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Abstract. We derive a lubrication model describing gravity-driven thin film flow of a suspension
of heavy particles in viscous fluid. The main features of this continuum model are an effective mixture
viscosity and a particle settling velocity, both depending on particle concentration. The resulting
equations form a 2 × 2 system of conservation laws in the film thickness h(x, t) and in φh, where
φ(x, t) is the particle volume fraction. We study flows in one dimension under the constant flux
boundary condition, which corresponds to the classical Riemann problem, and we find the system
can have either double-shock or singular shock solutions. We present the details of both solutions
and examine the effects of the particle settling model and of the microscopic length scale b at the
contact line.
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1. Introduction. The flow of thin viscous films [44] is of great importance to
many problems in science and engineering. Flows in thin films can result from slow
processes such as spreading [17] and evaporation [6], or stronger driving forces such
as capillarity [38] or gravity [21]. As shown by Huppert in [21], gravity-driven films
on an incline can be described roughly by the conservation law

∂h

∂t
+

∂

∂x
h3 = 0 (1.1)

for the film thickness h. However, in many cases, large gradients in h and dry regions
where h = 0 exist, requiring more complex models that incorporate capillary forces
and the thermodynamic wetting process.

Wetting occurs as a fluid domain evolves, moving in particular the contact line,
where the solid, liquid, and vapor phases meet. Despite the fundamental importance of
contact lines to fluid dynamic boundary conditions, many of their basic properties are
not fully understood [2, 13]. The standard no-slip boundary condition is inadequate
near a moving contact line [14, 20], and two common contact line models either allow
a small slip velocity [20] or assume a thin “precursor” film rather than a dry substrate
[55]. These models have contributed to understanding of the capillary ridge that often
develops near the contact line [3, 16, 19, 23, 28, 55], the rupture of thin films [39, 57],
the contact angle that the free surface makes with the substrate [16, 23, 25, 50], and
the relevance of the material composition of the fluid and substrate [12, 24, 50]. A
“fingering” instability observed in [21] which deforms the contact line in some driven
films has also motivated analysis [3, 55], simulation [28], and experiments [12, 24, 50]
on thin film flow.

Film flows of more complex materials are much less understood. For dry granular
flows, air can frequently be neglected, and the central modeling challenge is to deter-
mine an appropriate constitutive relation [26]. Replacing the fluid with a suspension,
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however, introduces the possibility of phase segregation, allowing new behaviors not
seen in pure fluids and only recently observed in film flows [54, 59]. Segregation of
viscous suspensions can be driven by gravity [59], but has also been observed with
neutrally buoyant particles in thin films [54] and in the related Hele-Shaw flow [53].
Direct numerical simulation of suspension flows considering individual particles is
computationally demanding and existing methods do not account for the complexi-
ties of a contact line [49, 58]; consequently, continuum models play an essential role
in understanding these flows.

Continuum descriptions of viscous suspensions involve three main effects: an “ef-
fective viscosity” greater than that of the suspending fluid [30, 52], the settling of
heavy particles due to gravity [11], and particle fluxes thought to result from particle
interactions in the presence of shear [34]. Various models have incorporated some
or all of these effects [40, 42, 45, 47], however only a limited number of flow geome-
tries have been studied, most commonly the one-dimensional Couette and Poiseuille
flows (for exceptions see [15]). In particular Schaflinger et al. [47] model a gravity-
driven thin film, though they do not consider variation in the flow direction caused
by gravitational segregation that we will model below.

Our work is motivated by the experiment and model described by Zhou et al. in
[59]. The experiment consists of a gravity-driven film of a dense (≥ 17% by volume)
suspension of glass beads in oil which flows down an inclined plane under constant flux
upstream conditions. They observed three different particle behaviors in this exper-
iment, depending on the inclination angle and particle concentration of the initially
well-mixed suspension, which they summarized in a phase diagram. At low inclina-
tion angles and concentrations, the particles settle out of the flow leaving a film of
clear fluid, while at intermediate angles and concentrations the suspension appeared
well-mixed for the duration of the experiment. At high angles and concentrations the
particles accumulate near the moving contact line in a “particle-rich ridge”. They also
observed that while the well-known fingering instability [21] occurs in the first two
regimes, it is largely suppressed when the ridge appears. Their new model describes
this third regime, characterized by spatially varying rheology, which appears to have
no analogue in pure fluid motion.

Zhou et al. derived their model by treating the mixture locally as a Newtonian
fluid, which allows the use of standard lubrication techniques. The two-phase flow is
described by an overall velocity determined from the local value of a concentration-
dependent effective viscosity, and a settling velocity of the heavy particles relative to
the fluid. They derived a system of two coupled fourth-order evolution equations for
the film thickness and particle concentration, and argued that the essential dynamics
are determined by a system of conservation laws obtained by retaining only the first-
order terms. They also presented double-shock solutions for this system depending on
the parameter b appearing in their contact line model, which represents the thickness
of a precursor film appearing ahead of the bulk flow. They compared these solutions
to the experimentally observed ridge, and noted that the calculated speeds of the two
shocks become nearly equal at small values of b. Their calculations however were
not sufficient to determine whether the shock speeds actually coincide at some finite
b∗ > 0, an important issue as this would call into question the existence of solutions for
b < b∗. Furthermore, they described the physical derivation and the shock solutions
only briefly.

The purpose of the present work is to give a more complete derivation of this model
and to more thoroughly characterize its shock solutions, including their dependence
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on b. In §2 we present a full derivation following the assumptions of Zhou et al. While
the equations we derive are slightly different, they appear to have the same qualitative
behavior. In §3 we recall the classical theory for hyperbolic systems of conservation
laws, and in §4 we apply these methods to the system we have derived. For double
shock solutions, we find the two shock speeds do become equal at a certain precursor
thickness b, below which the equations have no classical solution. In §5 we compare
this case to the mathematical theory of singular shocks, in which a delta mass is
concentrated at the discontinuity. We study one approximate singular shock solution
and find the particle concentration exceeds the limit of close packing, suggesting the
model is inaccurate at high concentrations. We propose a modified form for the
settling velocity in §6 which causes both the particle and fluid velocities to vanish
at close packing, and find the resulting equations appear to be well-posed for all
precursor thicknesses. Then we conclude in §7 that the modified equations represent
a more realistic model for particle-laden films.

