ADI, as D2 includes a cross-term, 2o2

xo
2
y . In [61], Witelski and Bowen sug-

gest an ADI scheme in which the mixed derivative term is computed explicitly. They showed that
ðIþ ko4
xÞðIþ ko4

yÞunþ1 ¼ ðI� 2ko2
xo

2
yÞun ð31Þ
is an unconditionally stable O(k) scheme for (30). Higher order accurate ADI schemes following from the
same idea are discussed in [61].

Unfortunately, applying an ADI scheme directly to the degenerate diffusions we consider here yields a
scheme with a stability restriction that is no better than for explicit schemes. The interested reader will find
a discussion of this in Appendix B. In order to improve upon the stability restrictions of explicit schemes,
we combine ADI with convexity splitting.

5.3. Example: Linear fourth order diffusion

As a first example, consider solving (25) with an ADI method. Rewrite (25) as
ðI þ kD2Þunþ1 ¼ un þ kr � ðNrDSunÞ. ð32Þ

Letting Lx ¼ ðI þ ko4

xÞ and Ly ¼ ðI þ ko4
yÞ, we introduce O(k) errors by modifying (32) to
LxLyunþ1 ¼ ðI � 2ko2
xo

2
yÞun þ kr � ðNrDSunÞ. ð33Þ
Now subtract LxLyun from both sides and define vn + 1 � vn to derive the compact scheme
LxLyvnþ1 ¼ �D2
Sun. ð34Þ
Unlike locally one-dimensional (LOD) schemes, this method easily extends to three dimensions, producing
an unconditionally stable scheme,
LxLyLzvnþ1 ¼ �D2
Sun; ð35Þ
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with Lz ¼ ðI þ ko4
z Þ. This easy application to three dimensions is obviously important for the problems we con-

sider. However ADI schemes have a disadvantage in non-rectangular domains such as the narrow band (|/
(x)| 6 c) we consider. This is best seen by rewriting (31) as:
w ¼ Lyunþ1;

Lxw ¼ ðI � 2ko2
xo

2
yÞun.

ð36Þ
At the half time step we solve for w, which does not have the same boundary conditions as u. Solving for these
boundary conditions on non-rectangular domains is a tricky problem that becomes more difficult for compli-
cated domains – domains like the bands we wish to compute in. Instead we approximate the boundary con-
dition by fixing w = u on the boundary, as suggested in [63]. Unfortunately this method is not unconditionally
stable, as we discovered in our numerical experiments. Even with this restriction, when solving PDEs on com-
plicated geometries we found this ADI method to be more efficient than the iterative solvers we considered.
6. Numerical implementation

We now briefly discuss details regarding implementation of the methods presented in this paper.

6.1. Data structures

By follow the example of the local level set algorithm described in [50], our computations rely only on the
implicit structure of arrays . We first define an array that stores the values of / within some box containing
S. For our discussion we assume an N-dimensional box with M grid-points on each side, so / is stored in
an array with MN elements. We then make a list of all points that are within the band Sc. For simplicity, we
also store the values of u and any other functions necessary for solving the PDE in arrays of length MN.
Particular entries of each array correspond to particular grid-points in the box containing S, however, to
minimize memory use, one could use only one array of length MN and at grid-points lying in the band, store
pointers to the necessary function values. By using array storage we access each grid-point’s nearest neigh-
bors without any searching. This is useful for PDEs discretized by finite differences. To illustrate how this
would work in practice, for our simple example of the annulus in R2, we define / in all of
X = [�2,2] · [�2,2] on a Cartesian grid with M2 grid-points and cell width h = 4/(M � 1). We mark the
grid-points xi,j satisfying |/(xi,j)| 6 c. For simplicity we also define u on the entire grid, but we compute
using only the values of u within the band.

6.2. Surface complexity

The examples in this paper fall into two categories of implicit surfaces. The first are ‘‘simple’’ surfaces, with
small curvature, in which we have an analytical expression for the level set function. Such examples include
ellipses, the unit circle in R2, and the torus and sphere in R3. The second category consists of complicated sur-
faces defined computationally by a dataset, with regions of high curvature. Our example of such a surface is
the Stanford Bunny [36]. In this second case, we found that the level set function from the original Stanford
Bunny data is not smooth enough for fourth order differences. To address that problem, we slightly smoothed
the bunny by applying a few steps of the heat equation to the level set function. This results in smoothing high
derivatives of / while retaining the essential bunny shape. Such smoothing is not required for solving second
order equations, and might be avoided for high order flows by using local mesh refinement or adaptive grids.

Surface complexity also affects the choice of time stepping method. The geometry of the bunny has regions
of very high curvature that are not completely resolved by our 3D grid with 159 · 161 · 129 points. The finite
difference discretization of the projected PDE introduces terms with third and fourth derivatives of /. These
high derivatives produce a time scale in the calculation that we estimate empirically to be on the order of 1

h3.
Any time stepping scheme for solving the PDE must resolve this time scale caused by the geometry of the sur-
face. Though choosing a large enough C in convexity split schemes like (22) results in absolutely stable
schemes, such large values of C also slow the dynamics, providing no real advantage. When smaller time-steps



J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246 231
are required by the surface geometry, we found ADI schemes to be more efficient than iterative solvers. We
discuss this further in Sections 5.2 and 7.3.

