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The analysis of criminal behavior with mathematical tools is a fairly new idea, but one
which can be used to obtain insight on the dynamics of crime. In a recent work 34

Short et al. developed an agent-based stochastic model for the dynamics of residential

burglaries. This model produces the right qualitative behavior, that is, the existence of
spatio-temporal collections of criminal activities or “hotspots,” which have been observed

in residential burglary data. In this paper we prove local existence and uniqueness of

solutions to the continuum version of this model, a coupled system of partial differential
equations, as well a continuation argument. Furthermore, we compare this PDE model

with a generalized version of the Keller-Segel model for chemotaxis as a first step to
understanding possible conditions for global existence vs. blow-up of the solutions in
finite time.
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1. Introduction

The study of crime hardly needs motivation, it is a phenomena that affects all in-
dividuals. The city of Los Angeles, nicknamed the “Gang Capital of the Nation,”
is of particular interest. Violent and non-violent crimes from burglaries to drive-by-
shootings have affected the citizens of this city since the beginning of the 20th cen-
tury. One of the most frequently occurring crimes is residential burglaries, a crime
which will affect most people at some point. The observation that residential bur-
glaries are not spatially homogeneously distributed and that certain neighborhoods
have more propensity to crime than others led Short et al. to study the dynamics of
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residential burglary hotspots34. A hotspot is a spatio-temporal aggregation of crim-
inal occurrences and the understanding how they evolve can be extremely useful.
For example, it can help the police force mobilize their resources optimally. This
would ideally lead to the reduction or even eliminations of these crime hotspots.
A theoretical understanding of dynamics of hotspots would help predict how these
hotpots will change and thus aid law enforcement agencies fight crime.

Short et al. modeled the dynamics of hotspots using an agent-based statistical model
based on the ‘broken window’ sociological effect. 38 The idea of the ‘broken win-
dow’ effect is that crime in an area leads to more crime. It has been observed in
the residential burglary data that houses which are burglarized have an increased
probability of being burglarized again for some period of time after the initial bur-
glary. This increased probability of burglary also affects neighboring houses and is
referred to as the ‘repeat near-repeat effect’ 2, 25, 26, 27. The model is based on the
assumption that criminal agents are walking randomly on a two-dimensional lattice
and committing burglaries when encountering an opportunity. Furthermore, there
is an attractiveness value assigned to every house, which refers to how easily the
house can be burgled without negative consequences for the criminal agent. The
criminal agents, in addition to walking randomly, have a biased movement toward
areas of high attractiveness values and move with a speed inversely proportional to
the value in their current position. Let A(x, t) and ρ(x, t) be the attractiveness value
and the criminal density at position x and time t respectively, then the continuum
limit of the agent-based model gives the following PDE model:

∂A

∂t
= η∆A−A+Aρ+Ao, (1.1a)

∂ρ

∂t
= ∆ρ− 2∇ · [ρ∇χ(A)] +B −Aρ; (1.1b)

where χ(A) = log(A). A formal derivation of this model can be found in 34. From
(1.1) we observe that criminal agents are being created at a constant rate B and are
removed from the model when a burglary is committed. In essence, the number of
burglaries being committed at time t and location x is given by the A(x, t)ρ(x, t).
Furthermore, the attractiveness value increases with each burglary. As we will dis-
cuss later the system (1.1) can be seen as a nonlinear version of the Keller-Segel
model for chemotaxis with growth and decay. The Keller-Segel model is a reaction-
diffusion system that models the movement of some mobile species which is being
influenced by an external chemo-attractant5, 9, 12, 22, 37, 35. In the Keller-Segel
model literature the function χ(A) is referred to as the sensitivity function. Various
forms of the sensitivity function have been analyzed including log(A) and A 30,33.
For these cases global existence has been proved in one-dimension 8,32. Further-
more, in two-dimension global existence has been proved for small enough initial
mass of the cell density 4,6. It is important to note that these models do not include
growth or decay. Although the logarithmic sensitivity function has been analyzed
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most of the research done on the Keller-Segel model has been for χ(A) = A. Recall
that the model (1.1) is the continuum limit of an discrete agent-based model. In the
discrete model the probability of an agent moving from node s to node n is given by
the ratio of the attractiveness value at node n over the sum of attractiveness values
of the neighboring nodes of node s. This gives the logarithmic sensitivity function
we see in (1.1). Therefore, it makes sense for us to analyze the more complicated
sensitivity function. In fact, we will see later that the term 1/A in the advective
term helps prevent blow-up.

From the numerical analysis performed in 34 this model seems to have appropriate
qualitative properties, i.e. existence of hotspots. However, to show that this model
is truly robust the unique existence of a solution, which does not blow up in finite
time, is essential. The main result of this paper is the local existence of a solu-
tion in addition to a continuation argument, which gives a necessary and sufficient
conditions for global existence. Assuming that the criminals entering the city and
the criminals leaving are approximately the same we consider no-flux boundary
condition in a bounded domain Ω ⊂ R2:

∂A

∂ν
|∂Ω = 0 and

ρ

A
∇A · ~ν|∂Ω = 0; (1.2)

where ν is the outer normal vector. The initial conditions are given by:

A(0, x) = A0(x),

ρ(0, x) = ρ0(x). (1.3)

Outline. In Section 2 we state notation and existing theory to be used for the proof
of the main result. Simultaneously, we give an outline of the proof. In Section 3 we
prove the existence and uniqueness of a family of solutions to a regularized version
of the original model. Following, in Section 4 we look at a-priori higher-order energy
estimates that enable us to pass to the limit and prove the final result. Section 5 is
devoted to proving a continuation argument. In Section 6 we look at a generalized
version of the Keller-Segel model for chemotaxis and compare it with the PDE
model for residential burglaries. In this section we also prove a blow-up argument
for a modified residential burglary model. We conclude this paper in Section 7 with
a final discussion.

2. Notation and Proof Outline of Main Result

We begin this section by establishing the notation that will be used throughout the
paper. The proof of the main result follows the techniques used in 31 for the Navier-
Stokes Equation in 3-D (see also 36 Taylor for symmetric hyperbolic systems). In
the Keller-Segel literature there are two principal methods used to prove global
existence of solutions to various versions of the model23. The first one involves
finding L∞ estimates for the advection term. The second method involves finding
a Lyapunov function. Both of these methods use fixed point theory to obtain local
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solutions. Since we do not know of the existence of a Lyapunov function for (1.1) our
method is more closely related to the first method mentioned. We use an abstract
version of Picard’s Theorem for ODEs to obtain a local solution to (1.1). We will
see that global existence will end up being dependent on some L∞ estimates.

2.1. Notation

We have a initial-boundary value problem with no-flux boundary conditions. For
simplicity assume that our domain is a square. This problem can be mapped into
the periodic problem with symmetry on a domain four times the size of the original
domain. This is true provided Ao and the initial data satisfy reflection symmetry,
in which case the model preserves symmetry. Hence, from now on we work with
periodic boundary conditions and Ω = T2 unless otherwise specified. It is useful to
define the following notation: ∫

vdx =
∫

Ω

vdx,

‖v‖20 =
∫

Ω

v2dx.

Furthermore, for a multi-index α = (α1, α2, ..., αN ), αi ∈ Z+ ∪ {0}, we define the
Hm(Ω)-norm as follows:

‖v‖m =

 ∑
|α|≤m

‖Dαv‖20

 1
2

.

Finally, we define the spaces with their corresponding norms to be used:

• For X a Banach Space with norm ‖·‖X , C ([0, T ] ;X) is the space of contin-
uous functions mapping [0, T ] into X. This space has the following norm:

‖v‖C([0,T ];X) := sup
0≤t≤T

‖v‖X .

• L∞(0, T ;X) is the space of functions such that v(t) ∈ X for a.e. t ∈ (0, T )
has finite norm:

‖v‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖v(t)‖X .

• L2(0, T ;X) is the space of functions such that v(t) ∈ X for a.e. t ∈ (0, T )
with finite norm:

‖v‖L2(0,T ;X) :=

(∫ T

0

‖v(t)‖2X dt

) 1
2

.

Definition 2.1. The space Cweak([0, T ];Hs(Ω)) denotes continuity on the interval
[0, T ] with values in the weak topology of Hs. In other words, for any fixed Φ ∈ Hs,



February 26, 2010 12:27 WSPC/INSTRUCTION FILE LocExtDraftFi-
nalV2

Local Existence and Uniqueness of Solutions to a PDE Model for Criminal Behavior 5

(Φ, u(t))s is a continuous scalar function on [0, T ]. The inner-product of Hs is given
by:

(u, v)s =
∑
α≤s

∫
Dαu ·Dαvdx. (2.1)

The Hilbert Spaces we will be working on for most of the time is:

V m = {(u, v) ∈ Hm(Ω)×Hm(Ω)} . (2.2)

Since we are working extensively with different bounds and the constants are not
always important, we introduce the notation A . B to mean that there exists a
positive constant c such that A ≤ cB. This notation will be used when the constants
are irrelevant and become tedious.

2.2. Main Result and Outline of its Proof

Our main contribution is to prove local existence and uniqueness of solutions to the
system (1.1). More precisely, we prove the following theorem.

Theorem 2.1 (Local Existence of Solutions to the PDE Residential
Burglaries Model). Given initial conditions (A0(x), ρ0(x)) ∈ V m for m > 3
such that A0(x) > Ao there exists a positive time, T > 0, such that A, ρ ∈
C([0, T ];C2(Ω)) ∩ C1([0, T ];C(Ω)) form a unique solution to (1.1) on the time in-
terval [0, T ].

We first modify the system (1.1) by regularizing it, for the purpose of bounding
differential operators in Sobolev Spaces. This is useful because finding a family
of solutions to the regularized system is straightforward. Given v ∈ Lp(T2) for
1 ≤ p ≤ ∞ we define the mollification of v by

Jεv(x) =
∑
k∈Z2

v̂(k)e−ε
2|k|2+2πik·x, (2.3)

where v̂(k) =
∫

Ω
v(x)e−2πik·xdx. The mollified function, Jεvε, has many useful prop-

erties, some of which are summarized in the following lemma. For more details we
refer the reader to 3. Furthermore, a proof can be found in 18. We note that this is
analogous to mollification by convolution with smooth functions in R2. The inter-
ested reader is referred to 16.

Lemma 2.1 (Properties of Mollifiers). Let Jε be a mollifier defined in (2.3).
Then Jεv ∈ C∞ and has the following properties:

(1) ∀ v ∈ C1(Ω) Jεv → v uniformly and

|Jεv|∞ ≤ |v|∞ .