2. Derivation. Two common methods for describing binary mixtures in a con-
tinuum framework are the “two-fluid” and the “mixture” or “one-fluid” models [56].
The two-fluid model balances forces on the two components separately, with the forces
of interaction appearing explicitly as a function of the two velocities. It therefore re-
quires a separate viscosity for each phase. The one-fluid model balances forces on
the mixture as a whole, using an effective viscosity, and postulates a form for the
relative velocity between the two components. Since empirical formulae are readily
available for the effective mixture viscosity and settling velocity, we follow Zhou et al.
in using the one-fluid model. We also note that the fluid and particle velocities are
nearly equal, so the one-fluid equations describing average and relative velocities can
be expected to be less strongly coupled than their two-fluid counterparts.

Deriving a one-fluid model involves balancing forces first for the mixture as a
whole, without regard to interactions between the two components. In the present
case inertia is negligible, and these forces are just gravity and viscous stress. We use
an empirical expression for the latter in which the mixture is considered a Newtonian
fluid, with an effective viscosity depending on the particle volume fraction φ. For a
fluid of kinematic viscosity µf one form for this relation is [30, 52]

µ(φ) = µf (1− φ/φm)−2, (2.1)

where φm ≈ 0.67 is the random packing fraction of spheres. This viscosity leads to a
stress tensor of the form

Π = pI− 1
2
µ(φ)

[
∇v + (∇v)T

]
, (2.2)

where p is the fluid pressure and v is a velocity characterizing the motion of the
mixture. Since the two mixture components in general have different velocities, say
vf and vp for the fluid and particulate phases respectively, v must be some average of
the two. Much of the experimental literature deals with neutrally buoyant mixtures,
in which the two velocities are the same and the distinction is unnecessary, but in
the current case the question is relevant. We argue that since the effective viscosity
phenomenon involves neither inertia nor gravity, it should be independent of the
masses of the two phases, therefore we select the volume-averaged velocity. Defining

v = (1− φ)vf + φvp, vrel = vp − vf (2.3)
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thus comprises the one-fluid model for the mixture, and if φ is known the individual
phase velocities can be recovered by

vp = v + (1− φ)vrel, vf = v − φvrel. (2.4)

The average velocity satisfies the Stokes equations:

∇ ·Π = ρ(φ)g, ∇ · v = 0, (2.5)

where ρ(φ) is the mixture density and g is the gravitational field. The density is given
by ρ(φ) = ρf (1+∆φ), where ∆ = (ρp− ρf )/ρf and ρf and ρp are the densities of the
fluid and particulate phases.

We now define the problem geometry, considering a plane solid surface inclined
at an angle θ to the horizontal, to be coated with an advancing gravity-driven film.
We choose a coordinate system in which z is normal to the inclined plane, x and y
lie in the inclined plane, y · g = 0, and suppose the film emerges from a gate at x = 0
at a constant thickness and particle concentration for t > 0.

In deriving the equation for v, we follow the standard methods used for pure fluid
films [17, 44]. The lubrication approximation, valid at small Reynolds numbers and
geometric aspect ratios, assumes v lies in the x-y plane and

∣∣∂v
∂z

∣∣ � max
(∣∣∂v

∂x

∣∣ ,
∣∣∣∂v

∂y

∣∣∣).
Correspondingly, we now consider all velocities to be two-dimensional vectors, as well
as the gradient ∇ = x ∂

∂x + y ∂
∂y , and define g⊥ = g · z = |g| cos θ and g‖ = g− g⊥z =

(|g| sin θ)x. In this notation, the Stokes equations now read

∂p

∂z
= −ρ(φ)g⊥, (2.6a)

∇p = µ(φ)
∂2v
∂z2

+ ρ(φ)g‖. (2.6b)

The Laplace-Young boundary condition states that the pressure at the free surface,
z = h(x, y), is given by

p (x, y, h(x, y)) = −γ∇2h(x, y) (2.7)

where γ is the coefficient of surface tension. The pressure is then determined by

p(x, y, z) = −γ∇2h(x, y) +
∫ h(x,y)

z

ρ(φ(x, y, z′))g⊥dz′ (2.8)

from the depth and particle concentration of the film. Here it is convenient to assume
the particle concentration is independent of the z coordinate, so that the integral in
(2.8) is merely ρ(φ)g⊥(h−z). We will discuss this assumption further in our treatment
below of particle motion.

Combining (2.6b) and (2.8) and defining P (x, y) = −γ∇2h + ρ(φ)g⊥h, we have

∇P − zg⊥∇ρ = ρ(φ)µ(φ)
∂2v
∂z2

+ ρ(φ)g‖. (2.9)

The boundary conditions of interest are no stress (∂v/∂z = 0) at the free interface
and no slip (v = 0) at the solid interface. Equation (2.9) can now be integrated twice
in z with the constants of integration determined by these conditions, to arrive at the
equation

µ(φ)v = (hz − z2

2
)(ρ(φ)g‖ −∇P ) +

1
2
(h2z − z3/3)g⊥∇ρ(φ) (2.10)
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for the volume-averaged velocity. Integrating once more gives the depth-averaged
velocity

vav =
h2

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
. (2.11)