To understand the challenge posed by complicated surfaces like the Stanford Bunny, we note that the equa-
tion for the Eulerian representation of fourth order diffusion on a surface (9) depends on derivatives of the
level set function of up to fourth order. In Table 3, we give the maximum magnitude achieved by discretiza-
tions of $/, D/, and D2/ for the signed distance function to the bunny. We include this information for two
grids with grid cell sizes h ¼ 1

2
and h ¼ 1

4
. We compare the signed distance function with smoothed versions of

it. The smoothing was done by using / as an initial condition for the heat equation. The chart compares the
results at time t = 2.5 and t = 5.0. We used the function at t = 5 for the level set function in our PDE calcu-
lations. The zero level set of this function may be seen in Figs. 4 and 6. The reader will note that all essential
features of the bunny remain.

6.3. Visualization

We use MATLAB to visualize the PDE dynamics in all of our examples. The MATLAB routine iso-surface

provides an easy means of interpolating values of / to produce the surface S and rendering a color map of u

on S.

7. Numerical examples: linear fourth order diffusion

We now present computational results for (25) on various geometries. We remind the reader that discret-
izations of all spatial derivatives are described in Appendix A. The basic computational framework for each
example follows the following algorithm:

1. Store values of the signed distance function / on a Cartesian grid in a rectangular domain containing S.
2. Mark grid points xij (array entries) satisfying |/(xij)| 6 c for the user-defined bandwidth c.
3. Store an initial value u0 that satisfies u0 = f on S.
4. Evolve u0 by solving (12) until (11) is satisfied in some domain containing the band (far enough to compute

DSu0 on the band’s boundary).
5. Compute values of DSu0 on the band’s boundary.
6. Do while tn < tMax

(a) Solve for un + 1 in (27) using an iterative solver or ADI.
(b) Solve (12) to re-extend values of u off of surface past band boundary.
(c) Recompute DSu on boundary.

7.1. Diffusion on the unit circle

We compare our computations with an exact solution of (23) on the unit circle. In this case, solving (23) is
exactly the same as solving:
Table
Size of

Grid s

Smoot
krh/k
kDh/k
kDhDh/
ut ¼ �ussss; ð37Þ
uðs; 0Þ ¼ f ðsÞ ð38Þ
3
derivatives for smoothed and non-smoothed versions of the signed distance function to the Stanford Bunny

ize 80 · 81 · 65 159 · 161 · 129

hing time 0 2.5 5 0 2.5 5

L1 3.5 1.1 1.01 4.1 1.5 1.3

L1 10.8 1.3 1.4 20.1 3.5 2.4
kL1 151.3 41.2 32.4 724.7 301.2 220.5
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on [0, 2p] with periodic boundary conditions. Eq. (37) can be solved exactly using separation of variables. We
choose f ðsÞ ¼ cosð4sÞ, giving the exact solution
Fig. 2.
extens
uðx; tÞ ¼ cosð4sÞe�64t.
We use SSORSI (as discussed in Section 5) to invert the implicit term. We define the level set function (the
signed distance function to the unit circle) on the box [�2,2] · [�2,2] using grid sizes of h ¼ 4

M�1
where

M = 40, 80, 60, and 320. We compute in the band |/| 6 3/8 for these calculations. Since our scheme is
O(k), we use a time-step of k ¼ 1

100
h2. We must choose a small constant of proportionality to get adequate

results. We expect this is due to the high degeneracy of the equation. We must choose a small constant of pro-
portionality to get adequate results. We expect this is due to the high degeneracy of the equation (experiments
with explicit time stepping found a similar constant of proportionality).

We compare our results with the exact value of u at times t = 0.001 and t = 0.01. Although these times are
small, the half life of (23) for this initial data is approximately t = 0.01, and these computations are done with-
out re-extending the surface data. We do this for two reasons. First, we wish to demonstrate that our choice of
boundary conditions allows accurate computation of u on the surface for short times. Second, we do it to bet-
ter identify the contributions of the different components of our scheme. Note that for M = 320, over 300 time
steps are necessary to reach t = 0.01. Without re-extension of data off of the surface, the Dirichlet boundary
conditions increase the solution’s error at this later time. Fig. 2 demonstrates an error of O(h2) in the short-
time calculation and O(h) in the long-time calculation. This decrease in accuracy is caused by the choice of
Dirichlet boundary conditions. We found that we maintain O(h2) accuracy by re-extending the initial data
after every five time steps. To calculate the error, we interpolated to find the values of u on the circle and then
used the L1 norm of the difference of these values from the exact solution.

7.2. Diffusion on the unit sphere

Fig. 3 shows linear fourth order diffusion on the unit sphere. Implementation requires only slight changes
from the example of a circle. We only need to change the level set function and use finite differences in three
dimensions. This easy adaptability to higher dimensions is typical of level set methods. In addition, we may
easily compute on surfaces such as ellipsoids or tori by changing only the level set function.

