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Abstract:

This paper presents a combined geometric and statistical
sampling algorithm for image segmentation inspired by a
recently proposed algorithm for environmental sampling
using autonomous robots [1].

1. Introduction

Segmentation is one of the most important problems in
image processing. Partitioning an image into a small num-
ber of homogeneous regions highlights important features,
allowing a user to analyze the image more easily. Ap-
plications include medical imaging, computer vision, and
geospatial target detection. Image segmentation methods
can be subdivided into region-based vs. edge-based meth-
ods. Region-based methods include the Mumford-Shah
[2]] and related Chan-Vese [I3] methods which both involve
energy minimization with a least squares fit of the data
and a partition, between regions, whose length is mini-
mized. Edge-based methods include the well-known im-
age snakes [4]] and Canny edge detector [5]. Other ap-
proaches to segmentation have also been effective. Statis-
tical methods such as region competition rely on the fact
that images have repetitive features that can be learned
and exploited to obtain a segmentation [6]. A more re-
cent fast statistical method called DistanceCut [7]] is semi-
supervised (the user identifies segments in each region)
and is based on weighted distances and kernel density es-
timation.

All of these methods involve, at some level, sampling all
the pixels in an image. For applications involving high-
dimensional or large data sets, it makes sense to subsam-
ple the image. This is especially important for high reso-
Iution data where it can be prohibitive to perform calcula-
tions on every pixel in the image. The proposed segmen-
tation method is designed for this kind of application and
is based on ideas for cooperative environmental sampling
with robotic vehicles.

The UUV-gas algorithm [8] utilizes robots that “walk” in
a sinusoidal path along the boundary between two regions,
changing directions as they cross from one region into
another. This tracking method theoretically utilizes only
those points that are near the boundary in question, re-
sulting in substantial savings in run-time. The sinusoidal
pattern has also been suggested as an efficient method
for atomic force microscopy scanning [9]. Interestingly,

the same idea of tracking is behind the sinusoidal walk-
ing pattern in ants following pheromone trails [[10]. As
with curve evolution methods in image processing, noise
can cause problems, since the tracking is done as a lo-
cal search. It was proposed [1] that the use of a change-
point detection algorithm, e.g., Page’s cumulative sum
(CUSUM) algorithm [11] could improve tracking perfor-
mance in noisy images. Testbed implementations of the
boundary tracking algorithm exploiting change-point de-
tection methods suggested that robots can indeed track
boundaries efficiently in the presence of moderately in-
tense noise [[12]]. We propose to adapt the above tracking
algorithms to the problem of segmentation, with the goal
of computational efficiency. Further improvements can be
made that are not practical in the environmental tracking
case. Many of these improvements are based on hypoth-
esis testing for two regions, with the use of the CUSUM
algorithm as a special case.

2. A two level sampling algorithm

The algorithm has two levels, namely a global search-
ing method, which locates a boundary point, and a lo-
cal sampling algorithm, which tracks the boundary using
the global method as an initial point. Occasionally, if the
tracker strays too far from the boundary, additional uses of
the global algorithm are needed. We briefly discuss sev-
eral options for the global search and then focus on the
local sampling algorithm.

2.1 Global searching method — Locate an edge

Initialized at some point, the global search looks for some
instance of the boundary. This can be done in a few ways.
One method is simply to move out in a spiral pattern until
a boundary point is detected (see Figure [I). However, if
the boundary is small and far away from the initial point,
it may be positioned between revolutions of the spiral and
missed. Other options include deterministic paths that
do not have the tendency to miss boundaries or stochas-
tic paths using a random walk. These searching meth-
ods assume no prior knowledge of the boundary location,
but they can be easily modified when some information is
known. Another possibility is to implement a coarse seg-
mentation of the data first and use the resulting boundary
detection as an initialization for the local sampling. More



details on the last option are given later. Once a bound-
ary point has been detected, the local sampling algorithm
begins.

2.2 Local sampling algorithm — Track an edge

In the environmental tracking problem [1, 8], a robot
tracks the boundary between two regions. The local sam-
pling step is initialized at a point near the boundary, ob-
tained from the global search. The robot then steers using
a bang-bang steering controller, travelling in circular arcs,
changing its direction of movement when it crosses into a
different region.