Modeling the relative velocity due to particle settling turns out to be more dif-
ficult. Recall that in the above lubrication analysis, we have assumed the particles
are evenly distributed across the film depth. This may seem unrealistic because the
normal component of gravity is pulling the particles toward the solid substrate, but
Zhou et al. found that particles settle out of the fluid only at low angles and concen-
trations. Additionally a thin film experiment done by Timberlake and Morris with
neutrally buoyant particles found higher concentrations near the free surface [54];
they attributed this to a shear-induced particle flux such as Leighton and Acrivos
describe in [34]. This flux consists of a nonlinear diffusion in the presence of shear,
and in inhomogeneous flows an additional migration of particles away from regions of
high shear. Schaflinger et al., in their model for film flow [47], balance gravity-driven
settling with only the diffusive flux, and only achieve steady state when concentration
increases with depth. While the corresponding problem including both diffusion and
migration remains unsolved, Carpen and Brady found non-monotone concentration
profiles in a model for the related inclined Poiseuille flow [9], and also showed these
profiles are unstable due to heavy material suspended above lighter material. Thus
it is unclear even whether the actual concentration profile for film flow increases or
decreases with depth, and since we are seeking a simple model we find the uniform
depth profile to be reasonable.

We begin our model of the relative motion with the settling velocity

vs =
2a2∆ρfg‖

9µf
(2.12)

of a heavy sphere in R3, while noting that this expression neglects the effects of
the solid boundary, the free surface, and other particles. The problem of determin-
ing settling rates of concentrated mixtures is complex, even in the idealized case of
monodisperse spherical particles in a large domain [11]. Some of the challenges are
summing the interactions between spheres, which decay only as 1/r in Stokes flows,
and interpreting theoretical results that imply divergent fluctuations about the mean
particle velocity [5, 8]. Since there is no general agreement of theoretical and numer-
ical results with experiments, sedimentation is commonly modeled by the empirical
hindered settling function

v = fRZ(φ)vs = (1− φ)nvs (2.13)

where n ≈ 5 for Stokes flow [46].
We also seek a correction to represent the impeding effect of the solid substrate

on particle motion. The Stokes problem for a sphere settling in a half-space parallel
to a wall has been solved approximately by the method of images [18], leading to the
series solution

v =
(

1− 259
256

(a

h

)
+

9
16

(a

h

)
log

(a

h

)
− 1

16

(a

h

)3

+
15
256

(a

h

)4

+ ...

)
vs (2.14)

for the velocity, where h > a is the distance from the center of the particle to the
wall. Since we seek a depth-averaged solution we are concerned not with the velocity
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itself, but its average value over the interval (0, h). Figure 2.1 shows this average for
a range of h/a, where the velocity has been taken to be zero for h < a. Also plotted
is the correction we will use to approximate wall effects:

w(h) =
A(h/a)2√

1 +
[
A(h/a)2

]2 (2.15)

with A = 1/18. This function has the desired properties w ≈ 0 for h < a, w ≈ 1 for
h � a, and unlike equation (2.14) is differentiable and positive on (0,∞). We have
chosen the parameter A so that this function resembles (2.14), but since the latter
neglects the net flow and the effects of other particles it should mainly be viewed as
a correction to ensure vrel → 0 for very thin films.

0 2 4 6 8 10
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0
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0.4

0.6
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1

v/
v st
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Fig. 2.1. Our correction for the impeding effect of the solid boundary on a single particle’s
settling velocity (solid), and an analytical result neglecting the free surface and large-scale fluid
motion (dashed).

For lack of a comprehensive theory incorporating both wall effects and hindered
settling, we simply assume the effects are multiplicative, obtaining the settling velocity

vrel = f(φ)w(h)vs (2.16)

relative to the fluid which we interpret as a depth average. Having specified the two
velocities required for a one-fluid description, we apply conservation of volume to the
mixture as a whole and separately to the particulate phase, obtaining the evolution
equations:

∂h

∂t
+∇ · (hvav) = 0,

∂φh

∂t
+∇ · (φhvp) = 0. (2.17)

Note that (2.17) differs from the model proposed by Zhou et al. Since we use a vol-
ume averaged velocity, we apply conservation to volume rather than mass. Inserting
equations (2.11), (2.16), and (2.4) into (2.17) now gives us the complete system
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∂h

∂t
+∇ ·

(
h3

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

])
= 0, (2.18a)

∂(φh)
∂t

+∇ ·
(

φh3

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
+ φh(1− φ)f(φ)w(h)vs

)
= 0. (2.18b)

Next we nondimensionalize the equations for the constant flow rate problem, with
the rescaling used in [3] for a clear fluid. If the upstream gate height h0 represents a
typical film thickness, then the first- and fourth-order terms in (2.18) are comparable
at a length scale x0 = (`2h0)1/3, where ` = γ/ρfg‖ is the capillary length. The time
derivative is on the same scale as well if t ∼ t0 = µfx0/Caγ, where Ca = h2

0/3`2

is the dimensionless capillary number. Defining h̃ = h/h0, x̃ = x/x0, t̃ = t/t0,
ρ̃(φ) = 1 + ∆φ, µ̃(φ) = (1 − φ/φmax)−2, w̃(h̃) = w(h), and dropping the tildes, and
replacing ∇ with ∂/∂x in anticipation of a y-independent solution, we obtain the
dimensionless system

∂h

∂t
+

∂

∂x

(
h3

µ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x −

5
8
hρ(φ)x

)
+ ρ(φ)

])
= 0 (2.19a)

∂(φh)
∂t

+
∂

∂x

(
φh3

µ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x −

5
8
hρ(φ)x

)
+ ρ(φ)

]
+

vsφh(1− φ)f(φ)w(h)) = 0. (2.19b)

Here D(θ) = (3Ca)1/3 cot θ is a parameter measuring the relative importance of the
2nd-order terms.