In our example, the level set function / is defined on [�2,2] · [�2,2] · [�2,2] with 100 · 100 · 100 grid
points. The initial condition is defined using polar coordinates by u0(q,h,b) = sin(3h) sin(7b). We take
time steps k = 5h2 where h is the grid cell width. Fig. 3 displays the solution at t = 0, t = 0.2, and t = 0.9.
We use a bandwidth of 10 grid cells (five cells off the surface in each direction), and re-extend the initial data
every four time steps by solving (12) to steady-state. See Appendix A for the spatial discretizations of the oper-
ators in (27).
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Convergence of relative error in the L1 norm. We use h to denote grid cell width. These computations were performed without re-
ion, thus demonstrating that errors due to any boundary conditions affect the solution on the zero level set of / only at later times.



Fig. 3. Linear fourth order diffusion on the sphere after 0, 4, and 18 time steps. Red denotes u = 1 and blue denotes u = �1.
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7.3. Diffusion on the Stanford Bunny

The bunny data for this example is taken from [36]. Due to the existence of regions of high curvature on the
bunny, we first run the standard heat equation in R3 on the bunny’s level set function for a very short time
period. This smooths any singularities in the level set function for the bunny while maintaining its essential
structure, as Fig. 4 shows. We found this surface smoothing to be unnecessary for solving second order equa-
tions on the bunny – it is required for higher order equations at the grid resolution with which we work. See
Section 6.2 for further discussion. After smoothing /, we can either use this new / as is, or we may keep only
its zero level set then reinitialize / so that it is again a distance function.

We follow the algorithm in Section 7 with only two modifications. As just discussed, there is an added pre-
processing step where the level set function for the bunny is smoothed, and instead of solving our numerical



Fig. 4. Linear fourth order diffusion. Each row shows two views of the surface at the same point in time.
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scheme with the an iterative solver at each time step, we use the ADI Scheme (35). Fig. 4 shows fourth order
linear diffusion on the surface of the bunny. We use a cubic grid with cell width h ¼ 1

4
. There are

159 · 161 · 129 grid cells. We use a bandwidth of about 10 grid cells. The time step is k ¼ 1
250

h3. When com-
puting with an explicit scheme, we needed k ¼ 1

500
h4, so there is still significant improvement over the explicit

method. We may take larger time steps if we increase C in (22), however, this increase needs to be significant
and leads to a slow down in the dynamics that results in no real gain in computational speed.

We define the initial condition in all of R3 by u0ðx; y; zÞ ¼ 1
2
ðcosð5

2
xÞ þ sinð2

5
yÞÞ. We then fix u on the bunny

and use the extension procedure to change the values of u off of the surface so that the initial condition satisfies
$u0 Æ $/ = 0. We re-extend every four time steps.
8. Numerical examples: Cahn–Hilliard equation

We now consider a classical phase-field model for spinodal decomposition of alloys, the Cahn–Hilliard
equation [46]. Such models describe coarsening dynamics such as the phase separation following a quench
from a disordered to an ordered phase. Computer simulations play an important role in the characterization
of late-stage coarsening processes. Recent efforts have focused on developing numerical methods for the
Cahn–Hilliard equation in Euclidean geometries using finite element methods [6] and psuedospectral methods
[59]. Here we develop a numerical method for solving the Cahn–Hilliard equation on a general surface, using
the implicit representation approach.

We solve
ut ¼ DSð��2DSuþ u3 � uÞ ð39Þ
for which u = 1 and u = �1 are both stable steady states. In our examples we use an initial condition of u = 0
plus a very small zero mean perturbation. The solution u quickly separates the surface S into two regions S+

and S� where u takes on values of 1 and �1, respectively. The remaining points of S lie on the interface of
width O(�) between these two regions. In later stages, u undergoes spinodal decomposition; S+ and S� change
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shape so that the length of the interface between the two regions decreases while maintaining the area of each
region (and the mean value of u). This coarsening of S+ and S� slows with time.

In free space, the Cahn–Hilliard equation is a diffuse interface model for Mullins–Sekerka dynamics [45,49],
and a version of the Cahn–Hilliard equation with degenerate mobility is a diffuse interface model for Hele–
Shaw [23]. For flows on surfaces, we might expect to be able to use these models as diffuse interface models
of curve evolution on complicated geometries. This idea is further suggested by the simulations shown in Figs.
5 and 6.

Eq. (39) is slightly more complicated than (23) due to the nonlinear second order term. We pick
F1(u) = ��2D2u in (19) to derive the scheme
Fig. 5.
denote
unþ1 � un

k
¼ ��2D2unþ1 þ �2r � ðNrDSunÞ þ DSððunÞ3 � unÞ; ð40Þ
which has a stability requirement of k = O(h2). We define vn + 1 = un + 1 � un and L = I + k�2D2 to simplify (40)
as was done in Section 4.2
Lvnþ1 ¼ DSð��2DSun þ ðunÞ3 � unÞ. ð41Þ
Spinodal decomposition in the Cahn–Hilliard equation. Initial condition is u = 0 (slightly perturbed), red denotes u = 1 and blue
s u = �1. Each row shows two views of the surface at the same point in time.



Fig. 6. Spinodal decomposition in the Cahn–Hilliard equation. Initial condition is u = 0 (slightly perturbed), red denotes u = 1 and blue
denotes u = �1. Each row shows two views of the surface at the same point in time.
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Note that our method does not split the energy for (39) into convex and concave parts. Doing so requires
inverting an operator involving DSun + 1, and we found this to be prohibitively slow in practice.