(2) Mollifiers commute with distribution derivatives,

DαJεv = JεD
αv ∀ |α| ≤ m, v ∈ Hm.
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(3) ∀ u, v ∈ L2(Ω), ∫
Ω

(Jεu)vdx =
∫

Ω

(Jεv)udx.

(4) ∀ v ∈ Hs(Ω), Jεv converges to v in Hs and the rate of convergence in the Hs−1

norm is linear in ε:

lim
ε↘0
‖Jεv − v‖s = 0,

‖Jεv − v‖s−1 ≤ Cε ‖v‖s .

(5) ∀ v ∈ Hm(Ω), γ, k ∈ Z+ ∪ 0, and 0 ≤ ε ≤ 1:

‖Jεv‖m+γ ≤
cmγ
εγ
‖v‖m ,

∣∣JεDkv
∣∣
∞ ≤

ck
εN/2+γ−k ‖v‖k .

Once the original system has been regularized it is easy to show that the assumptions
of the Picard Theorem on a Banach Space are satisfied by the regularized model
for any fixed ε > 0. We now state this theorem along with a natural continuation
theorem, since autonomous ODEs on a Banach Space have a natural continuation
theorem. A proof of the following two theorems can be found in 19.

Theorem 2.2 (Picard Theorem on a Banach Space). Let O ⊆ B be an open
subset of a Banach Space B, and let F : O → B be a mapping satisfying:

(1) F(x) maps O to B

(2) F is locally Lipschitz continuous i.e. for any x ∈ O there exists L > 0 and an
open neighborhood Ux ⊂ O of x such that for all x, x̂ ∈ Ux we have

‖F (x)− F (x̂)‖B ≤ L ‖x− x̂‖B
Then for any xo ∈ O, there exist a time T such that the ODE

dx

dt
= F (x), x|0 = x(0) ∈ O

has a unique local solution x ∈ C1((−T, T );O).

Theorem 2.3 (Continuation on a Banach Space). Let O ⊆ B be an open
subset of a Banach Space B, and let F : O → B be a locally Lipschitz-continuous
map. Then the unique solution X ∈ C1([0, T );O) to the autonomous ODE

dx

dt
= F (x), x|0 = x(0) ∈ O,

either exists globally in time, or T <∞ and X(t) leaves the open set O as t→ T .

We will see that the above theorem can be applied provided an appropriate func-
tional framework is chosen. We use some calculus inequalities in the Sobolev Spaces
to show that this theorem can be used to obtain a family of solutions which depend
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on the regularizing parameter ε. Refer to 31 for a proof of the following lemma in
the case when Ω = RN . The proof for the case when Ω is the torus follows exactly.

Lemma 2.2 (Calculus Inequalities in the Sobolev Spaces).

(1) ∀ m ∈ Z+ ∪ 0, there exists c ≥ 0 such that for all u, v ∈ L∞(Ω) ∩Hm(Ω):

‖uv‖m ≤ c {|u|∞ ‖D
mv‖0 + ‖Dmu‖0 |v|∞} ,∑

0≤|α|≤m

‖Dα(uv)− uDαv‖0 ≤ c
{
|∇u|∞

∥∥Dm−1v
∥∥

0
+ ‖Dmu‖0 |v|∞

}
.

(2) ∀ s > N
2 , H

s(Ω) is a Banach algebra. That is, there exists c > 0 such that for
all u, v ∈ Hs(Ω):

‖uv‖s ≤ c ‖u‖s ‖v‖s .

The next step is to pass to the limit as ε → 0. Energy estimates, which are inde-
pendent of the regularizing parameter, are essential for this purpose.

3. Local Existence and Uniqueness of Solution to a Regularized
Version of the Crime Model

We consider the following regularization of (1.1):

∂Aε

∂t
= ηJ2

ε ∆Aε −Aε + ρεAε +Ao, (3.1a)

∂ρε

∂t
= Jε(Jε∆ρε)− 2Jε[∇ · (

ρε

Aε
Jε∇Aε)]− ρεAε +B. (3.1b)

This choice of regularization will become clear when we perform the energy estimate
calculations. The goal of this section is to prove the local existence and uniqueness of
solutions to the system (3.1) for fixed ε. Consider the function space for the solution
to (3.1) to be the Banach Space V 2, m = 2 in (2.2), with norm ‖(A, ρ)‖V 2 :=
‖A‖2 + ‖ρ‖2.

Theorem 3.1 (Local Existence of solutions to the Regularized Residential
Burglary Model). For any ε > 0 and initial conditions (A0(x), ρ0(x)) ∈ V 2

such that A0(x) > Ao there exists a solution, (Aε, ρε) ∈ C1([0, Tε);V 2), for some
Tε > 0, to the regularized system (3.1). Furthermore, the following energy estimate
is satisfied,

d

dt
‖(Aε, ρε)‖V 2 ≤ c3 ‖(Aε, ρε)‖3V 2 + c2 ‖(Aε, ρε)‖2V 2 + c1 ‖(Aε, ρε)‖V 2 ; (3.2)

where c1, c2, and c3 are constants that depend only on 1
Ao , ε and η.

Proof. Define the map F ε = [F ε1 , F
ε
2 ] : O ⊆ V 2 → X. To use Theorem 2.2 we need

a suitable set O such that F ε maps O to V 2, (i.e. X = V 2). Defined the function
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by:

F ε1 (Aε, ρε) = ηJ2
ε ∆Aε −Aε + ρεAε +Ao, (3.3a)

F ε2 (Aε, ρε) = J2
ε ∆ρε − 2Jε[∇ · (

ρε

Aε
Jε∇Aε)]− ρεAε +B. (3.3b)

Hence, if vε = (Aε, ρε) ∈ V 2, the original model reduces to an ODE in V 2.

dvε

dt
= F ε(v), (3.4a)

vε(0) = (A0(x), ρ0(x)). (3.4b)

With this framework we can prove that the conditions of Theorem 2.2 are satisfied.
Let vεi = (Aεi , ρ

ε
i) ∈ V 2 (i = 1, 2), we drop ε for notational convenience. By definition

of the V 2-norm and F we have:

‖F (v1)− F (v2)‖V 2 = ‖F1(v1)− F1(v2)‖2 + ‖F2(v1)− F2(v2)‖2 .

After substituting (3.3) above and using (5) of Lemma 2.1 and (1) of Lemma 2.2
we obtain a suitable bound for F1. Initially we have:

‖F1(v1)− F1(v2)‖2≤η
∥∥J2

ε ∆(A1 −A2)
∥∥

2
+ ‖A1 −A2‖2 + ‖ρ1A1 −A2ρ2‖2 .

The last term in the above inequality will appear repeatedly and can be bounded
using (2) of Lemma 2.2 by:

‖ρ1A1 −A2ρ2‖2 . ‖ρ2‖2 ‖A1 −A2‖2 + ‖A1‖2 ‖ρ1 − ρ2‖2 . (3.5)

Using (3.5) we easily obtain the final estimate for F1:

‖F1(v1)− F1(v2)‖2. (
η

ε2
+ 1 + ‖ρ2‖2) ‖A1 −A2‖2 + ‖A1‖2 ‖ρ1 − ρ2‖2 . (3.6)

For F2 we only state the final bound, refer to Appendix A.1 for more detailed
computations. If we define the open set

O =
{

(u, v) ∈ V 2 :
∣∣∣∣ 1u
∣∣∣∣
∞
< K1, ‖u‖2 < L1, ‖v‖2 < L2

}
,

we obtain similar estimates for F2. In particular, if v1, v2 ∈ O then

‖F2(v1)− F2(v2)‖2. C̃1 ‖A1 −A2‖2 + C̃2 ‖ρ1 − ρ2‖2 ; (3.7)

where,

C̃1 =
K1

ε3

(
‖ρ1‖2 +K1 ‖A1‖1 |ρ1|∞ +K1 ‖A2‖2 ‖ρ2‖2 +K2

1 ‖A2‖22 ‖ρ2‖2
)

+
K1

ε

3

‖A1‖1 ‖A2‖2 ‖ρ2‖2 +
K1

ε2
|ρ1|∞ + ‖ρ2‖2 ,

C̃2 =
1
ε2

+ ‖A1‖2 +
C2

1

ε3
‖A2‖2 ‖A1‖2 (1 +K1 ‖A2‖1 +K1 ‖A1‖1) .
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The important thing to note is that C̃1 and C̃2 depend only on ‖Ai‖2, ‖ρi‖2, ε, and
K1 for i = 1, 2. Combining (3.6) and (3.7) gives:

‖F (v1)−F (v2)‖V 2≤C(η, L1, L2,K1, ε) ‖A1−A2‖2+C(L1, L2,K1, ε) ‖ρ1−ρ2‖2 .
(3.8)

Setting A2 = 0 and ρ2 = 0 we see that F does map O to V 2. Furthermore,
F : O → V 2 is locally Lipschitz therefore the conditions of Theorem 2.2 are satis-
fied for fixed ε. Consequently, we obtain a family of unique local solutions to (3.1),
{(Aε, ρε)}ε>0, such that (Aε, ρε) ∈ C1([0, Tε);V 2 ∩ O). A careful look at the com-
putations performed (see A.1) enables us to see that the constants in the above
inequality are at most cubic in ‖(A, ρ)‖V 2 . Once again, setting A2 = 0 and ρ2 = 0
in (3.8) from (3.4) we obtain the desired inequality (3.2). Note that the constants
c1, c2 and c3 depend solely on C1, ε, and η. We by taking K1 = 1

Ao we obtain the
dependence on 1Ao.

4. Local Existence and Uniqueness of Solution to Original
Residential Burglary Model

In the previous section we successfully showed the unique existence of a solution
to (3.1) on [0, Tε) for fixed ε. The next step is to show that a subsequence of
these solutions converge to a solution of the original system (1.1). To do this we
need estimates that are independent of ε. The following section is devoted for this
purpose.

4.1. Energy Estimates

From Theorem (3.1) we see that the time interval on which the solutions to (3.1)
exist depend on ε. To be able to pass to the limit it is essential that we find a
uniform time interval of existence. To obtain such an interval we look at energy
estimates which are essential to show that the solution to (3.1) is in C ([0, T ) ;V m).
We will see that provided m is chosen large enough then we obtain that the solution
is classical. For simplicity from now on we denote C1 = 1

Ao .