The above nondimensionalization represents the scales at which all terms in (2.18)
are equally significant. However, at length scales x � x0, the second- and fourth-order
terms become small, and can be considered simply a weak diffusive regularization to
the dominant first-order system,

∂h

∂t
+

∂

∂x

(
h3ρ(φ)/µ(φ)

)
= 0 (2.20a)

∂(φh)
∂t

+
∂

∂x

(
φh3ρ(φ)/µ(φ) + vsφh(1− φ)f(φ)w(h)

)
= 0. (2.20b)

Zhou et al. presented this alternative scaling and presented numerical evidence that
the higher-order terms can be neglected. Note also that the second-order terms can
also be dropped regardless of the length scale if θ = π/2.

Finally, a discussion is necessary of the microscopic contact-line physics, for which
we rely on literature dealing with pure fluids. It has been shown [14] that the no-slip
boundary condition we have employed above requires infinite viscous energy dissi-
pation in the vicinity of a moving contact line. This singularity is removed if the
fluid-solid boundary condition is modified to allow finite slip [20], which generally
takes the form

v|z=0 = b
∂v
∂z

∣∣∣∣
z=0

(2.21)

where b is a length on the order of the molecular size. In fact, the dissipation (and
consequently the large scale flow) depends only logarithmically on b, so its value need
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not even be known precisely. This slip length has been observed experimentally, and
is known to be particularly large (on the order of microns [33]) for polymer liquids
such as the PDMS used in [59]. Another technique used to model the contact line
derives from attractive Van der Waals forces between the fluid and solid, which for
many wetting films (again including PDMS on acrylic) causes a precursor film of
microscopic thickness to extend ahead of the apparent contact line [1, 10]. A detailed
description of the thermodynamic wetting problem is needed to predict the properties
of this precursor film, and while the dissipation in the precursor is large, the dissipation
in the macroscopic flow near the contact line is again only weakly dependent on the
precursor thickness [13]. Correspondingly, models that simply impose a thickness b
for the precursor have been used successfully [3, 55], and been seen to give similar
predictions to the slip model with the same value of b [41, 51].

In this work, we choose the precursor model because it simplifies the analysis
by preserving the symmetry of the Riemann problem, discussed in §3 below. With
a precursor of nondimensional thickness b � 1 and concentration φR, the initial
conditions for the constant flow rate problem are

(h, φ)|t=0 =
{

(1, φL) if x < 0
(b, φR) if x > 0 . (2.22)

Both b and φR are model parameters not determined by the bulk flow, and must be
specified. Since the film depths are on the order of millimeters, meaningful values
for b are between 10−6 and 10−1, corresponding to precursors no thinner than the
molecular scale. Reasonable values for the concentration φR are between 0 and φL.
We mainly consider φR = φL for definiteness, but also discuss φR = 0.

The system (2.20) is related to thin film equations that have been studied for
pure fluids. If φ(x, t) ≡ 0 or more generally φ = φ0 ≥ 0 and a = 0 (so that vs = 0),
the system degenerates to the single equation (1.1) studied by Huppert [21]. Huppert
finds a fundamental solution for this equation, that is, a solution with Dirac mass
initial data, in the form of a combination rarefaction and shock (defined in §3)), and
finds this solution describes a constant volume experiment he conducted. Bertozzi
et al. studied a variant of (1.1) in which Marangoni forcing competes with gravity,
resulting in more complex shock structures [4]. Lubrication models have given rise to
pairs of coupled equations describing a thin films containing surfactant [22, 35]. Also
related are models for sedimenting mixtures [31] in which the particle concentration
exhibits kinematic shocks.

3. The Riemann Problem for Systems of Conservation Laws. This sec-
tion reviews the theory of systems of nonlinear conservation laws in one dimension,
of which (2.20) is an example. This class contains equations of the form

∂U

∂t
+

∂

∂x
F (U) = 0, U, F (U) ∈ Ω ⊂ Rn. (3.1a)

Although initial-value problems for (3.1a) are not in general well-posed, there is a
large body of analytical techniques for finding and characterizing solutions when they
exist [32]. The analysis is especially simplified for the Riemann problem, in which the
initial data is a step function

U(x, 0) =
{

UL if x < 0
UR if x > 0 , (3.1b)
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such as (2.22) with uniform concentration.
Both the equation and initial data of the Riemann problem can be expressed in

terms of the single variable ξ = x/t, and this symmetry extends to solutions as well.
Imposing this form on the solution reduces the problem to finding a heteroclinic orbit
for the autonomous system [

J
(
U(ξ)

)
− ξI

]
U̇(ξ) = 0, (3.2a)

U(−∞) = UL, U(+∞) = UR, (3.2b)

where J(U) is the Jacobian derivative of the flux function F . Smooth solutions of
(3.1a), known as rarefactions, are therefore either constant or vary along integral
curves Ri of a Jacobian eigenvector ri. For this reason, most existence results apply
to strictly hyperbolic systems, in which the eigenvalues are real and distinct.

Equation (3.2a) also requires that rarefaction solutions be parametrized by the
corresponding eigenvalue λi, which is possible only if λi is strictly increasing on Ri

between UL and UR. We discuss here the simplified case when F satisfies the genuine
nonlinearity condition, that λi varies strictly monotonically along Ri for all i and Ri,
and consider the more general case in the appendix.

In a genuinely nonlinear system Ri(U) consists of two connected curves R+
i (U) =

{U ′ ∈ Ri(U)| λi(U ′) > λi(U)} and R−
i (U) = {U ′ ∈ Ri(U)| λi(U ′) < λi(U)}, and

a connecting orbit exists when UL = U and UR ∈ R+
i (U), or UR = U and UL ∈

R−
i (U). Consequently smooth solutions do not exist for general data, and solutions

are generally sought from the larger class of weak solutions.
A weak solution to the conservation law (3.1a) is an L∞ function U(x, t) that in

addition to the initial condition satisfies∫ x2

x1

(
U(x, t2)− U(x, t1)

)
dx +

∫ t2

t1

(
F (U(x2, t))− F (U(x1, t))

)
= 0 (3.3)

for all x2 > x1 and t2 > t1 > 0. This includes all smooth solutions to (3.1a), but also
allows discontinuities along a curve x = st that satisfies the vector Rankine-Hugoniot
condition

F (U+)− F (U−) = s
(
U+ − U−)

(3.4)

where U− and U+ are the values of U on either side of the discontinuity. The Hugoniot
locus H(U−) is defined as the set of U+ that satisfy (3.4) for some s. [Note that while
the symmetry of (3.4) implies U2 ∈ H(U1) is equivalent to U1 ∈ H(U2), it does not
follow that H(U1) = H(U2)].