We first solve (39) on a torus. The surface does not seem to affect the stability of (41), so we take large time
steps (relative to explicit schemes) and solve the linear systems with Jacobi conjugate gradient, as discussed in
Section 5.1. We choose � = 2h and fix the initial condition to be u0 = 0 + g, where g is a small random per-
turbation across the surface. Our choice of � is similar to that used in [59] for Cahn–Hilliard with constant
mobility and in [23] for Cahn–Hilliard with degenerate mobility. Our results have transition layers approxi-
mately four to six grid cells thick. We compute on a 120 · 120 · 120 grid with cell width h ¼ 1

30
. The time step

taken is k ¼ 1
10

h2. We observe the spinodal decomposition expected; see Fig. 5.
Fig. 6 shows spinodal decomposition in the Cahn–Hilliard equation on the smoothed bunny. We use ADI

to compute (41) as in Section 5.2. We are constrained to take the same time step as in the linear problem,
k = O(h3). Again � = 2h and u0 = 0 + g, where g is a small zero mean perturbation.

9. Numerical examples: thin film fluid flow

An interesting class of problems described by nonlinear fourth order diffusion equations are thin film flows
involving a layer of viscous liquid on a solid surface. Surface tension forces lead to the fourth order motion,



J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246 237
due to curvature affects on the air–liquid interface of the film [9,40,47]. In the case of such flows on curved
surfaces, the underlying curvature of the substrate plays a role in the motion of the film, with flow out of
regions of high curvature. Recently there has been some interest in the fluids community in deriving equations
of motion for such flows on general surfaces. The most comprehensive paper to date on this problem is that of
Roy, Roberts, and Simpson [52], building on previous work of Schwartz and Weidner [53]. Several authors
have developed numerical methods for thin films on surfaces using coordinates on the surface. This work
includes flows on cylinders [30,53,60] and more general surfaces [43], as well as icing of airplane wings
[22,41,42,44]. We develop a numerical method for thin films on general surfaces using the implicit represen-
tation methodology.

Letting u denote the film thickness, Roy, Roberts, and Simpson derived the following for the dimensionless
flow of a thin film in the absence of gravity [52]
of
ot
¼ � 1

3
rS � u2frS~j� 1

2
u4ðjI� KÞ � rSj

� �
. ð42Þ
where K is the curvature tensor for the curved substrate. The quantities k1 and k2 are the principle curvatures
of the substrate, and j = k1 + k2 is twice the mean curvature. ~j is curvature of the free surface, which we
approximate as
~j ¼ jþ ðk2
1 þ k2

2Þ þ DSu.
The variable f is the amount of fluid above a surface patch, which we approximate by f ¼ u� 1
2
ju2 þ 1

3
k1k2u3.

Using the framework of our level set function /, we can easily compute j and K, as well as the quantities
k1,k2, and k2

1 þ k2
2. We note that K is the Jacobian of the Gauss Map of the substrate. In terms of the implicit

representation, the Gauss Map is r/
jr/j. The trace of K gives �j, and the determinant of A ¼ K þ r/�r/

jr/j2 gives
the Gauss curvature, k1k2. We finally note that
Fig. 7. Thin film driven by curvature on the outside of an ellipse.



238 J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246
k2
1 þ k2

2 ¼ j2 � 2k1k2.
This model differs from both linear diffusion and the Cahn–Hilliard equation in that the highest order term of
(42) is nonlinear. Our convexity splitting must take this nonlinearity into account. To derive the evolution
scheme, we carry out the differentiation on the left of (42) to get an evolution equation for u
ou
ot
¼ � 1

3f0
rS � u2frS~j� 1

2
u4ðjI� KÞ � rSj

� �
; ð43Þ
where f 0 = 1 � ju + j1j2u2. Following our earlier examples, we pick an appropriate C and evolve
unþ1 � un

k
¼ �CnDDunþ1 þ CnDDun � F ðunÞ; ð44Þ
where F(un) denotes the right hand side of (43). The dependence of C on the time step reflects the dependence
of the highest order term of (43) on un. Noting that the highest order term of F(un) is 1

3f0 u
2fD2

Sun, we see that
choosing Cn < 1

3f0 u
2f might cause the method to be unstable. On the other hand, picking C too large signifi-

cantly slows the dynamics. So again using Sc to denote the computational band |/i,j,k| 6 c, we pick
Cn ¼ max
xi;j;k2Sc

1

3ð1� jun
i;j;k þ j1j2ðun

i;j;kÞ
2Þ
ðun

i;j;kÞ
2fn

i;j;k. ð45Þ
9.1. Example: Thin film on an ellipse

The curvature dependent terms in (42) reflect fluid motion driven by curvature of the surface. Fluid builds
up in regions of high negative curvature while leaving areas of high positive curvature. We consider an exam-
ple discussed in [52] and study the flow of an initially constant layer of film on an ellipse. The authors of [52]
Fig. 8. Thin film driven by curvature on the inside of an ellipse.



J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246 239
discussed the plausible motion of the fluid, however they did not compute (42) for this example. We provide
numerical evidence supporting their claims for the fluid dynamics.