Proposition 4.1 (Higher-Order Energy Estimates). Let (Aε, ρε) be a solution
to the regularized system (3.1) with initial conditions (Aε(0), ρε(0)) ∈ V m, where
V m is defined by (2.2) for m ≥ 3, such that A0(x) > Ao. If M is chosen large enough
then Eεm(t) = M

2 ‖A
ε‖2m + ‖ρε‖2m satisfies the following differential inequalities:

• For m = 3: d
dtE

ε
3(t) . C (M,C1) (Eε3)10 + C(Ao, B,M).

• For m > 3:
d

dt
Eεm(t) . C (M,C1, |A|∞ , |ρ|∞ , |∇ρε|∞ , |∇Aε|∞)Eεm(t) + C(Ao, B,M).
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The proof of this proposition requires a sequence of lemmas. For these lemmas we
let Aε and ρε be as in Proposition 4.1.

Lemma 4.1. If M is an arbitrary constant then the following holds:

M

2
d

dt
‖Aε‖2m . −Mη ‖Jε∇Aε‖2m +

M

2
‖Ao‖20 +M (|∇Aε|∞+ |ρε|∞+ |A|∞) ‖Aε‖2m

+M (|∇Aε|∞ + |A|∞) ‖ρε‖2m . (4.1)

Proof. Following standard procedure we first look at the time evolution equation
of ‖A‖2m. We drop ε for notational simplicity. Recalling the multi-index notation
from Section 2.1 and using the chain rule we obtain:

1
2
d

dt
‖A‖2m =

∑
|α|≤m

∫
(DαA)(DαAt)dx.

For fixed α substitute in (3.1a) and obtain:∫
(DαA)(DαAt)dx =

∫
(DαA)Dα(ηJ2

ε ∆A−A+Aρ+Ao)dx

= −η ‖JεDα∇A‖20 − ‖D
αA‖20 +

∫
(DαA)(DαAo)dx

+
∫

(DαA)(Dα(Aρ))dx.

Note that the third term of the last equality will only contribute when α = ~0. For
now consider the case α 6= ~0. The Cauchy-Schwarz inequality gives:∫

(DαA)(DαAt)dx ≤ −η ‖JεDα∇A‖20 − ‖D
αA‖20 + ‖DαA‖0 ‖D

α(Aρ)‖0 . (4.2)

To simplify the computations we first look at the following claim. The derivation
can be found in Appendix A.2 and uses part (1) of Lemma 2.2.
Claim 1:∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 . (|∇u|∞ + |u|∞ + |v|∞) ‖u‖2m + (|∇u|∞ + |u|∞) ‖v‖2m .

Adding (4.2) over |α| ≤ m:

M

2
d

dt
‖A‖2m≤−Mη ‖Jε∇A‖2m−M ‖A‖

2
m+M‖Ao‖0‖A‖0+M

∑
|α|≤m

‖DαA‖0 ‖D
α(Aρ)‖0 .

Applying Cauchy-Schwarz Inequality to M‖Ao‖0 ‖A‖0 and Claim 1 to the summa-
tion term gives the final result.

Since the computations for ρ are more complicated we first look at the advection
term.
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Lemma 4.2. For Iα =
∫ {

Dα(Jε∇ρε) ·Dα
(
ρε

Aε J
ε∇Aε

)}
dx the following estimate

holds for any 0 < δ < 1:

2
∑
|α|≤m

Iα . δ ‖Jε∇ρε‖2m +
(C1C2)2

δ
‖Jε∇Aε‖2m +

1
δ

(C1 |∇Aε|∞)2 ‖ρε‖2m

+
1
δ

(
C1 |∇ρε|∞+ C2

1 |ρε|∞ |∇A
ε|∞ + |ρε|∞

m−1∑
k=0

CkC
k+2
1 |∇Aε|k+1

∞

)2

‖Aε‖2m .

The proof can be found in the Appendix A.2. We note that the power 10 in the
energy inequality for the case when m = 3 in Proposition 4.1 is comes from that
fact that we are taking multiple derivatives of 1/A.

Lemma 4.3.
1
2
d

dt
‖ρε‖2m . (1− δ) ‖Jε∇ρε‖2m +

1
2

∥∥B∥∥2

0
+

1
2
‖ρε‖20 + β1 ‖Aε‖2m + β2 ‖ρε‖2m (4.3)

+
(C1C2)2

δ
‖Jε∇Aε‖2m .

where,

• β1 =|∇ρ|∞+|ρ|∞+C1
δ

(
|∇ρε|∞+ C1 |ρε|∞ |∇A

ε|∞+ |ρε|∞
∑m−1
k=0 CkC

k+1
1 |∇Aε|k+1

∞

)2
,

• β2 = |∇ρε|∞ + |Aε|∞ + |ρ|∞ + 1
δC

2
1 |∇A|

2
∞.

Proof. For fixed α substitute in (3.1b):∫
(Dαρ)(Dαρt) dx =

∫
(Dαρ)Dα

(
J2
ε ∆ρ− 2Jε∇ ·

( ρ
A
Jε∇A

)
−Aρ+B

)
dx

≤ −‖JεDα∇ρ‖20 + ‖Dαρ‖0
∥∥DαB

∥∥
0

+ ‖Dαρ‖0 ‖D
α(Aρ)‖0

+ 2
∫
Dα(Jε∇ρ) ·Dα

( ρ
A
Jε∇A

)
dx.︸ ︷︷ ︸

Iα

Simply using Lemma 4.2 and Claim 1 we obtain the final estimate for ρ given by
(4.3).

Combining Lemma 4.1 and Lemma 4.3 gives the proof of Proposition 4.1.

Proof. (Proposition 4.1) Recalling that we have the estimate |ρ|∞ ≤ c ‖ρ‖2 then
|ρ0(x)|∞ ≤ cL2 =: C2. Combine (4.1) and (4.3) by first fixing δ < 1 and then
choosing M > 1

ηδ (C1C2)2. In fact, if δ1 = (1− δ) > 0 and δ2 = Mηδ− (C1C2)2 > 0
then:
d

dt
Em(t)+δ1 ‖Jε∇ρε‖2m+δ2 ‖Jε∇Aε‖2m≤D1 ‖Aε‖2m+D2 ‖ρε‖2m+C(Ao, B,M). (4.4)

where,
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• C(Ao, B,M) = M
2 ‖A

o‖20 + 1
2

∥∥B∥∥2

0
,

• D1 = β1 +M (|∇Aε|∞ + |ρε|∞ + |A|∞),
• D2 = β2 +M (|∇Aε|∞ + |A|∞).

Observe that the coefficients of ‖ρε‖2m and ‖Aε‖2m depend only on |∇Aε|∞, |∇ρε|∞,
|Aε|∞, |ρε|∞, and C1. From Sobolev embedding estimates we have |∇u|∞ ≤ c ‖u‖3;
hence, it is natural to first consider the case m = 3. This case is useful to get an
initial estimate of T from (4.4). Indeed, we obtain the desired result for this case:

d

dt
E3(t) . C (M,C1) (E3)10 + C(Ao, B,M). (4.5)

The power ten on E3 in (4.5) comes from Lemma 4.2. Fortunately, this estimate
is independent of the regularizing parameter ε. Hence, there exists a positive time,
T , such that the H3-norms of A and ρ are bounded on [0, T ]. Considering the case
where m > 3 gives the second desired inequality:

d

dt
Em(t) + δ1 ‖Jε∇ρε‖2m + δ2 ‖Jε∇Aε‖2m . CEm(t) + C(Ao, B,M), (4.6)

with C = C (M,C1, |A|∞ , |ρ|∞ , |∇ρε|∞ , |∇Aε|∞).

Remark 4.1. Note that for the above argument we needed |ρ|∞ < C2. Due to the
Sobolev Embedding Theorem the L∞-norm is controlled by the H2-norm. From
Theorem 3.1 each ε > 0 we know that ‖ρε‖2 < L2 for t ∈ [0, Tε). However, we know
that [0, T ] ⊂ [0, Tε).

The bound on the higher-norms of the regularized solutions prove to be extremely
useful in multiple ways. To begin with, all higher-order norms are bounded on [0, T ].
Moreover, we know that there exists some τ > 0 such that Aε(x, t) ≥ Ao for all
(x, t) ∈ Ω × [0, τ ] if Aε(x, 0) > Ao. Indeed, if we define Aε∗ = minx∈ΩA

ε(x, t) then
we have a point-wise bound on its time derivative thanks Proposition 4.1. In fact,
we know that: ∣∣∣∣dAε∗dt

∣∣∣∣ ≤ η |∆Aε|∞ + |Aε +Aερε +Ao|∞

≤ η ‖∆Aε‖2 + ‖Aε +Aερε +Ao‖2 ,

where we need Aε ∈ Hm for m > 4 to use 1 of Lemma 2.1 and then Sobolev
embedding estimates. Since ‖Aε‖4 is bounded independent of ε then Aε∗ > Ao

on [0, τ ] for some τ ∈ [0, T ]. For simplicity let T = min{T, τ}, from now on we
interval [0, T ] to be the interval on which the higher-order norms are bounded and
Aε ≥ Ao. Now that we have a non-trivial interval on which all the higher-order
norms are bounded we show that the family of solutions to the regularized system
(3.1), {(Aε, ρε)}ε>0, form a Cauchy sequence in the L2-norm. This enables us to
obtain the necessary limiting functions A, ρ, which are a solutions to (1.1).

Lemma 4.4. The family of solutions {(Aε, ρε)}ε>0 to (3.1) form a Cauchy sequence
in C([0, T ];L2(Ω)×L2(Ω)). In particular, there exists a constant C and a time T > 0
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such that for all ε and ε′

sup
0≤t≤T

{∥∥∥Aε −Aε′∥∥∥
0

+
∥∥∥ρε − ρε′∥∥∥

0

}
≤ C max(ε, ε′).

Proof. Let (Aε, ρε) and (Aε
′
, ρε
′
) solve their respective regularized systems (3.1)

and satisfy the conditions of the lemma. Take the inner-product of Aε − Aε′ and
Aεt −Aε

′

t .

1
2
d

dt

∥∥∥Aε–Aε′∥∥∥2

0
=
∫ (

Aε–Aε
′
)(

Aεt–A
ε′

t

)
dx

=
∫ (

Aε–Aε
′
)(

ηJ2
ε ∆Aε– ηJ2

ε ∆Aε
′
)
dx –

∥∥∥Aε–Aε′∥∥∥2

0

+
∫ (

Aε–Aε
′
)(

Aερε–Aε
′
ρε
′
)
dx = I1 + I2 + I3.

Since I2 has a negative sign it is not problematic. The other two terms can be easily
dealt with using (4) of Lemma 2.1.