Such weak solutions are not unique, however, and a method must be chosen
to select a single solution. Various criteria, known as entropy conditions, have been
proposed in order to distinguish the shock, or admissible discontinuity, from any other
weak solutions. One condition, the method of viscous profiles, is motivated by the
fact that conservation laws often appear physically as approximations to higher-order
regularized equations such as

∂

∂t
U ε +

∂

∂x
F (U ε) = ε

∂2

∂x2
U ε (3.5)

which are well-posed for ε > 0. A solution to (3.1a), according to this method, should
be stable in the sense that it appears as the pointwise limit in x, t of solutions Uε
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to (3.5) as ε → 0. This condition has the advantage of a clearly desirable physical
interpretation that assures shock solutions are unique, however it has the drawback
of being difficult to verify.

A simpler method from the analytical perspective is the Lax entropy condition,
which is equivalent to the viscous profile condition for a certain class of scalar con-
servation laws. This method relies on strict hyperbolicity to index the eigenvalues
λi of J(U) in increasing order for each U . These eigenvalues represent the char-
acteristic speeds at which the equation propagates information, as can be seen in
rarefaction solutions to the Riemann problem in the persistence of the left state UL

for x ≤ λi(UL)t and the right state UR for x ≥ λi(UR)t. The Lax entropy condition
requires the discontinuity be continually reinforced by conflicting information from a
single characteristic field, i.e. it moves with a speed s that satisfies

λi(UL) > s > λi(UR) (3.6)

for exactly one i. That characteristic is emphasized by calling the discontinuity an
i-shock.

In a neighborhood of any U the Hugoniot locus H(U) consists of two smooth
curves intersecting at U , and the four branches leaving U correspond to the four cases
of 1- or 2-shocks with U as the right or left state. We denote the continuations of these
branches by U+

i if U is the left state and U−
i if U is the right state. The allowable

connections C+
i (UL) = R+

i (UL) ∪ S+
i (UL) through the i-th characteristic also locally

form a smooth curve for each i. The variation of an i-shock or i-rarefaction solution
is confined to the interval {ξ : min(λi(UL), λi(UR)) < ξ < max(λi(UL), λi(UR))},
so compound connections can be generated by stringing together waves of different
characteristics as long as ξ increases with i. In fact, {C+

i }n
i=1 locally generate a

smooth coordinate system, so if UR is sufficiently close to UL the Riemann problem
is well-posed.

Existence of solutions for large data depends on the topology of H(U). A famous
example of a system with no solutions for certain Riemann data is the Keyfitz-Kranzer
equation (5.1) [29], in which H(U) is compact. A bounded Hugoniot locus implies a
bound on the strength of a shock, and consequently some large-data Riemann prob-
lems have no weak solutions. Section 5 describes a theory for such systems relating
the regularized profiles to a Dirac mass, however this theory is far from complete.

A final complication to the selection of weak solutions is the nature of the reg-
ularization actually present in the physical system. The Lax and Oleinik conditions
are intended to admit those shocks that appear as viscous limits under the simplest
possible regularization. If the actual regularization is different, the viscous profiles
could converge to a weak solution other than that selected by the entropy criteria.
This possibility is indeed relevant to conservation laws describing thin films, which
are generally regularized by nonlinear fourth-order capillary terms such as in (2.19).
In fact, a scalar thin film equation with similar regularization is known to select an
entropy-violating double-shock solution, rather than the single-shock entropy solution
[4].

4. Particular Solutions. The system (2.20) is physically meaningful for (h, φ)
in the phase space Ω = {(h, φ) : 0 < h, 0 < φ < φmax}, which can also be expressed in
terms of the conserved quantities u ≡ h and v ≡ φh as

{
(u, v) ∈ R2 : 0 6 v < φmaxu

}
.

While the above theory depends on the latter parameterization, the flux functions are
most simply expressed in terms of h and φ, so we retain these variables for presenting
our results.
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Fig. 4.1. The phase space of the reduced model, and the connections from (h0, φ0) = (1.0, 0.3),
�. The system is hyperbolic except in the shaded region. Black lines represent shock connections
and gray represents rarefactions. Solid lines are connections to the right, i.e. the (h0, φ0) is the
left state, and dashed lines are connections to the left. 1-waves and 2-waves can be distinguished by
their slope at (h0, φ0): 2-waves are nearly horizontal at this scale.

The simple connections for a left state of (hL, φL) = (1.0, 0.3) are shown in
figure 4.1. The rarefaction curves have been integrated from (3.2a) by a Runge-
Kutta method, and H(UL) has been calculated by eliminating s from (3.4) at each
point and solving the resulting equations for u and v. For a given shock connection,
the shock speed can be recovered by substituting u and v back into (3.4).

Since h was rescaled by the film thickness set at the upstream gate, we choose
(h, φ) = (1.0, 0.3) as the left state. For a specified right state (b, φR), representing
the precursor film, a solution to the Riemann problem can be determined by finding
intersections between the two connection diagrams. In figure 4.2 we have plotted
the possible shock-shock connections for four values of b with φR = φL. At b = 0.1
there is a solution with a 1-shock from the upstream state to an intermediate height
and concentration slightly larger, and a 2-shock from this intermediate state to the
precursor. As the precursor becomes thinner, the height and concentration of this
intermediate state increase. For b = 0.01 the intermediate state is approximately
(h, φ) = (1.1757, 0.3663), and in figure 4.3 we compare this connection with a numeri-
cal solution with the same initial data, and find both shock speeds and the height and
concentration of the ridge are in agreement. The numerical solution was calculated
using the Lax-Freidrichs finite difference method with grid spacing 3.3 × 10−7 and
timestep 3.3× 10−7.