We place a layer of fluid with constant thickness u = 0.02 on the outside of the ellipse
Fig. 9.
with a
x2 þ 3y2 ¼ 2. ð46Þ

We computed on [�2,2] · [�2,2] with 200 · 200 grid points. We used a constant time step k = 10h2 where h

denotes the grid cell width. We used the algorithm in Section 7 with only one change: C is updated dynam-
ically as described above. As seen in Fig. 7, the fluid moves away from the ellipse’s regions of high curvature
near y = 0.

Now consider placing the same constant layer of fluid on the inside of the ellipse (46). Once the implicit
function / for the above problem is defined, we easily adjust our simulation to this case by mapping /
!�/. On the inside of the ellipse, the film builds up in the areas of high curvature. See Fig. 8.

9.2. Sphere with gravity: fingering instability

The following model, derived in [52], includes the effects of gravity:
of
ot
¼ � 1

3
rS � u2frS~j� 1

2
u4ðjI� KÞ � rj

� �
� 1

3
BorS � u3ĝs � u4 jIþ 1

2
K

� �
� ĝs þ ĝnu3rSu

� �
. ð47Þ
The Bond number Bo quantifies the relative strength of gravity to surface tension, and it is given by
Bo ¼ qgH 2r;
Eq. (47) solved on the sphere. Each row gives a side and bottom view of the sphere at the same point in time. The sphere is covered
precursor layer of thickness of u = 5 · 10�3. The color scheme is used to display film thickness.



Fig. 10. Eq. (47) solved on the sphere. Each row gives a side and bottom view of the sphere at the same point in time. The sphere is
covered with a precursor layer of thickness of u = 5 · 10�3. The color scheme is used to display film thickness.
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where q is the fluid density, g is acceleration due to gravity, r is the surface tension, and H is the charac-
teristic thickness of the film. The vector ĝs is the component of gravity tangent to the surface S, and ĝn is
the magnitude of the component of gravity normal to S. In our example, ĝ ¼ �ð0; 0; 1Þ, so ĝs ¼ P ĝ and
ĝn ¼ jĝ � ĝsj.

We place a ring of fluid with sinusoidally varying height near the top of the sphere. The remainder of the
sphere has a precursor layer of thickness u = 5 · 10�3. Gravity drives the fluid to the bottom of the sphere
while the non-constant thickness causes a fingering effect. We used up-winding to compute the gravity terms
in (47). We computed in [�2,2] · [�2,2] · [�2,2] on a 128 · 128 · 128 grid. We used a constant time step
k ¼ 1

2
h2 where h denotes the grid spacing. We compute in a band that is about 10 grid cells wide and

re-extend data off of the surface after every five time steps. The Bond number is Bo = 100 in this simulation.
The results are given in Figs. 9–11. Note that the fluid drips down the sphere and eventually begins to
collect at the bottom of the sphere. Eq. (47) is derived from lubrication theory and thus does not capture
later time dynamics in which fluid might drop off the bottom of the sphere. Although the computation is
performed on a spherical surface, the method is very general and can easily be applied to surfaces that lack
the symmetry of the sphere.

10. Conclusions

We have presented a method for solving fourth order PDEs on surfaces of arbitrary geometry with finite
difference schemes on a Cartesian mesh. Our work builds upon the methods introduced in [8] for first and sec-
ond order PDEs on surfaces. With our methods, the same code can be easily applied to many different surfaces
by changing only the function implicitly defining the surface. In computing higher order PDEs on surfaces, we



Fig. 11. Later dynamics of equation (47) solved on the sphere. Each row gives a side and bottom view of the sphere at the same point in
time. The sphere is covered with a precursor layer of thickness of u = 5 · 10�3. The color scheme is used to display film thickness.
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derive equations that are solved in an augmented band around the surface in Euclidean space. As PDEs on
RN , these equations are unique in the severity of their degeneracy – we know of no other fourth order diffu-
sions being studied where all diffusion locally is in one coordinate direction only. In particular, the PDEs we
solve are very different from those that arise when using level set methods to compute fourth order geometric
motions.

The higher order equations introduce a number of challenges that are of little consequence for first or
second order PDEs. Stability restrictions for time stepping fourth order equations require using implicit
schemes, unlike most previous work on solving PDEs on implicit surfaces [2,8,38]. We derived semi-implicit
schemes using convexity splitting ideas explored in [20,23,56] and presented a new means of combining con-
vexity splitting schemes with ADI methods. Compared to lower order equations, fourth order PDEs require
more careful extension and re-extension of data off of the surface, and they have more complicated bound-
ary conditions. We discussed each of these issues in detail and applied our methods to linear fourth order
diffusion, the Cahn–Hilliard equation, and a recently derived model for surface tension driven flows on
curved substrates.

Our work is only a first step. Although our schemes are faster than explicit schemes, there is room for
improvement. It remains a difficult problem to improve the time step restriction for flows on complex surfaces
with high curvature, because the inherent geometry is embedded in the projection operator.

It is an interesting problem to develop schemes with higher numerical accuracy, in particular for the time
step, as this might allow for computations with a larger time step. If the geometry introduces stiffness into the
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dynamics, these terms could also be dealt with using splitting methods. Local mesh refinement, while still tak-
ing advantage of the Cartesian geometry, might also help address this issue.