I1 = −η
∥∥∥Jε′∇(Aε −Aε

′
)
∥∥∥2

0
+ η

∫
(J2
ε − J2

ε′)∆A
ε(Aε −Aε

′
)dx

≤ −η
∥∥∥Jε′∇(Aε −Aε

′
)
∥∥∥2

0
+ ηmax(ε, ε′) ‖A‖3

∥∥∥Aε −Aε′∥∥∥
0
.

For the last term,

I3 =
∫
ρε(Aε −Aε

′
)2dx+

∫
Aε
′
(
Aε −Aε

′
)(

ρε − ρε
′
)
dx

≤
(
|ρε|∞ +

1
2
|Aε|∞

)∥∥∥Aε −Aε′∥∥∥2

0
+

1
2
|Aε|∞

∥∥∥ρε − ρε′∥∥∥2

0
.

Combine these inequalities and return to the initial estimate to obtain:

1
2
d

dt

∥∥∥Aε–Aε′∥∥∥2

0
≤
(
|ρε|∞+

1
2
|Aε|∞−1

)∥∥∥Aε–Aε′∥∥∥2

0
+ ηmax(ε, ε′) ‖A‖3

∥∥∥Aε–Aε′∥∥∥
0

+
1
2
|Aε|∞

∥∥∥ρε–ρε′∥∥∥2

0
. (4.7)

Perform a similar computation for ρ:

1
2
d

dt

∥∥∥ρε − ρε′∥∥∥2

0
=
∫ (

ρε − ρε
′
)(

ρεt − ρε
′

t

)
dx

=
∫ (

ρε−ρε
′
)(
J2
ε ∆ρε−J2

ε ∆ρε
′
)
dx+

∫ (
ρε−ρε

′
)(
Aερε−Aε

′
ρε
′
)
dx

+
∫ (

ρε − ρε
′
)(

Jε

(
∇ · ρ

ε

Aε
Jε∇Aε

)
− Jε′

(
∇ · ρ

ε′

Aε′
Jε′∇Aε

′

))
dx

= F1 + F2 + F3.
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The terms F1 and F2 are dealt with exactly as was done for the attractiveness
value. F3 is not as straight forward but it can be simplified using Cauchy-Schwarz
inequality:

F3 ≤

(∥∥∥∥Jε(∇ · ρεAε JεAε
)∥∥∥∥

0

+

∥∥∥∥∥Jε′
(
∇ · ρ

ε′

Aε′
Jε′∇Aε

′

)∥∥∥∥∥
0

)∥∥∥ρε − ρε′∥∥∥
0
.

We can extract an ε at the expense of a higher-order norm and the loss of a mollifier.
For example we have:

∥∥∥∥Jε(∇ · ρεAε Jε∇Aε
)∥∥∥∥

0

≤ ε
∥∥∥∥ ρεAε Jε∇Aε

∥∥∥∥
2

. ε

{∣∣∣∣ ρεAε
∣∣∣∣
∞

∥∥D2∇Aε
∥∥

0
+ |∇Aε|∞

∥∥∥∥D2

(
ρε

Aε

)∥∥∥∥
0

}
.

From the proof of Lemma 4.2, refer to the inequality (A.3), the above inequality

has a bound that depends only on ‖ρε‖2, ‖Aε‖3, and C1. Define v2 =
∥∥∥Aε −Aε′∥∥∥2

0
+∥∥∥ρε − ρε′∥∥∥2

0
. Since ‖Aε‖3 and ‖ρε‖2 are bounded on [0, T ] then we have the following

differential inequality:

d

dt
v . C(max(ε, ε′) + v).

Notice that the constant depends on C1, ‖ρε‖2 and ‖Aε‖3. The above differential in-
equality gives v(t) ≤ eCt (v(0) + max(ε, ε′))−max(ε, ε′). Since (Aε, ρε) and (Aε

′
, ρε
′
)

satisfy the same initial conditions we have that v(0) = 0, which implies:

sup
0≤t<T

v(t) ≤ C max(ε, ε′).

4.2. Existence and Uniqueness of Solutions to the Original

Residential Burglary Model

We have all the tools to prove Theorem (2.1); however, we first state and prove
the result for uniqueness of solutions. More precisely, if we assume that we have
existence of a smooth enough solution to (1.1) then this solution must be unique.

Lemma 4.5 (Uniqueness of Smooth Solutions). Let (A1, ρ1), (A2, ρ2) be local-
in-time solutions, with a common interval of existence [0, T ], to the system (1.1).
Furthermore, suppose these solutions are smooth enough and with the same initial
data in V m, for m ≥ 3, which satisfy the conditions stated in Theorem 2.1 then
A1 = A2 and ρ1 = ρ2 on [0, T ].

Proof. We consider the difference of both variables u = A1 −A2 and v = ρ1 − ρ2.
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From (1.1) we can see that u and v satisfy the following system:

ut = η∆u− u+ ρ1u+A2v, (4.8a)

vt = ∆v − 2∇ ·
(
ρ1

A1
∇A1 −

ρ2

A2
∇A2

)
− ρ1u−A2v. (4.8b)

The time evolution of the L2-norm of u multiplied by a constant M (the same M
used in Lemma 4.1) satisfies the following inequality:

d

dt

M

2
‖u‖20 ≤ −Mη ‖∇u‖20 +M

(
|ρ1|∞+

1
2
|A2|∞− 1

)
‖u‖20 +

M

2
|A2|∞ ‖v‖

2
0 . (4.9)

The above inequality can be seen simply by taking the L2-inner product of ut and
u. Substituting (4.8a) for ut into this inner product and integrating by parts gives
(4.9). The same is done for v. The following inequality holds:

d

dt

1

2
‖v‖20 .C2

1C
2
2 ‖∇u‖20 +C

(
|ρ1|∞ , |∇A2|∞

)
‖u‖20 +C(|ρ1|∞ , |∇A2|∞ , |A1|∞) ‖v‖20 .

(4.10)

For detailed computations of the upper bound given by (4.10) refer to Appendix
A.3. Define F (t) = M

2 ‖u(t)‖20 + 1
2 ‖v(t)‖20, again choosing M > 1

η (C1C2)2 then from
(4.9) and (4.10) we see that F (t) satisfies the following ode:

dF (t)
dt

≤ CMF (t). (4.11)

In (4.11) the constant CM = CM (M, |ρ1|∞ , |A1|∞ , |A2|∞ , |∇A1|∞ , C1). We are
set to apply a Grönwall’s lemma 31. Applying this lemma to (4.11) gives that
sup0≤t≤T {F (t)} ≤ F (0)eCMT . All terms that compose CM are bounded on the
interval [0, T ]. Since the two solutions satisfy the same initial conditions then
F (0) = 0, which implies uniqueness of the solution.

We now progress to the proof of the main result: Theorem 2.1.

Proof. From Theorem 3.1 we have that given the initial conditions in the hypothe-
sis of Theorem 2.1, there exists a family of solutions {(Aε, ρε)}ε>0 to the regularized
problem (3.1). These solutions exist on the time interval [0, Tε). The interval of ex-
istence depends on the regularizing parameter; however, from Lemma 4.1 we know
that the V 2-norm of the solutions are bounded independent of ε. This gives a uni-
form interval of existence [0, T ]. Furthermore, from Lemma 4.4 we conclude that
there exist A, ρ ∈ C([0, T ];L2(Ω)) such that:

sup
0≤t≤T

{‖Aε −A‖0 + ‖ρε − ρ‖0} ≤ Cε.

Therefore, the solutions converge strongly in the low-norm. We state an interpola-
tion lemma needed to show strong convergence in intermediate norms. This lemma
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offers a connection between Lemma 4.1 and Lemma 4.4 which leads to the desired
result.

Lemma 4.6 (Interpolation in Sobolev Spaces). Given s ≥ 0, there exists a
constant Cs so that for all v ∈ Hs(Ω), and 0 < s′ < s the following inequality holds:

‖v‖s′ ≤ ‖v‖
1−s′/s
0 ‖v‖s

′/s
s .

To use Lemma 4.6 having strong convergence in the L2-norm and some bounds on
the higher norms is essential. For m > 3 we apply the above lemma to A = Aε −A
and ρ = ρε − ρ.

sup
0≤t≤T

{∥∥A∥∥
m′

+ ‖ρ‖m′
}

.
(∥∥A∥∥1−m′/m

0

∥∥A∥∥m′/m
m

+ ‖ρ‖1−m
′/m

0 ‖ρ‖m
′/m

m

)
.
(∥∥A∥∥m′/m

m
ε1−m

′/m + ‖ρ‖m
′/m

m ε1−m
′/m
)
.

The estimate (4.6) implies that Aε, ρε are uniformly bounded in Hm, for m ≥ 2.
Therefore, the above inequality implies strong convergence in C([0, T ], V m

′
). Taking

m′ to be larger than three implies strong convergence in C([0, T ], C2(Ω)) due to the
Sobolev Embedding Theorem 14. Now, we simply need to verify that the limits
A and ρ actually satisfy (1.1). Since (Aε, ρε) → (A, ρ) from (3.1) we see that Aεt
converges to η∆A−A+Aρ+Ao in C([0, T ], C(Ω)). Correspondingly, ρεt converge to
∇ ·
[
∇ρ− 2 ρA∇A

]
+B −Aρ. Finally, since Aεt → At and ρεt → ρt then A and ρ are

classical solutions of (1.1). Since the solutions satisfy the smoothness requirements
of Lemma 4.5 they are unique.

5. Continuation of the Solutions to the Residential Burglary
Model

In the previous section we proved that if the initial data (A(0, x), ρ(0, x)) ∈ V m

then there exists some positive time T , such that there exists a classical solution
(A(x, t), ρ(x, t)) to (1.1) on [0, T ]. We are interested in whether this solution can
be continued for all time or if there exists a blow-up in finite time. A natural
subsequent step is to prove a continuation argument which gives necessary and
sufficient conditions for global existence. Recall that we used the Picard Theorem
on a Banach Space to prove local existence, for fixed ε, to the regularized system
(3.1) in Lemma 3.1. This theorem has a natural continuation argument. The family
of solutions can be extended in time provided |1/Aε|∞, ‖Aε‖m, and ‖ρε‖m remain
bounded 31. This argument does not directly apply to the solution of the original
system and to prove a similar result we need the following theorem.