At b = 0.008 the Hugoniot locus has undergone a bifurcation such that the 1-
and 2-shock curves are no longer distinct, and an additional connected component
has appeared. The shock speed and characteristic speeds coincide at several points
along these curves, such that various sections correspond to 1-shocks, 2-shocks, or are
not admissible at all. There is still a shock-shock connection that satisfies the Lax
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Fig. 4.2. 1-shock connections (solid line) from an upstream state (hL, φL) = (1.0, 0.3) (�) and
1- and 2-shock connections from four precursor states (hR, φR) = (b, 0.3) (4) where b = 0.1 (dot),
0.01 (dash), 0.002 (dot-dash), and 0.0005 (dot-dash-dash). The solutions involve an intermediate
state between the two shocks, marked by ©. As b becomes small, the Hugoniot locus undergoes a
bifurcation, becoming disconnected, and ultimately fails to produce a shock solution.

entropy condition. At b = 0.0015, however, there are no longer any intersections, and
since the rarefactions also fail to intersect, this initial data has no solution. We will
discuss this case further in §5.

As shown in figure 4.1, the equations using (2.13) are neither strictly hyperbolic
nor genuinely nonlinear on this entire domain. Hyperbolicity fails near the maximum
concentration, as the eigenvalues become complex and the equations become elliptic.
It is not clear whether this feature is desired in a model of the thin film. Change
of type certainly complicates the mathematical question of well-posedness for such a
system, but remembering that the first-order system is only an approximation to the
full fourth-order model, this may be an inconvenience rather than a physical flaw.
Physical models proposed for dry granular materials result variously in hyperbolic,
parabolic, and elliptic equations, so physically the change of type does not seem
altogether unreasonable.

If the concentration in the precursor is taken to be 0 rather than φL, double-shock
solutions again occur and the same non-existence issue occurs for small b. For larger b,
an additional type of solution occurs consisting of a 1-rarefaction and a 2-shock, with
both h and φ in the intermediate state less then their values at the left. A numerical
solution for this case is shown in figure 4.4, again computed using the Lax-Freidrichs
finite difference method in a moving frame. This behavior does not correspond to
anything observed in the experiments of Zhou et al., and is probably observable only
for heavily pre-wet substrates if at all.

5. Singular Shocks. The problem of non-existence due to non-trivial Hugoniot
topology has been studied before, and a weaker form of solution known as a singular
shock has been described. An illustrative example is the Keyfitz-Kranzer equation

12
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Fig. 4.3. Film thickness (solid) and concentration (dashed) of a numerical solution of the
conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and (hR, φR) = (0.01, 0.3). Numerical diffu-
sivity generally affects the leading shock less than the trailing shock, since for the latter one of the
characteristic speeds is close to the shock speed.
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Fig. 4.4. Numerical solution of the conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and
(hR, φR) = (0.02, 0), corresponding to a 1-rarefaction and 2-shock. While some of the smoothness
is due to numerical diffusivity, the 1-rarefaction can also be distinguished from a 1-shock by the fact
that both h and φ are less than their values on the left.
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[29]

∂

∂t

(
u
v

)
+

∂

∂x

(
u2 − v
1
3u3 − u

)
= 0, (5.1)

which is everywhere both strictly hyperbolic and genuinely nonlinear, but for all
U = (u, v) the Hugoniot locus is compact, specifically figure-8 shaped. Thus shocks
can only connect states that are sufficiently close, and certain Riemann problems have
no classical solution.

In [27], Keyfitz and Kranzer present three sequences of functions U ε(ξ = x/t) to
(5.1) that approximately solve (5.1) as ε → 0 but are also singular in this limit. The
first sequence results from an asymptotic expansion of the solution to the regularized
equation

∂U

∂t
+

∂

∂x
F (U) = εt

∂2U

∂x2
(5.2)

in ε, and the second and third are explicitly constructed from C∞ functions and
piecewise constant functions. They introduce a space of measures in which these se-
quences converge to a limit involving Dirac-like masses superimposed on a classical
shock. They also propose overcompression as an admissibility requirement for singu-
lar shocks, i.e. (3.6) must hold for both characteristics; if singular shocks are accepted
under this restriction (5.1) is well posed for all Riemann data. However, these con-
clusions are restricted to (5.1). Also, Keyfitz and Kranzer emphasize that while the
limiting measures appear as limits of approximate solutions, no well-defined criterion
has been proposed by which the limits themselves can be called solutions.

Sever discusses the selection mechanism for singular shocks in a more general
context in [48]. For a distribution solution

U(x, t) = M(t)δ(x− st) +
{

UL ifx < st
UR ifx > st

(5.3)

characterized by a point mass M(t) located at x = st, conservation implies the singular
mass must satisfy

dM

dt
= s(UR − UL)−

[
F (UR)− F (UL)

]
. (5.4)

Since the speed s is unknown, this is an undetermined system for the n+1 parameters
dM/dt, s. For (5.1), Keyfitz and Kranzer determined unique solutions by requiring
the first component of M to vanish, justified by an argument specific to that system.
Sever writes that this last constraint generally comes from properties of the system
such as symmetry groups or a convex entropy function. The proper constraint for
system (2.20) is not yet apparent.