It is relatively straightforward to adapt the algorithm for an
image with domain 2. As before, the problem is to find the
boundary B between two regions, which will be labelled
Q7 and Q9, sothat Q = Q; UQy U B and Q1 Ny =
(). Define an initial starting point g = (a8, x3) for the
boundary tracker and an initial value 6, representing the
angle from the +21 direction, so that the initial direction
vector is (cos 6, sin fp). Also define the step size V' and
angular increment w, which depend on estimates for image
resolution and characteristics of the edge to be detected.
In general, V is chosen smaller for greater detail, and w is
chosen smaller for straighter edges. A decision function
between 2; and € must also be specified and has the
following form:

1, iffe Ql,
d@ =4 0, ifFfeB, )
—1, lf.’fGQQ

The simplest example is thresholding of the image inten-
sity I(Z) at a given spatial location Z (in the case of a
grayscale image):

1, ifI(@) > T,
@) ={ 0, ifI(z)="T, )
—1, ifI(@) < T,

where T is a fixed threshold value. Later in this section
we use statistical information about prior points sampled
along the path to modify d(Z). At each step k, the direc-
tion ), and current location '), are updated recursively.
Specifically, &y = Zx—1 + V * (cos O_1,sin 0_1) and 0y,
is updated according to the location of the new tracking
head ). A simple update for 6 is the bang-bang steering
controller, defined by

O = 01 + wd(Zy). (3)

An angle-correction modification [[1]] can be used for (E]) if
step k is a region crossing:

O = 01 + d(Zr)(tw — 20,c5) /2, 4

where £ is the number of steps since the last region cross-
ing, and 0,.. s is a small fixed reference angle chosen based
on the expected curvature of the edge being tracked.

One stopping condition for the tracking of finite regions
is termination if the tracker comes within some range of
the first boundary point detected, given some minimum
number of iterations. Midpoints of line segments formed
from region crossings are labelled boundary points.

Figure 1: Left: Global search via a spiral-like pattern. The
initial point is in blue, the final point (after a few itera-
tions of local sampling) is in green, and the path is in red.
Right: Basic procedure for the boundary tracking (local
sampling) algorithm. The object is in cyan, the path of the
tracking head is in red, and the detected boundary points
are in yellow. Each small square represents one pixel. The
tracker travels at fractional spatial values but samples at
integral values.

While the local sampling method works well for clean im-
ages, it is susceptible to unavoidable errors in noisy im-
ages. Averaging readings from nearby pixels can min-
imize errors in the decision due to noise. In particular,
sequential change-point detection methods are well-suited
for detecting and tracking image edges in noise.

2.3 Decision algorithm

Change-point problems deal with detecting anomalies or
changes in statistical behavior of data. The observations
are obtained sequentially and, as long as their behav-
ior is consistent with the normal state, one is content
to let the process continue. If the state changes, then
one is interested in detecting the change as soon as pos-
sible while minimizing false detections. More specifi-
cally, given a sequence of independent observations s; =
I(x1),...,8, = I(xy) and two probability density func-
tions (pdf) f (pre-change) and g (post-change), determine
whether there exists /N such that the pdf of s; is f for
t < Nandgfor:z> N.

One of the most efficient change-point detection methods
is the CUSUM algorithm proposed by Page in 1954 [[11]].
Write Z;, = log[g(sk)/ f(sk)] for the log-likelihood ratio
and define recursively

Uk:max(Uk,l—i—Zk,OL Uy=0 (®)]

the CUSUM statistic and the corresponding stopping time
7 = min{k | Uy > U}, where U is a threshold controlling
the false alarm rate. Then 7 is a time of raising an alarm.
In our applications, assuming that f is the pdf of the data
in 1 and g is the pdf in {29, the value of 7 may be inter-
preted as an estimate of the actual change-point, i.e., the
boundary crossing from {2, to €25.