Theorem 5.1 (Continuity in the High Norms). Given initial conditions
(A0(x), ρ0(x)) ∈ V m, for m > 3, which satisfy the conditions stated in Theorem
2.1. Let {(Aε, ρε)}ε>0 be the family of solutions to (3.1) and (A, ρ) be the solution
described in Theorem 2.1. The following hold:

(1) {(Aε, ρε)}ε>0 and (A, ρ) are uniformly bounded in Cweak([0, T ];V m).
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(2) (A, ρ) ∈ C([0, T ];V m) ∩ C1([0, T ];V m−2).

Proof. From Lemma 4.1 we conclude that:

sup
0≤t≤T

‖(Aε, ρε)‖Vm ≤ K. (5.1)

Furthermore, automatically from (1.1):

sup
0≤t≤T

∥∥∥∥ ∂∂t (Aε, ρε)
∥∥∥∥
Vm−2

≤ K̃. (5.2)

We need to show that the limiting solution is continuous in the weak topology
of V m(Ω). From Definition 1 in Section 2 it suffices to show that (A, φ1)m and
(ρ, φ2)m, where these inner-products are defined by (2.1), are continuous scalar
functions ∀ φ1, φ2 ∈ Hm. Actually, since H−m is the dual of Hm we simply need
to prove that for all ψ ∈ H−m the following is true: (ψ,Aε)L2 ⇀ (ψ,A)L2 . The
same needs to hold for ρ. Previously we proved that Aε → A in the intermediate
norms, i.e. in C([0, T );Hm′), where m′ < m. This implies that Aε ⇀ A. Consider
the L2-inner product of ψ ∈ H−m and Aε −A:

(ψ,Aε −A)L2 = (ψ − φj , Aε)L2 + (φj , Aε −A)L2 + (φj − ψ,A)L2 , (5.3)

where {φj}j∈N is a sequence in H−m
′

which converges strongly in H−m to ψ. Such
a sequence exists because H−m

′
is dense in H−m. These terms are bounded above

on [0, T ]:

(ψ − φj , Aε)L2 ≤ ‖ψ − φj‖−m ‖A
ε‖m ≤ Kδ/3,

(φj , Aε −A)L2 ≤ ‖φj‖−m′ ‖A
ε −A‖m′ ≤ K2δ/3,

(φj − ψ,A)L2 ≤ ‖ψ − φj‖−m ‖A‖m ≤ Kδ/3.

These inequalities substituted into (5.3) gives that (ψ,Aε − A)L2 → 0. The same
argument can be made for ρ and this wraps up the proof of part 1.

We are left to prove that (A, ρ) ∈ C([0, T ];V m(Ω)) ∩ C1([0, T ];V m−2(Ω)). Thanks
to part 1 it suffices to show that ‖A(t)‖m and ‖ρ(t)‖m are continuous functions in
time. We take advantage of (4.6) by integrating it on the interval [0, T ]:

Em(T ) + δ1

∫ T

0

‖Jε∇ρε‖2m dt+ δ2

∫ T

0

‖Jε∇Aε‖2m dt . Em(0) +
∫ T

0

{CEm(t) +D0} dt.

Applying Grönwall’s Lemma we obtain that Em(T ) ≤ (Em(0)−D0/C)eCT +D0/C.
Taking the limit as T → 0+ we see that Em(t) is continuous at t = 0+. Furthermore,
being that Em(t) is bounded on [0, T ] and δ1, δ2 > 0 the inequality above implies
that (A, ρ) ∈ L2([0, T ];V m+1(Ω)). Thus, for a.e t0 ∈ [0, T ] then (A(t0), ρ(t0)) ∈
V m+1. Indeed, the initial conditions have gained regularity. Take an arbitrarily
small t0 and let (A(t0), ρ(t0)) to be a new set of initial conditions. Running through
the same existence and uniqueness arguments we obtain a solution (A, ρ) which exist
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on an interval [t0, T1], (A, ρ) ∈ C([t0, T1];V m
′
), where nowm′ < m+1. In view of the

fact that for m > 3, Em and Em+1 satisfy the same differential inequality then T1 ≥
T . Uniqueness and the arbitrary choice of t0 implies that (A, ρ) ∈ C([0, T ];V m).
Furthermore, by virtue of the equation then (A, ρ) ∈ C1([0, T ];V m−2).

Remark 5.1. From (4.6) we know we have control of the V m+1 norm as long as we
have control |A(t0)|∞, |ρ(t0)|∞, |∇A(t0)|∞, |∇ρ(t0)|∞ and M . Furthermore, control
of |1/A(t0)|∞ implies control of M .

Fortunately, we find that the terms mentioned in Remark 5.1 are interdependent
and we can obtain a dominating term. However, before we discuss this we state and
prove a regularity argument.

Theorem 5.2 (Regularity). The solutions A, ρ of the system (1.1) obtained from
Theorem 2.1 are in the space C∞((0, T )× Ω).

Proof. Since (A, ρ) ∈ C([0, T ];V m) ∩ C1([0, T ];V m−2) from Sobolev embedding
estimates (A, ρ) ∈ C([0, T ];Cm−s) ∩ C1([0, T ];Cm−2−s) for s > 1. This will give
us smoothness in space. To obtain smoothness in time we simply look at the time-
derivates of the system of equations (1.1) and use a bootstrap argument.

Next we show that if the appropriate initial and boundary data are chosen for A
then only control of |∇ρ(t0)|∞ is needed to continue the solution. We prove this
in the following sequence of lemmas. The first one states that |∇ρ|∞ and |∇A|∞
controls |ρ|∞ and |A|∞ respectively. This holds because there is a bound for the
mass of ρ and A on any finite time interval.

Lemma 5.1. Let A and ρ be solutions from Theorem 2.1 with initial conditions
A0(x) and ρ0(x), for 1 ≤ p ≤ ∞ the following estimate holds for A and ρ on [0, T ]
for any T > 0:

‖u(·, t)‖Lp ≤ c ‖∇u‖Lp + (B +Ao)T, (5.4)

for all t ∈ [0, T ].

Proof. Adding both equations in the system (1.1) we obtain that
∫
ρ(x, t)dx ≤(

B +Ao
)
t. The same estimate holds for A. Since Ω is the unit torus the average

value of a function u is given by u =
∫
udx. Now, by Poincaré inequality ‖u‖Lp ≤

c ‖∇u‖Lp + ‖u‖Lp . This gives the final result.

Furthermore, since there is a max principle for the attractiveness value equation we
prove that if A(x, 0) > Ao 6= 0 for all x then A(x, t) ≥ Ao during the interval of
existence. We state this result formally in following lemma.

Lemma 5.2 (Lower-Bound of Attractiveness Value). Let Ω = T2 and A, ρ ∈
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C([0, T ];C2(Ω)) ∩ C1([0, T ];C(Ω)) be a solutions to (1.1) with initial conditions:

A(x, 0) = A0(x) > Ao,

ρ(x, 0) = ρ0(x).

Then A(x, t) ≥ Ao in Ω for all t ∈ [0, T ].

Proof. We see directly from (1.1) that A, ρ ≥ 0. Let w = Ao −A then w satisfies:
wt = η∆w − w + wρ−Aoρ. Since both ρ and Ao are nonnegative then we have:

wt − η∆w − λw ≤ 0, (5.5)

where λ = sup0≤t≤T |ρ(·, t)− 1|∞. Then w = eλtv satisfies (5.5) if v satisfies vt −
η∆v ≤ 0. From the initial data we know that w(x, 0) < 0 for all x ∈ Ω and the
same is true for v. By continuity in time v must remain nonnegative for some
nontrivial time interval say 0 < t < t0. Assume that at t0 we have that v(x0, t0) = 0
for some x0. This means that vt(x0, t0) ≥ 0 and since we have a maximum then
−∆v(x0, t0) ≥ 0 which is a contradiction unless v(x, t0) = 0 for all x ∈ Ω. Therefore,
v(x, t) ≤ 0 and since w and v have the same sign then w(x, t) ≤ 0. This proves the
result.

Lemma 5.2 tells us that if |ρ|∞ is bounded then A > Ao, provided we have appro-
priate initial and boundary data. We also need for the solutions to the regularized
model to remain bounded from below. However, we know that this is true on [0, T ]
as was discussed earlier. In addition, we prove that if |∇ρ|∞ remains bounded then
|∇A|∞ also remains bounded. This will be demonstrated in the following two lem-
mas.

Lemma 5.3. Let (A, ρ) satisfy (1.1) in the classical sense and assume that |∇ρ|∞
is bounded on [0, T ], for T > 0 then

‖∇A(·, t)‖2L2 ≤
(
‖∇A(·, 0)‖2L2 − C̃

)
eC(η,|∇ρ|∞,A

o,B)T + C̃, (5.6)

where C̃ = C̃(η, |∇ρ|∞ , Ao, B). This holds ∀t ∈ [0, T ].

Proof.
1
2
d

dt

∫
|∇A|2 dx =

∫
∇A · ∇Atdx

(1.1) =
∫
∇A · ∇ (η∆A−A+Aρ+Ao) dx

= −η
∫
|∆A|2 dx−

∫
|∇A|2 dx+

∫
∇A · ∇(Aρ)dx

= −η
∫
|∆A|2 dx−

∫
|∇A|2 dx+

∫
|∇A|2 ρdx+

∫
A∇A · ∇ρdx

Cauchy-Schwarz ≤ −η ‖∆A‖2L2 + (|ρ|∞ − 1) ‖∇A‖2L2 + |∇ρ|∞
(
‖A‖2L2 + ‖∇A‖2L2

)
(5.4) ≤ C(η, |ρ|∞ , |∇ρ|∞) ‖∇A‖2L2 + C(|∇ρ|∞ , Ao, B, T ).
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Integrating this and using (5.4) for p =∞ gives the desired result (5.6).

Lemma 5.4. Let (A, ρ) satisfy (1.1) in the classical sense and assume that |∇ρ|∞
is bounded on [0, T ], for T > 0 then

|∇A(·, t)|∞ ≤ c4 max{|∇A(·, 0)|∞ ,
(
‖∇A(·, 0)‖2L2 − C̃

)
eCT + C̃} (5.7)

∀t ∈ [0, T ]. The constants C and C̃ are defined as in Lemma 5.3.