Equations (2.20) with regularization (3.5) also show behavior consistent with a
singular shock. In order to investigate this, numerical solutions were generated with
a fully implicit centered difference scheme on a moving nonuniform grid. The number
of grid points at each mesh size was fixed, however every 10 time steps the grids were
rearranged using cubic interpolation as necessary to center the area of maximum
resolution around the singularity. Meanwhile the entire computational domain moved
a constant speed chosen to approximately match the speed of the discontinuity. The
scaling of the regularized solution satisfies U ε(x, t) = U1(εx, εt), so rather than take
ε → 0 we fixed ε = 1 and evaluated the solution at long times.
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Figure 5.1 contains the results of this calculation. Both components of the singular
mass increase linearly in time, as required by (5.4), and the singularity is overcom-
pressive. As the singularity evolves in time the maximum height and concentration
grow, and at t ≈ 3 × 108 the concentration exceeds the packing fraction. While this
linear second-order diffusion may behave differently from the nonlinear fourth-order
diffusion in (2.19), the unphysical concentrations suggest the model may be inaccurate
for high concentrations.
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Fig. 5.1. Film thickness (top) and particle concentration (bottom), from numerical solutions
of the regularized system (3.5) in the singular shock regime, with b = 0.001, φ0 = 0.3, and ε = 1,
calculated on a grid moving at speed s = 0.45547 and evaluated at times 5 × 107 (solid), 1 × 108

(dot-dash), and 2× 108 (dot). The dashed line on the bottom plot marks φm.
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6. Alternative Settling Function. In this section we propose a modification
to the unregularized system (2.20) to ensure the concentration does not exceed φmax.
We begin with a heuristic explanation of how (2.13) may be incompatible with (2.1)
in the limit φ → φmax. The volume-averaged velocity is controlled by µ(φ)−1, which
vanishes in this limit, while fRZ(φ) and hence the relative flux is nonzero. This
imposes a forward flux of particles with no net volume flux, requiring fluid therefore
to move backward. This situation is probably unrealistic, because the limit µ(φ) →∞
is intended to model the case when the particles are packed tightly enough to prevent
any shear flow. In that case, it seems more appropriate to model the particles as
an immobile porous medium, with a Darcy’s law flux of pure fluid and vrel < 0.
Incorporating such a transition into the current model presents challenges, as the
particle velocity must be specified relative to the laboratory frame rather than the
fluid, essentially changing to a two-fluid model at high concentrations. A much simpler
alternative is to simply let vrel vanish along with v at φ = φmax; this is readily
accomplished by using the hindered settling function proposed by Buscall et al. [7]

fB(φ) = (1− φ/φmax)5 (6.1)

instead of (2.13). The two settling functions are plotted in figure 6.1.
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Fig. 6.1. Two forms of the hindered settling function. The Richardson-Zaki form (solid line)
vanishes at concentration 1.0, another form due to Buscall et al. (dashed line) vanishes at the
packing fraction 0.67.

With this modification, solving the Riemann problem is simplified in two signif-
icant ways: the equations are strictly hyperbolic throughout the relevant domain Ω,
and the bifurcation causing shock solutions to break down does not occur. In figure
6.2 we have plotted shock-shock connections for four values of b. These solutions exist
even for very small precursors, so the system appears to be well-posed regardless of
b. Figure 6.3 summarizes the manner in which the type of solution depends on the
settling function and the Riemann data.
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Fig. 6.2. Shock connections using the settling function fB(φ) = (1 − φ/φmax)5 instead of
fRZ(φ). The bifurcation that caused some initial data to have no solution no longer occurs. The
solid line is the 1-shock connection from (hL, φL), (�), and the 2-shocks are plotted from various
precursors (4) given by b = 10−1 (dot), 10−2 (short dash), 10−3 (long dash), 10−4 (dot-dash), 10−5

(dot-dot-dash), and 10−6 (dot-dash-dash). Each solution involves an intermediate state marked by
©.
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Fig. 6.3. Type of solution (1-rarefaction and 2-shock, 1-shock and 2-shock, or singular shock)
as determined by b and φL (assuming hL = 1 and either φR = φL or φR = 0), for both hindered
settling functions. Richardson-Zaki settling and φR = φL (upper left), Richardson-Zaki settling and
φR = 0 (lower left), Buscall et al. settling and φR = φL (upper right), Buscall et al. settling and
φR = 0 (lower right).
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In figures 6.4-6.5, we compare the shock solutions to the two systems and their
dependence on the precursor b. The behavior of the Hugoniot curves in the fRZ(φ)
system, shown in figure 4.2, implies the intermediate height and concentration ap-
proach a maximum value at a critical precursor thickness b = b∗ ≈ 9 × 10−4, below
which there is no meaningful solution. As b → 0 in the fB(φ) system, the intermediate
height increases apparently without bound and the concentration approaches φmax.
We also observed in both limits that the speeds of the 1- and 2- shocks to become
approximately equal.
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Fig. 6.4. Height and concentration of the intermediate state vs. the precursor thickness b.
Squares and circles are the height and concentration of solutions using the hindered settling function
fRZ(φ), triangles and diamonds are the height and concentration of solutions using fB(φ).

7. Conclusion. In §2, we derived a lubrication model for particle-laden films in
the case where particle settling occurs only in the direction of flow. We expect, since
variations in the film thickness occur only near the contact line, that the large-scale
flow is determined by the first-order terms, which take the form of a hyperbolic pair
of conservation laws. When the precursor thickness b is large enough, this system has
a double shock solution in qualitative agreement with the experimentally observed
particle-rich ridge. For smaller b, however, the system has no classical solution. We
have confirmed the effect of converging shock speeds that Zhou et al. reported, and
find that the speeds appear to become equal at the same value of b for which the
classical shock solution breaks down.

At precursor thicknesses for which classical solutions do not exist, we have in-
vestigated a simple regularization of the equations for which the solution resembles
a singular shock. The height appears unbounded in this solution as t → ∞, cor-
responding to weak regularization, and a growing delta mass is concentrated at the
shock location. Eventually, the close packing concentration φmax is exceeded, and the
solution loses physical significance.