One of the authors has recently [24] introduced a modification to the Eulerian formulation of surface PDEs
described here. This modification has the useful property that if
ru � r/ ¼ 0 ð48Þ

initially, then (48) holds for all later times. In particular, no re-extensions are needed. Since (48) holds every-
where, the values of u may be extrapolated to grid points outside of the band, thus simplifying computation of
boundary conditions. One may also add diffusion in the direction of $/, thus avoiding the degeneracy prob-
lems discussed here. We refer the interested reader to [24] for details. We suspect this modification is applicable
to fourth order PDEs and are currently investigating the possibility.

It is our hope that the techniques developed in this paper will be useful for scientists interested in computing
higher order PDEs on complicated geometries. The methods presented here use only finite difference schemes
and do not require the highly technical programming often needed for methods like finite elements, surface
triangulation, or surface parametrization. Thin film flow is a particularly relevant problem where there is inter-
est in modeling the liquid lining of the lungs, icing of airplane winds, and numerous other problems in which
the underlying surface geometry is complex.
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Appendix A. Spatial discretization

We now present the specific discretizations for the gradient, Laplacian, and Laplace–Beltrami operators.
We compute everything on a Cartesian grid in RN . Assume the domain is given by 0 6 xi 6 L for 1 6 i 6 N.
We use a cubic grid with Dxi = h for each i. Let x = (xi) be a vector of integers 0 6 xi 6

L
h and denote the

coordinate directions by ei, so that each grid point is given by
xx ¼
X

06i6N

hxiei.
Our discretizations follow the example of [8]. We calculate $/ with centered differences,
r/ðxxÞ ¼
1

2h
ð/ðxx þ heiÞ � /ðxx � heiÞÞi; ð49Þ
but unless otherwise noted in our discussion of a specific example (such as the thin film equation or the surface
data extension equation), we use forward differences to compute gradients for everything else
ruðxxÞ ¼
1

h
ðuðxx þ heiÞ � uðxxÞÞi. ð50Þ
Let v(xx) be a vector whose ith component is vi(xx). We compute the divergence of v using backward
differences
r � vðxxÞ ¼
1

h

X
06i6N

viðxxÞ � viðxx � heiÞ. ð51Þ
The Laplacian of a scalar quantity u is computed by applying (51) to (50), and the biharmonic is computed by
repeated application of the Laplacian.

Projected derivatives are computed using appropriate averaging of the projection matrix. Given a projec-
tion matrix P = (pij), we compute
PruðxxÞ ¼
X

16j6N

�pijuxjðxxÞ
 !

i; ð52Þ
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where
�pijuxjðxxÞ ¼
1

2h
ðpijðxx þ hejÞ þ pijðxxÞÞðuðxx þ hejÞ � uðxxÞÞ.
Assuming that / is a signed distance function, by applying (51) to (52) we compute
DSuðxxÞ ¼ r � ðPruðxxÞÞ ¼
X

16i;j6N

�pijuxjðxxÞ � �pijuxjðxx � heiÞ
h

. ð53Þ
We repeat (53) to calculate DSDSu.

Appendix B. Degeneracy and ADI

To demonstrate the strong degeneracy of the fourth order equations considered in this paper, we apply
standard ADI schemes to both (7) and (9) without the assistance of the operator splitting discussed in Section
4.1. Our calculations suggest the need for an indirect method (such as convexity splitting), while also showing
that the second order problem is far less delicate than its higher order counterpart.

We examine the special case where S is the line in R2 making an angle of h with the x-axis. We first discuss
the ADI method applied to second order diffusion on the line, then continue with a discussion of ADI for
intrinsic fourth order diffusion on the same line. We show that the stability of the fourth order diffusion
scheme depends on h, which hardly affects the second order diffusion scheme. For simplicity we discuss only
the two-dimensional problem, but note that similar results hold for three dimensions.
B.1. ADI without convexity splitting

To apply ADI to Eqs. (7) and (9) without convexity splitting, we follow the example of [61] and compute
terms with mixed derivatives explicitly and all remaining terms implicitly. We first examine Eq. (7), leaving Eq.
(9) for Section B.2. Letting S be the line making angle h with the x-axis, our distance function is
/ ¼ � sin hxþ cos hy
and the projection matrix is
P ¼ cos2 h cos h sin h

cos h sin h sin2 h

� �
. ð54Þ
For this example, (5) simplifies to
ut ¼ cos2 huxx þ 2 cos h sin huxy þ sin2 huyy . ð55Þ

Define
Dx ¼ cos2 hoxx;

Dy ¼ sin2 hoyy ;

Lx ¼ I � kDx;

Ly ¼ I � kDy .
Note that LxLyun = (I � kDx � kDy + k2DxDy) so ignoring the term of O(k2), we see that LxLy approximates
(55) without its mixed partials. We now introduce O(k) errors by computing the mixed partials explicitly. This
can be done more accurately so that these errors are reduced – see [61]. So we have
LxLyunþ1 ¼ �2k cos h sin hun
xy .
We know subtract LxLyun from both sides of the above equation and let vn + 1 = un + 1 � un to get
LxLyvnþ1 ¼ kr � ðPrunÞ ¼ kðcos2 hun þ 2 cos h sin hun þ sin2 hun Þ. ð56Þ
xx xy yy
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We use Von Neumann stability analysis to study Scheme (56) for this example. Solutions of the continuous in
space and discrete in time solutions of (56) can be written as
unðx; yÞ ¼ rðaÞn exp iða1xþ a2yÞ; ð57Þ
where the superscript n on the left corresponds to the n-th time step, while the superscript on the right corre-
sponds to a power of r. Following the example of [61], we rescale the wave number as â ¼ 1

k2 a and substitute
(57) into (56) to get
rðâÞ � 1 ¼ � ðcos ha1 þ sin ha2Þ2

1þ cos2 ha2
1 þ sin2 ha2

2 þ sin2 h cos2 ha2
1a

2
2

.