Note that if the pre-change and post-change densities f
and g are completely specified, then the CUSUM algo-
rithm performs optimally with respect to certain perfor-
mance metrics [14]. However, in our applications these
densities are usually unknown (while a Gaussian approxi-
mation may work well in certain scenarios). For this rea-
son, the log-likelihood ratio Zj, in (5) should be replaced



Figure 2: A 100 x 100 image was corrupted with additive Gaussian noise, N(0,0.5). Left: Boundary tracking without a
change-point detection modification. Middle: Boundary tracking with the CUSUM algorithm. Right: Threshold dynamics

Figure 3: A hybrid level set — boundary tracking segmentation on a 1000 x 1000 image. Left: Initial segmentation by
threshold dynamics. The image is subsampled by a factor of 10 on each axis. Right: Final segmentation by boundary
tracking, using points from the connected components of the initial segmentation as starting points for trackers.

by a score function G}, sensitive to expected changes.
Since we expect a change in the mean value, the appro-
priate score is G, = s — (01 + 62)/2, where 6; is the
mean of the previous observations s; in £2;. The result-
ing score-based CUSUM test is not guaranteed to be opti-
mal anymore. Note, however, that this score is optimal for
Gaussian distributions (i.e., when sensor noise and resid-
ual clutter may be well approximated by Gaussian pro-
cesses) and can be easily adjusted to cover any member
of the exponential family of distributions (Bernoulli, Pois-
son, double exponential, etc.). For further details, see [13].
Changes from 25 to €2 can also be tracked in this manner.
Analogously to (5) define recursively the decision statistic
Ly = max(Lg_1 — G, 0), Lo = 0 and the stopping time
7 =min{k | Ly > L}, where G}, is the score introduced
above, which is taken to be equal to Z}; if the distributions
are known and where L is a threshold associated with a
given false detection rate.

Only one of the statistics U or Ly is used at a time,
i.e., when the tracking head is in {21, the change-detection
statistic Uy, is used for detecting a transition to €25. Simi-
larly, when the tracking head is in {22, only Ly is used for
detecting a change to €2;. Once the tracking head enters a
new region, the other statistic is used, initialized at 0.

Note that we have implicitly assumed that the intensity
values on the path are independent observations. This as-
sumption of independence is not entirely accurate, since

the samples are taken from the tracking path, which is not
arandom sampling of an area. However, if noise levels are
large, independence of observations is a relatively accurate
assumption due to the spatial independence of noise, while
if noise levels are small, the use of a change-detection
algorithm is less important. Furthermore, the proposed
score-based CUSUM tests are robust with respect to prior
assumptions, including independence.

3. Boundary Tracking Examples

As mentioned above, one option for the global search is to
run a coarse segmentation on a subsampled version of the
image to obtain an initialization for the objects to be seg-
mented. This “hybrid” method has an additional benefit of
being able to detect mutiple objects and of giving a priori
estimates for parameters in the decision function. The pro-
posed two-stage hybrid boundary tracking algorithm that
combines the UUV-gas algorithm with the CUSUM-based
change-point detection identifies the true boundaries of an
object accurately even in high levels of noise, as seen from
Figure 2] The run-time and storage costs are minimal,
compared to most other segmentation methods.

An example of a noisy image is shown in Figure 3] The
original image is 1000 x 1000. Threshold Dynamics [13]
was first applied to a heavily subsampled version (100 x
100) of the image. Then one pixel from each connected



component was taken as the starting point for a boundary
tracker. An example using multispectral data is shown in
Figure 4.

The hybrid method may be applied to more complicated
images, but some problems arise. In the first step, when
a coarse segmentation is applied to a subsampled image,
small features may not be detected accurately. These small
features will thus not be located by the boundary tracker
either. Similarly, if some features are close in space, they
may be placed in the same connected component class. In
the boundary detection step, only one feature will thus be
tracked. One solution is to use multiple initial points for
each connected component. This will result in a decrease
in efficiency but allow more objects to be tracked. Another
problem is that different objects in the image may require
different parameters to be chosen in the change-point de-
tection algorithm. While some objects are detected ac-
curately with certain parameters, often, some objects are
not detected completely. Multichart CUSUM tests can be
used effectively for this purpose.

Figure 4: Boundary tracking of the San Francisco Bay
coastline. A threshold of the Normalized Difference Veg-
etation Index (NDVI), commonly used for water detection
[16]], was taken as the decision function.

4. Discussion

The boundary tracking algorithm provides a fast alterna-
tive to many traditional segmentation methods due to its
local nature. With the addition of a change-point detection
method, the combined hybrid algorithm allows for accu-
rate boundary tracking and, therefore, segmentation even
in highly noisy images. Furthermore, the algorithm can
operate efficiently even in data of large size or high resolu-
tion, scaling only with the size of the boundary rather than
the size of the image. While presented as a novel segmen-
tation method, the boundary tracking algorithm can also
be used in conjunction with other segmentation methods
in a two-stage algorithm.
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