A heuristic explanation was offered in §6 for this behavior in terms of limiting
18
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Fig. 6.5. The speed of the shocks that make up the solutions to the connection problem for
various precursors. Squares are solutions using the hindered settling function fRZ(φ), and triangles
with fB(φ).

fluxes as φ → φmax, suggesting that the relative velocity should also vanish in this
limit. This can be achieved by substituting the hindered settling function (6) of
Buscall et al. for that of Richardson and Zaki, and the corresponding Riemann
problem appears to be well-posed for all precursor thicknesses. We therefore believe
the function fB(φ) is more appropriate for high-concentration flows.

Many interesting questions remain unanswered regarding this model. More work
is needed to determine how well the present results concerning the first-order system
(2.20) approximate the full fourth-order system (2.19). Also of interest is the stability
of the two-dimensional model (2.18) with respect to fingering patterns, as the exper-
iments of Zhou et al. found instability to be suppressed when a particle-rich ridge
develops [59]. Other questions arise from the limitations of the current model. Ex-
plaining the three distinct settling behaviors observed by Zhou et al. requires a more
general model considering particle settling in the normal direction, perhaps balanced
by a shear-induced particle flux as in [47]. In addition to explaining the phase dia-
gram, such a model could also help determine whether the assumption in the current
model, that particle concentration is constant across the film depth, is reasonable.
Changes to the model may also be needed to describe very high concentrations, as
suggested in §6, because contact forces between particles can be expected to become
important.

Acknowledgments. The authors would like to thank Professors Barbara Keyfitz
and Michael Shearer for insightful comments and suggestions.
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Appendix. Genuine Nonlinearity. While most physical systems are strictly
hyperbolic, systems arising naturally are often not genuinely nonlinear. In the Euler
equations of compressible flow, one characteristic field is linearly degenerate: ri ·∇λi ≡
0. For this characteristic, Ri(U) and Si(U) coincide and connections take the form of
contact discontinuities, which satisfy (3.4) with the inequalities in (3.6) replaced by
equality. More generally, when the variation of λi along Ri changes sign, the strict
inequality in (3.6) becomes too restrictive and an entropy condition is needed to select
which contact discontinuities are admissible solutions.

For a scalar conservation law, genuine nonlinearity is simply the strict convexity
(or concavity) of the flux function F . If the function changes concavity, contact
discontinuities are chosen by the Oleinik condition [43], that the shock speed s(UL, UR)
satisfies

s(UL, UR) ≤ s(UL, U) (A.1)

for any U between UL and UR. Liu has provided a generalization to 2×2 [36] and n×n
systems [37] that requires (A.1) hold for all U ∈ H(UL) between UL and UR. Both
Liu’s and Oleinik’s conditions reduce to (3.6) for a genuinely nonlinear system. While
potentially only a bounded segment of H(UL) could be available for discontinuous
waves, relaxing condition (3.6) provides more solutions by allowing both continuous
and discontinuous waves in the same characteristic. Liu provides an existence proof,
by constructing such a compound wave. This connection involves a shock to the
first point U∗ satisfying s(UL, U∗) = λi(U∗), followed by a rarefaction from U∗ to
UR ∈ R+

i (U∗). The point U∗ is both the first local minimum of s along H(UL), hence
the last point for which Liu’s entropy condition is satisfied, and the first point for
which λi ≥ s, necessary for a continuing rarefaction wave.

In (2.20), r1 · ∇λ1 = 0 holds along the curve shown in figure A.1. For (hL, φL) =
(1, 0.3) the branches S+

1 and R−
1 nearly coincide, so this branch represents to good

approximation the states accessible through a 1-shock, 1-rarefaction compound wave
as well. In figure A.2 the eigenvalue and shock speed are plotted on this curve as a
function of φ. For φ < φL, both speeds increase away from UL, indicating a simple
rarefaction. With φL < φ∗ ≈ 0.369, the shock speed is strictly decreasing with φ so
the connection is a shock satisfying the Liu-Oleinik condition. This case includes the
solutions described in §4 for b = 0.1 and b = 0.01. For φ > φ∗ neither simple wave
is feasible, but a contact discontinuity from φL to φ∗ can connect with a rarefaction
from φ∗ to φ because λ1 is now both increasing and greater than the shock speed.

This compound wave is in practice difficult to distinguish from a simple shock. As
noted above, the states accessible to a compound wave are nearly the same states lying
on R1 or S1, so the constant state UI appearing between 1-waves and 2-waves cannot
easily be used to identify the compound wave. Additionally, figure A.2 demonstrates
that λ1 changes very slowly along its characteristic at intermediate concentrations,
so for instance in the presence of numerical diffusion, the rarefaction appears indis-
tinguishable from a shock. Thus although some solutions are necessarily compound
waves, their observable properties (other than failing to satisfy the Lax condition) are
similar to those of a simple shock.
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Fig. A.1. Failure of genuine nonlinearity for (2.20): ∇λ1 ·r1 = 0 on the gray line. Connections
from (hL, φL) = (1.0, 0.3) (�) are plotted on the dashed line, which include shocks up to (h∗, φ∗) ≈
(1.18, 0.369) (♦) or a compound shock to (h∗, φ∗) followed by a rarefaction. 2-shocks are plotted from
right states (4) for one case (b = 0.02, dotted line) with a simple 1-shock, 2-shock solution, and
another case (b = 0.002, dashed line) with a compound 1-shock, 1-rarefaction wave and a 2-shock.
The equations are elliptic in the shaded region.
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Fig. A.2. Rarefaction speeds (dashed line) and shock speeds (solid) for the connections along
the first characteristic from a left state (hL, φL) = (1.0, 0.3), (�), (corresponding to figure 4.1),
plotted as a function of the concentration φR at the right state. The linear degeneracy curve in
figure A.1 indicates the location of the minimum characteristic speed. If φR > φ∗ ≈ 0.37 (♦), a
single shock solution is not admissible and the solution consists of a hybrid shock-rarefaction wave.
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