We see (56) is unconditional stable, since
ðcos ha1 þ sin ha2Þ2

1þ cos2 ha2
1 þ sin2 ha2

2 þ sin2 h cos2 ha2
1a

2
2

6 2 ð58Þ
is satisfied for all a and h. Though simpler than (7) on general surfaces, this example shows that (56) is stable
even when the diffusion is not in the direction of the x or y axes. We next show that the fourth order problem is
very different, as it is too degenerate for this type of ADI scheme.

B.2. Fourth order problem

We now discretize (9) as in [61]. Define
Dx ¼ cos4 hoxxxx;

Dy ¼ sin4 hoyyyy ;

Lx ¼ I þ kDx;

Ly ¼ I þ kDy.
Once again letting vn + 1 = un + 1 � un, the scheme
LxLyvnþ1 ¼ �kr � ðPr � ðPrunÞÞ ð59Þ
is an O(k) approximation of (9).
We repeat the Von Neumann analysis used for (56), this time rescaling â ¼ 1

k4 a to get
rðâÞ � 1 ¼ � ðcos ha1 þ sin ha2Þ4

1þ cos4 ha4
1 þ sin4 ha4

2 þ sin4 h cos4 ha4
1a

4
2

.

Stability of (59) thus requires
ðcos ha1 þ sin ha2Þ4

1þ cos4 ha4
1 þ sin4 ha4

2 þ sin4 h cos4 ha4
1a

4
2

6 2. ð60Þ
Note that (60) is clearly satisfied when sinh = 0 or cosh = 0, which corresponds to diffusion in the direction of
one of the coordinate axes. To show that (59) is only conditionally stable for certain choices of h we consider
the special case h ¼ p

2
, so we require
ða1 þ a2Þ4

4þ a4
1 þ a4

2 þ 1
4
a4

1a
4
2

6 2.
This is not satisfied, for example, when a1 = a2 = 1. The instability is easily demonstrated in numerical sim-
ulations and avoiding it requires using time steps on the same order of magnitude as an explicit scheme,
k = O(h4).



J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246 245
References

[1] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (2) (1995) 269–277.
[2] D. Adalsteinsson, J.A. Sethian, Transport and diffusion of material quantities on propagating interfaces via level set methods, J.

Comput. Phys. 185 (1) (2003) 271–288.
[3] L. Ambrosio, N. Dancer, Calculus of variations and partial differential equations, in: G. Buttazzo, A. Marino, M.K.V. Murthy (Ed.),

Topics on geometrical evolution problems and degree theory, Papers from the Summer School held in Pisa, September 1996, Springer-
Verlag, Berlin, 2000.

[4] L. Ambrosio, H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension, J. Differ. Geom. 43 (4) (1996) 693–
737.

[5] C. Bajaj, G. Xu, Anisotropic diffusion of subdivision surfaces and functions on surfaces, ACM Trans. Graph. 22 (1) (2003) 4–32.
[6] J.W. Barrett, J.F. Blowey, Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility,

Math. Comp. 68 (1999) 487–517.
[7] J.W. Barrett, J.F. Blowey, H. Garcke, Finite element approximation of a fourth order degenerate parabolic equation, Numer. Math.

80 (4) (1998) 525–556.
[8] M. Bertalmı́o, L.T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differential equations on implicit surfaces, J.

Comput. Phys. 174 (2) (2001) 759–780.
[9] A.L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notice Am. Math. Soc. 45 (6) (1998) 689–697.

[10] M. Burger, Finite element approximation of elliptic partial differential equations on implicit surfaces, UCLA CAM Report 05-46,
August 2005.

[11] D.L. Chopp, J.A. Sethian, Motion by intrinsic Laplacian of curvature, Interfaces Free Bound. 1 (1) (1999) 107–123.
[12] U. Clarenz, U. Diewald, M. Rumpf, Processing textured surfaces via anisotropic geometric diffusion, IEEE Trans. Image Process. 13

(2) (2004) 248–261.
[13] U. Clarenz, M. Rumpf, A. Telea, Finite elements on point based surfaces, Proceedings of the EG Symposium of Point Based Graphics

(SPBG, 2004), Comp. Graph. (2004).
[14] B.D. Coleman, R.S. Falk, M. Moakher, Space-time finite element methods for surface diffusion with applications to the theory of the

stability of cylinders, SIAM J. Sci. Comput. 17 (6) (1996) 1434–1448.
[15] S.D. Conte, Numerical solution of vibration problems in two space variables, Pacific J. Math. 7 (1957) 1535–1544.
[16] S.D. Conte, R.T. Dames, An alternating direction method for solving the biharmonic equation, Math. Tables Aids Comput. 12 (1958)

198–205.
[17] S.D. Conte, R.T. Dames, On an alternating direction method for solving the plate problem with mixed boundary conditions, J. Assoc.