The proof of Lemma 5.4 uses the Moser-Alikakos iteration.1

Proof. Let s ≥ 2:
1
s

d

dt

∫
|∇A|s dx =

∫
|∇A|s−1∇Atdx

(1.1) =
∫
|∇A|s−1∇ (η∆A−A+Aρ+Ao) dx

≤ −η(s− 1)
∫
|∇A|s−2 |∆A|2 dx−

∫
|∇A|s dx+

∫
|∇A|s ρdx

+
∫
A |∇A|s−1 |∇ρ| dx

Hölder’s Ineq. ≤ −4η(s− 1)
s2

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ |∇ρ|∞ ‖∇A‖

s−1
Ls ‖A‖L2

+ (|ρ|∞ − 1) ‖∇A‖sLs
(5.4) = −4η(s− 1)

s2

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ c1 ‖∇A‖sLs + c2,

where c1 = c1(|∇ρ|∞ , |ρ|∞ , Ao, B) and c2 = c2(Ao, B). Multiplying both sides by
s, s ≥ 2 gives:

d

dt

∫
|∇A|s dx ≤ −2η

∥∥∥∇(|∇A|s/2)∥∥∥2

L2
+ sc1 ‖∇A‖sLs + sc2.

We need to make use of an extended Sobolev inequality:17

−‖∇u‖2L2 ≤ −
(1− ε)
ε
‖u‖2L2 +

c

ε2
‖u‖2L1 . (5.8)

A derivation of (5.8) can be found in Appendix A.4. Taking u = |∇A|s/2 gives:

d

dt

∫
|∇A|s dx ≤ −2η(1− ε)

ε
‖∇A‖ss +

c0
ε2
‖∇A‖sLs/2 + c1s ‖∇A‖sLs + sc2,

Choose ε = η
sc1+η noting that s > η ∈ [0, 1] (refer to 34) then:

d

dt

∫
|∇A|sLs dx ≤ −c1s ‖∇A‖

s
Ls + c3s

2 ‖∇A‖sLs/2 + sc2.

By multiplying both sides by ec1st the above inequality is equivalent to

d

dt

{
ec1st ‖∇A‖s

}
≤ ec1st

(
c3s

2 ‖∇A‖2Ls/2 + c2s
)
.
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Integrating this over [0, t] gives:

ec1st ‖∇A(·, t)‖sLs ≤ ‖∇A(·, 0)‖sLs + sup
0≤τ≤t

‖∇A(·, τ)‖sLs/2
∫ t

0

c3s
2ec1sτdτ +

∫ t

0

c2e
c1sτsdτ

≤ ‖∇A(·, 0)‖sLs + sup
0≤τ≤t

‖∇A(·, τ)‖sLs/2 c4s(e
c1st − 1) + c5(ec1st − 1).

Therefore,

‖∇A(·, t)‖sLs ≤ (|∇A(·, 0)|∞ + c6)s + c4s sup
0≤τ≤t

‖∇A(·, t)‖sLs/2 , (5.9)

where
c6 = max{1, c5}. Define M(s) = max{|∇A(·, 0)|∞ + c6, sup0≤t≤T ‖∇A(·, t)‖Ls}.
From (5.9) we conclude that

M(s) ≤ (c7s)1/sM(s/2). (5.10)

Let s = 2k for k ∈ N the recursive relation (5.10) gives:

M(2k) ≤ (c7)
∑k
j=1 2−j (2)

∑k
j=1 j2

−j
M(1).

Since both sums
∑k
j=1 2−j and

∑k
j=1 j2

−j converge as k → ∞ taking the limit as
s→∞ we get:

|∇A(·, T )|∞ ≤ lim
s→∞

M(s)

≤ (c7)
∑∞
j=1 2−j (2)

∑∞
j=1 j2

−j
M(1),

Applying Lemma 5.3 gives the final result.

From Theorem 5.1 and Lemma 5.2-5.4 proved above we obtain necessary and suf-
ficient conditions for the continuation of the solution to (1.1).

Corollary 5.1. Given initial conditions (A(x, 0), ρ(x, 0)) ∈ V m, m ≥ 4 such that
A(x, 0) > Ao and ‘no-flux’ boundary conditions, there exist a maximal time of ex-
istence 0 < Tmax ≤ ∞ and a unique solution (A(x, t), ρ(x, t)) ∈ C([0, Tmax);V m)∩
C1([0, Tmax);V m−2) the the system (1.1). Furthermore, if Tmax is finite then
limt→Tmax |∇ρ|∞ =∞.

6. Analysis of a modified PDE model of criminal behavior and its
relation to Keller-Segel Model

Though we succeeded in proving local existence and uniqueness of solutions to
(1.1) the question of whether the solutions can be extended for all time has not
been addressed. To be confident that we have a robust model, suitable for the
target application, we need insight on global existence and/or possible blow up.
Working with a strongly coupled system of nonlinear PDEs makes it difficult to
apply the usual techniques to prove well-posedness. Fortunately, as was mentioned
before, there is an evident relation between the model for residential burglaries
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and the Keller-Segel model for chemotaxis, developed in 28 by Keller and Segel in
1971. This is not surprising since both processes are usually modeled by a parabolic-
parabolic system and include motion up gradients of some external field. Chemotaxis
is the influence of a chemical substance in the environment on the movement of a
mobile species. This process is key in cellular communications. Keller and Segel
developed a general model for the chemotaxis phase of aggregation of slime mold,
i.e Dictyostelium Discoidium in 28. There has been a great deal of analysis on
various versions of the Keller-Segel model since it was developed and research is
still in progress 7,10,13,15,21, 29,11. Thus far the most studied version is:

∂u

∂t
= κ∆u− χ∇ · (u∇v) , (6.1a)

ε
∂v

∂t
= kc∆v − αv + βu. (6.1b)

with Neumann boundary conditions. In (6.1) u is the myxamoebae density of slime
mold and v the chemo-attractant concentration. Comparing this model to (1.1) we
can see that the chemo-attractant density is comparable to the attractiveness value.
It is worth noting that chemotaxis is sometimes modeled by an elliptic-parabolic
system; however, in the residential burglaries model the timescale of the change
in attractiveness value is similar to the change in criminal density. From (6.1) we
see that the myxamoebae move up gradients of chemo-attract concentration like
criminals move up gradients of attractiveness value. Global existence and finite
time blow-up of the (6.1) is highly dependent on the dimension. In one-dimension
finite time blow up cannot occur 8. In two-dimensions it has been shown, by Corrias
and Calvez 6, that the solution exist globally in time if the initial mass is below
the critical quantity 8π. If the initial mass is above 8π then aggregation occurs
in the case when ε = 021,20. As far as we know the blow-up results for the fully
parabolic system has not been proved. For higher dimensions, d, there exists a
similar critical quantity that is governed by the Ld/2-norm of the initial myxamoebae
density. Although the most studied version of the Keller-Segel model is (6.1) various
variations of the model have also been analyzed. A comprehensive summary of much
of this work can be found in 23 and 24. In a sense, the model given by (1.1) can be
thought of as a generalized and more complicated version of (6.1), which includes
growth and decay of the myxamoebae density and the chemo-attractant. We want to
take advantage the extensive body of work done on (6.1) as a first step to obtaining
insight on the global existence or finite time blow-up of (1.1). To accomplish this
analyze a simplified model of (1.1). This will ease the mathematical analysis while
maintaining fundamental assumptions made in 34. The model we propose is:

ε
∂A

∂t
= η∆A−A+ βρ+Ao(x), (6.2a)

∂ρ

∂t
= ∆ρ− 2∇ · (ρ∇A) +B(x)− f(A)ρ. (6.2b)



February 26, 2010 12:27 WSPC/INSTRUCTION FILE LocExtDraftFi-
nalV2

Local Existence and Uniqueness of Solutions to a PDE Model for Criminal Behavior 23

From now on we work in all of R2. Notice that now Ao and B are functions of the
space variable and must have sufficient decay as |x| → ∞. Model (6.2) makes three
simplifications to (1.1). First, the advection speed is now given simply by |∇A|. The
second modification is that the attractiveness value increases with the number of
criminals with constant of proportionality β, i.e we replace Aρ with βρ in (1.1a).
We have no reason to believe that this modification will decrease the accuracy of
the model. Finally, the criminal density decays with a rate of f(A) and we assume
that f(A) has a lower and upper bound.

6.1. Useful Properties of the Modified Residential Burglaries Model

It is not surprising that (6.1) is the most studied version of the Keller-Segel model
since is possesses properties that facilitates mathematical anlysis. There are three
properties worth noting. First, the system (6.1) conserves mass of the cell den-
sity. Furthermore, one can express the chemo-attractant concentration as the con-

volution of the Bessel Kernel, Bη(z) = 1
4ηπ

∫∞
0

1
t e
− |z|

2

4ηt −tdt, and the cell density.
In two-dimensions this is especially useful for proving blow-up results given large
enough initial mass of the cell density. Most importantly, this model, after non-
dimensionalization, has a Lyapunov functional 6:

F(t) =
∫
u log(u)dx−

∫
uv dx+

1
2

∫
|∇v|2 dx+

∫
αv2dx.

This functional is key in proving global existence. The model (6.2) does not pos-
sess these exact properties; however, it does possess ones which are useful enough.
For v ∈ L1(Ω) let Mv(t) =

∫
Ω
v(x, t)dx. As an example of a useful property

if A, ρ are solutions to (6.2) then Mρ(t) is bounded above and below. Define
fmin = minA∈R+ f(A) then:

Mρ(t) ≤ e−fmint
(
Mρ(0)−

MB

fmin

)
+

MB

fmin
. (6.3)

Replacing fmin with fmax gives a similar lower bound for Mρ(t). Another key
property is the explicit expression of the attractiveness value in terms of the criminal
density in the quasi-static case, i.e ε = 0:

A(x) = Bη ∗ (βρ+Ao) (6.4)

We conjecture that solutions to (6.2) satisfy an energy functional whose upper
bound can be controlled with time. Being that this is beyond the scope of this paper
we only mention that proving such an energy functional is important for proving
global existence via the Lyapunov functional method discussed in the introduction.

6.2. Blow-up of a Modified Residential Burglaries Model

In this section we explore the possibility of blow-up in finite time of the solution
to the modified residential burglaries model (6.2) in the case where ε = 0. It turns
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out, that similar to the Keller-Segel model, if the lower-bound on the mass of the
criminal density is large enough there is mass concentration on a set of measure
zero. Let Mmin

ρ = min {Mρ(0),MB/fmax} and Mmax
ρ = max {Mρ(0),MB/fmin}

and for a function v we denote the finite second moment by Iv =
∫
|x|2 vdx. We

state this blow-up result in the following theorem.

Theorem 6.1 (Blow-up of a Modified Residential Burglaries Model). Let
(A(x, 0), ρ(x, 0)) ∈ L1(R2) be initial data such that

(
βMmin

ρ − 4π
)
Mmin
ρ > πIB.