Comput. Mach. 7 (1960) 264–273.
[18] M. Droske, M. Rumpf, A level set formulation for Willmore flow, Interfaces Free Bound. 6 (3) (2004) 361–378.
[19] B. Engquist, A.K. Tornberg, R. Tsai, Discretization of Dirac delta functions in level set methods, J. Comput. Phys. 207 (1) (2005) 28–

51.
[20] D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. Unpublished article, June 1998.
[21] S.F. Frisken, R.N. Perry, A. Rockwood, T. Jones, Adaptively sampled fields: a general representation of shape for computer graphics,

ACM SIGGRAPH (2000).
[22] T.G. Myers, D.W. Hammond, Ice and water film growth from incoming supercooled droplets, Int. J. Heat Mass Transf. 42 (12)

(1999) 2233–2242.
[23] K. Glasner, A diffuse interface approach to Hele–Shaw flow, Nonlinearity 16 (1) (2003) 49–66.
[24] J.B. Greer, An improvement of a recent Eulerian method for solving PDE on general geometries, J. Sci. Comput. (2006).
[25] G. Grün, M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000) 113–152.
[26] G. Grün, M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. Appl. Math. 12 (2001) 293–320.
[27] D. Halpern, O.E. Jensen, J.B. Grotberg, A theoretical study of surfactant and liquid delivery into the lung, J. Appl. Physiol. 85 (1998)

333–352.
[28] M. Hofer, H. Pottmann, Energy-minimizing splines in manifolds, ACM Trans. Graph. (2004).
[29] H. Hoppe, M. Eck, Automatic reconstruction of b-spline surfaces of arbitrary topological type, ACM SIGGRAPH (1996).
[30] A.E. Hosoi, L. Mahadevan, Axial instability of a free-surface front in a partially-filled horizontal rotating cylinder, Phys. Fluids 11 (1)

(1999).
[31] G. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (6) (2000) 2126–2143.
[32] G. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1) (1996) 202–228.
[33] R. Kimmel, J.A. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci. USA 95 (15) (1998) 8431–8435.
[34] D. Kincaid, J. Respess, D. Young. Itpack 2c: A fortran package for solving large sparse linear systems by adaptive accelerated

iterative methods. Available from: <http://rene.ma.utexas.edu/CNA/ITPACK/>.
[35] V. Krishnamurthy, M. Levoy, Fitting smooth surfaces to dense polygon meshes, ACM SIGGRAPH (1996) 313–324.
[36] Stanford University Computer Graphics Laboratory, Stanford bunny. Available from: <http://graphics.stanford.edu/data/

3Dscanrep/>.
[37] F. Mémoli, G. Sapiro, Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces, J. Comput. Phys.

173 (2) (2001) 730–764.
[38] F. Mémoli, G. Sapiro, S. Osher, Solving variational problems and partial differential equations mapping into general target

manifolds, J. Comput. Phys. 195 (1) (2004) 263–292.

http://rene.ma.utexas.edu/CNA/ITPACK/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/


246 J.B. Greer et al. / Journal of Computational Physics 216 (2006) 216–246
[39] F. Mémoli, G. Sapiro, P. Thompson, Implicit brain imaging, Human Brain Map. 23 (2004) 179–188.
[40] T.G. Myers, Thin films with high surface tension, SIAM Rev. 40 (3) (1998) 441–462.
[41] T.G. Myers, Extension to the messinger model for aircraft icing, AIAA J. 39 (2) (2001) 211–218.
[42] T.G. Myers, J.P.F. Charpin, A mathematical model for atmospheric ice accretion and water flow on a cold surface, Int. J. Heat Mass

Transf. 47 (25) (2004) 5483–5500.
[43] T.G. Myers, J.P.F. Charpin, S.J. Chapman, The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface,

Phys. Fluids 14 (8) (2002) 2788–2803.
[44] T.G. Myers, J.P.F. Charpin, C.P. Thompson, Slowly accreting ice due to supercooled water impacting on a cold surface, Phys. Fluid

14 (1) (2002) 240–256.
[45] A. Novick-Cohen, R.L. Pego, Stable patterns in a viscous diffusion equation, Trans. Am. Math. Soc. 324 (1) (1991) 331–351.
[46] A. Novick-Cohen, L.A. Segal, Nonlinear aspects of the Cahn–Hilliard equation, Physica D 10 (1984) 277–298.
[47] A. Oron, S.H. Davis, S.G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69 (3) (1997) 931–980, July.
[48] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, vol. 153, Springer-Verlag, New

York, 2003.
[49] R.L. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. Roy. Soc. Lond. Ser. A 422 (1863) (1989) 261–278.
[50] D. Peng, B. Merriman, S. Osher, H.-K. Zhao, M. Kang, A PDE-based fast local level set method, J. Comput. Phys. 155 (2) (1999)

410–438.
[51] T. Preußer, M. Rumpf, A level set method for anisotropic geometric diffusion in 3D image processing, SIAM J. Appl. Math. 62 (5)

(2002) 1772–1793.
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