Furthermore, let ρ be the non-negative smooth solution to (6.2b) and that A has
reached a steady state and is defined by (6.4), then A, ρ are a non-negative smooth
solutions to (6.2) (when ε = 0). Then, if the initial second moment is small enough.
That is if ∫

|x|2 ρdx ≤ 1
K2

[(
β

π
Mmin
ρ − 4

)
Mmin
ρ − IB

]2

, (6.5)

where IB(x) =
∫
Bdx, K =

[
2β
π C

(
Mmax
ρ

)3/2+ a1

(
Mmax
ρ

)1/2], a1 =
4 ‖∇Bη(x)‖1 |A

o(x)|∞ and C a constant, then there exists a finite time singular-
ity.

Proof. Consider the time evolution of the second moment of ρ, I(t) =
∫

R2 |x|2 ρdx:

dI

dt
=
∫

R2
|x|2

(
∆ρ− 2∇ · (ρ∇A)− f(A)ρ+B

)
dx

≤ 4
∫

R2
ρ dx+ 4β

∫
R2
ρ (x · ∇Bη ∗ ρ) dx+ 4

∫
R2
ρ (x · ∇Bη ∗Ao(x)) dx+ IB . (6.6)

The third term of on the right in the above inequality can be bounded above using
Cauchy-Schwarz Inequality and Young’s inequality for convolutions 39:

4
∫

R2
ρ |x| |∇Bη ∗Ao(x)| dx ≤ 4 |∇Bη ∗Ao(x)|∞

∫
ρ |x| dx.

≤ 4 ‖∇Bη‖L1 |Ao(x)|∞︸ ︷︷ ︸
a1

M1/2
ρ (t)

√
I(t) (6.7)

We use the explicit expression of the gradient of the Bessel Kernel, ∇Bη(z) =

− 1
2π

z
|z|2
∫∞

0
e−s−

|z|2
4ηs ds, to bound the second term. Let gη(z) =

∫∞
0
e−s−

|z|2
4ηs ds and

dA = dxdy then:

4β
∫

R2
ρ (x · ∇Bη ∗ ρ) dx ≤ −2β

π

∫
R2

∫
R2
ρ(x, t)x · (x− y)

|x− y|2
gη(x−y)ρ(y, t)dydx

≤ β

π

∫∫
ρ(x, t)[1− gη(x− y)] ρ(y, t)dA− β

π

∫∫
ρ(x, t)ρ(y, t)dA

= −β
π
M2
ρ (t) +

β

π

∫∫
ρ(x, t) [1− gη(x− y)] ρ(y, t)dA.
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Observe that gη(z) is a positive, radially symmetric, decreasing function with max-
imum of one. This implies that 0 ≤ (1− gη(z)) ≤ 1. Now, consider the derivative
of (1− gη(r)) with respect to r = |z|:

d

dr
(1− gη(r)) ≤ r

2η

∫ ∞
0

1
s
e−s−

r2
4ηs ds

≤ 2π
η
rB1(

r
√
η

)

≤ 2π
√
η

sup
r̃∈(0,1)

(r̃B1(r̃)),

where, r̃ = r√
η for 0 ≤ r ≤ √η . If C = 2π√

η max(supr̃∈(0,1) {r̃B1(r̃)} , 1) then
(1− gη(z)) ≤ C |z|. Hence, we have:

4β
∫

R2
ρ (x · ∇Bη ∗ ρ) dx ≤ −β

π
M2
ρ (t) +

2β
π
CMρ(t)

∫
R2
ρ(x, t) |x| dx

C.S. ≤ −β
π
M2
ρ (t) +

2β
π
C (Mρ(t))

3/2
√
I(t). (6.8)

Substituting (6.7) and (6.8) into (6.6) gives:

dI

dt
≤
(

4− β

π
Mρ(t)

)
Mρ(t) +

2β
π
CM3/2

ρ (t)
√
I(t) + a1M

1/2
ρ (t)

√
I(t) + IB

≤
(

4− β

π
Mρ(t)

)
Mρ(t) +

(
2β
π
CM3/2

ρ (t) + a1M
1/2
ρ (t)

)√
I(t) + IB

≤
(

4− β

π
Mmin
ρ

)
Mmin
ρ +

(
2β
π
C
(
Mmax
ρ

)3/2 + a1

(
Mmax
ρ

)1/2)
︸ ︷︷ ︸

K

√
I(t) + IB .

In the last inequality we use the fact that the initial conditions are chosen so that
βMmin

ρ > 4π. Integrating on [0, t) gives the integral inequality:

I(t) ≤ I(0) +
∫ t

0

g(I(s))ds, (6.9)

where g(I(t)) =
(

4− β
πM

min
ρ

)
Mmin
ρ +K

√
I(t)+IB . The function g(I) is continuous,

increasing and such that g(I(t∗)) = 0 for t∗ > 0 such that:

I(t∗) =
1
K2

[(
β

π
Mmin
ρ − 4

)
Mmin
ρ − IB

]2

,

where K is defined in the theorem. Since I(0) ≤ I(t∗) by continuity of g there exists
a t̃ > 0 such that

∫ t̃
0
g(I(s))ds < 0. Hence, I(t̃) < I(0). Repeating this process will

eventually give that I(t) = 0 for some positive t which proves the result.

From Theorem 6.1 we conjecture that a logarithmic sensitivity function is more
suitable than a linear sensitivity function. Moreover, from the maximum principle
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of the attractiveness value a lower bound on f(A) is implicit in the original model.
Hence, setting f(A) = A is only eliminating the upper bound on f(A). This would
only help prevent blow-up. The remaining difference between the two models is less
obvious to analyze. We conjecture that the nonlinear Aρ aids blow-up more than
βρ. This is because we expect, and indeed we observe numerically, that A and ρ

grow and decay together. Hence, we have that Aρ ≈ ρ2 which would aid blow-up
more so than βρ would.

6.3. Exploring Blow-up of a Modified Residential Burglaries

Model in 1D

Although we see blow-up in the modified model for large enough mass of the ini-
tial criminal density in two dimensions, a similar type of blow-up in finite time
of the model (6.2) cannot occur in one dimension. This is due to change of
properties of the Bessel Kernel in one dimension. In fact, a simple computation
shows that the second moment will always be bounded below by something pos-
itive. For simplicity of notation we take η = 1, in this case in one-dimension we

have that B(x) = 1
2
√
π

∫∞
0

1
t1/2

e−
|x|2
4t −tdt and ∂xB(x) = − x√

π

∫∞
0

1
4t3/2

e−
|x|2
4t −tdt =

− 1√
π

∫∞
0
e−
|x|2

4s2
−s2ds. In contrast to the previous section we now seek a bound from

below for the second moment.

dI

dt
= 2Mρ(t)+4β

∫
R2
ρ (x∂xB ∗ ρ) dx+4

∫
R2
ρ (x∂xB ∗Ao(x)) dx−

∫
R2
f(A) |x|2ρdx+IB

≥ 2Mmin
ρ +IB+4β

∫
R2
ρ (x∂xB ∗ ρ) dx+4

∫
R2
ρ (x∂xB ∗Ao(x)) dx−fmaxI(t)

≥ 2Mmin
ρ +IB −fmaxI(t)−

[
4 |Bx|∞

(
β
(
Mmax
ρ

)3/2 + ‖Ao‖1M
max
ρ

)]
I(t)1/2

≥ C1 − C2I(t),

where, C1 = 2Mmin
ρ +IB − δ

[
4 |Bx|∞

(
β
(
Mmax
ρ

)3/2 + ‖Ao‖1Mmax
ρ

)]2
and C2 =

1
δ − fmax. We choose δ small enough such that C1 > 0. This implies that I(t) ≥
e−C2t (I(0)− C1/C2)+C1/C2, which has a bound from below for all time. Hence, if
there is blow-up in finite time we cannot show it via this method. This agrees with
preliminary numerical results which show finite time blow-up in two-dimensions but
not in one-dimension. We hope to address this issue further in a future article.

7. Discussion

The overarching goal of the development of model (1.1) by Short et al. is to help
understand the spatio-temporal dynamics of residential burglary “hotspots” to aid
law-enforcement in the mobilization of their resources. In this paper we studied the
well-posedness of this model to determine whether it is a suitable model for the
target application. In particular, we know that certain types of finite time blow-up



February 26, 2010 12:27 WSPC/INSTRUCTION FILE LocExtDraftFi-
nalV2

Local Existence and Uniqueness of Solutions to a PDE Model for Criminal Behavior 27

would invalidate the model. For example, blow-up in the L∞ norm of the criminal
density would not make any physical sense. As a first step to determining whether
this model is well-posed we proved local existence of classical solutions. Furthermore,
we know that with no-flux boundary conditions the attractiveness value will never
go below its static component Ao. From the continuation argument we know that
the model has a global solution provided the L∞ bound of the gradient of ρ remains
bounded. In the case of blow-up we also know that if the L∞ norm of the gradient
of A blows up in finite time then the same has to be true for the gradient of
ρ. In the final part of the paper we explored the connections of the residential
burglary model and the Keller-Segel model for chemotaxis, which has been vastly
studied. Considering a modified residential burglary model we determined that the
logarithmic sensitivity function in (1.1) is essential to preventing blow-up. In fact,
preliminary numerical results show finite time blow-up for (1.1) with χ(A) = A

with no other modifications in two-dimensions. In one-dimension no such blow-up
has been observed. This serves to confirm the connections between the Keller-Segel
model and the residential burglary model.

Appendix A. Additional Computations

A.1. Computations for Theorem 3.1

Computations for F2

‖F2(v1)− F2(v2)‖2 ≤
∥∥J2

ε ∆(ρ1 − ρ2)
∥∥

2
+ 2

∥∥∥∥Jε [∇ · ρ1

A1
Jε∇A1−∇ ·

ρ2

A2
Jε∇A2

]∥∥∥∥
2

+ ‖ρ1A1 −A2ρ2‖2 = S1 + S2 + S3.

The terms S1 and S3 appeared in the inequality for F1; therefore, we are only
concerned with S2:

1
2
S2 .

1
ε2

∥∥∥∥ρ1

A1
Jε∇A1−

ρ2

A2
Jε∇A2

∥∥∥∥
1

≤ 1
ε2

(∥∥∥∥ ρ1

A1
Jε∇ (A1 −A2)

∥∥∥∥
1

+
∥∥∥∥Jε∇A2

(
ρ1

A1
− ρ2

A2

)∥∥∥∥
1

)
.

1
ε2

(∣∣∣∣ ρ1

A1

∣∣∣∣
∞
‖D {Jε∇ (A1 −A2)}‖0 + |Jε∇ (A1 −A2)|∞

∥∥∥∥D( ρ1

A1

)∥∥∥∥
0

)
+

1
ε2

(
|Jε∇A2|∞

∥∥∥∥D( ρ1

A1
− ρ2

A2

)∥∥∥∥
0

+
∣∣∣∣ ρ1

A1
− ρ2

A2

∣∣∣∣
∞
‖DJε∇A1‖0

)
=

1
ε2

(R1 +R2 +R3 +R4) .

R1 can be easily bounded, without any additional factors of 1/ε, by∣∣A−1
1

∣∣
∞ |ρ1|∞ ‖A1 −A2‖2. On the other hand, for R2 we need to use (5 ) of Lemma
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2.1 and (1 ) of Lemma 2.2. More precisely, we have:

R2 .
1
ε
‖A1 −A2‖2

(∣∣∣∣ 1
A1

∣∣∣∣
∞
‖ρ1‖1 +

∣∣∣∣ 1
A1

∣∣∣∣2
∞
‖A‖1 |ρ1|∞

)
.

The next term requires more work, basically repeated applications of the Lemma
2.2.

R3 .
1
ε
‖A2‖2

∥∥∥∥A2ρ1 −A1ρ2

A1A2

∥∥∥∥
1

.
1
ε
‖A2‖2

{∣∣∣∣ 1
A1A2

∣∣∣∣
∞
‖ρ1A2 − ρ2A1‖1 + |ρ1A2 − ρ2A1|∞

∥∥∥∥D( 1
A1A2

)∥∥∥∥
0

}
.

1
ε
‖A2‖2

{∣∣∣∣ 1
A1A2

∣∣∣∣
∞
‖ρ1A2 − ρ2A1‖1 + |ρ1A2 − ρ2A1|∞

}
.

Since, |v|∞ . ‖v‖2 and

∥∥∥∥D( 1
A1A2

)∥∥∥∥
0

.

∣∣∣∣ 1
A1

∣∣∣∣
∞

∣∣∣∣ 1
A2

∣∣∣∣2
∞
‖∇A2‖0 +

∣∣∣∣ 1
A2

∣∣∣∣
∞

∣∣∣∣ 1
A1

∣∣∣∣2
∞
‖∇A1‖0 ,

we have:

R3 .
1
ε
‖A2‖2

(∣∣∣∣ 1
A1

∣∣∣∣
∞

∣∣∣∣ 1
A2

∣∣∣∣
∞

+
∣∣∣∣ 1
A1

∣∣∣∣
∞

∣∣∣∣ 1
A2

∣∣∣∣2
∞
‖A2‖1 +

∣∣∣∣ 1
A2

∣∣∣∣
∞

∣∣∣∣ 1
A1

∣∣∣∣2
∞
‖A1‖1

)
‖ρ1A2 − ρ2A1‖2 .

Finally,

R4 ≤
∣∣∣∣ 1
A1

∣∣∣∣
∞

∣∣∣∣ 1
A2

∣∣∣∣
∞
‖A1‖2 |A2ρ1 − ρ2A1|∞ .

A.2. Computations for Higher-Order Energy Estimate Estimates

Claim 1:∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 . (|∇u|∞ + |u|∞ + |v|∞) ‖u‖2m + (|∇u|∞ + |u|∞) ‖v‖2m .

Proof.∑
|α|≤m

‖Dαu‖0 ‖D
α(uv)‖0 ≤

∑
|α|≤m

‖Dαu‖0 {‖D
α(uv)− uDαv‖0 + |u|∞ ‖D

αv‖0}

≤ ‖u‖m

 ∑
|α|≤m

‖Dα(uv)− uDαv‖0 + |u|∞ ‖v‖m


≤ c ‖u‖m

{
|∇u|∞

∥∥Dm−1v
∥∥

0
+ ‖Dmu‖0 |v|∞ + |u|∞ ‖v‖m

}
This proves the claim.
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Lemma Appendix A.1.∥∥∥∥Dm

(
1
Aε

)∥∥∥∥
0

≤
m−1∑
k=0

Ck

∣∣∣∣ 1
Aε

∣∣∣∣k+2

∞
|∇Aε|k∞

∥∥Dm−kAε
∥∥

0
, (A.1)

where the C ′ks are constants.

Proof. Using (1) of Lemma 2.2 and dropping the constants we get:

∥∥∥∥Dm

(
1
A

)∥∥∥∥
0

=
∥∥∥∥Dm−1

(
∇A
A2

)∥∥∥∥
0

. |∇A|∞

∥∥∥∥Dm−1

(
1
A2

)∥∥∥∥
0

+
∣∣∣∣ 1
A

∣∣∣∣2
∞

∥∥Dm−1∇A
∥∥

0

. |∇A|∞

(
|∇A|∞

∥∥∥∥Dm−2

(
1
A3

)∥∥∥∥
0

+
∣∣∣∣ 1
A

∣∣∣∣3
∞

∥∥Dm−2∇A
∥∥

0

)
+
∣∣∣∣ 1
A

∣∣∣∣2
∞
‖DmA‖0

...

. |∇A|m−1
∞

∥∥∥∥D1

(
1
Am

)∥∥∥∥
∞

+
m−2∑
k=0

∣∣∣∣ 1
A

∣∣∣∣k+2

∞
|∇A|k∞

∥∥Dm−kA
∥∥

0

.
m−1∑
k=0

∣∣∣∣ 1
A

∣∣∣∣k+2

∞
|∇A|k∞

∥∥Dm−kA
∥∥

0
.

Proof. (Lemma 4.2)
Iα︷ ︸︸ ︷∫

Dα(Jε∇ρ) ·Dα
( ρ
A
Jε∇A

)
dx ≤ ‖Dα(Jε∇ρ)‖0

∥∥∥Dα
( ρ
A
Jε∇A

)∥∥∥
0

≤ ‖Dα(Jε∇ρ)‖0
∥∥∥Dα

( ρ
A
Jε∇A

)
− ρ

A
Dα(Jε∇A)

∥∥∥
0

+ ‖Dα(Jε∇ρ)‖0
∣∣∣ ρ
A

∣∣∣
∞
‖DαJε∇A‖0 .

Summing over |α| ≤ m gives:

∑
|α|≤m

Iα ≤‖Jε∇ρ‖m

 ∑
|α|≤m

∥∥∥Dα
( ρ
A
Jε∇A

)
− ρ

A
Dα(Jε∇A)

∥∥∥
0

+
∣∣∣ ρ
A

∣∣∣
∞
‖Jε∇A‖m


.‖Jε∇ρ‖m

(∣∣∣∇( ρ
A

)∣∣∣
∞

∥∥Dm−1Jε∇A
∥∥

0
+ |Jε∇A|∞

∥∥∥Dm ρ

A

∥∥∥
0
+
∣∣∣ ρ
A

∣∣∣
∞
‖Jε∇A‖m

)
.

We bound the first term
∣∣∇( ρA )

∣∣
∞ ≤

(
C1 |∇ρ|∞ + |ρ|∞ |∇A|∞ C2

1

)
. Therefore, the

above inequality can be bounded by:∑
|α|≤m

Iα . ‖Jε∇ρ‖m
(
C1 |∇ρ|∞ + |ρ|∞ |∇A|∞ C2

1

)
‖A‖m

+ ‖Jε∇ρ‖m
(
|Jε∇A|∞

∥∥∥Dm ρ

A

∥∥∥
0

+
∣∣∣ ρ
A

∣∣∣
∞
‖Jε∇A‖m

)
. (A.2)
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The term
∥∥Dm ρ

A

∥∥
0

can be bounded by simpler terms using part (1) of Lemma 2.2.
In particular, ∥∥∥Dm ρ

A

∥∥∥
0
≤ c

(
|ρ|∞

∥∥∥∥Dm 1
A

∥∥∥∥
0

+ C1 ‖Dmρ‖0

)
. (A.3)

Here we make use of Lemma Appendix A.1 by substituting (A.1) into (A.3). From
(A.2) after applying a Cauchy inequality of the form 2ab ≤ δa2 + 1

δ b
2 we get the

desired result.

A.3. Computations for L2-Cauchy Sequence

R1 .

(∣∣∣∣ 1
Aε

∣∣∣∣
∞
‖D(∇ρ · Jε∇Aε)‖0 + |∇ρε|∞ |∇JεA

ε|∞

∥∥∥∥D( 1
Aε

)∥∥∥∥
0

)
.

∣∣∣∣ 1
Aε

∣∣∣∣
∞

{
|Jε∇Aε|∞‖∆ρ

ε‖0+
∥∥D2JεA

ε
∥∥

0
|∇ρε|∞

}
+
∣∣∣∣ 1
Aε

∣∣∣∣2
∞
|∇ρε|∞|∇JεA

ε|∞‖∇A
ε‖0

≤ c

(∣∣∣∣ 1
Aε

∣∣∣∣
∞

+
∣∣∣∣ 1
Aε

∣∣∣∣2
∞

)
‖Aε‖3 (‖ρε‖3 + ‖Aε‖3 ‖ρ

ε‖3)

similarly,

R2 ≤ c
(∣∣∣∣ 1
Aε

∣∣∣∣
∞
‖D(ρε∆JεAε)‖0 + |ρε∆JεAε|∞

∥∥∥∥D( 1
Aε

)∥∥∥∥
0

)
≤ c

∣∣∣∣ 1
Aε

∣∣∣∣
∞

(
‖ρε‖23 + ‖Aε‖24

)
Computations for Lemma 4.5

1
2
d

dt

∫
v2dx =

∫
v

[
∆v − 2∇ ·

(
ρ1

A1
∇A1 −

ρ2

A2
∇A2

)
−A1ρ1 +A2ρ2

]
dx

C.I ≤
∥∥∥∥ ρ1

A1
∇A1 −

ρ2

A2
∇A2

∥∥∥∥2

0

−
∫
A2v

2dx−
∫
ρ1uvdx

≤
∥∥∥∥ ρ1

A1
∇A1 −

ρ2

A2
∇A2

∥∥∥∥2

0

+
1
2
|ρ1|∞ ‖u‖

2
0 +

1
2
|ρ1|∞ ‖v‖

2
0

Unfortunately, the advection term leaves a term which still has to be dealt with:∥∥∥∥ ρ1

A1
∇A1 −

ρ2

A2
∇A2

∥∥∥∥2

0

≤
∣∣∣∣ ρ1

A1

∣∣∣∣2
∞
‖∇u‖20 + |∇A2|2∞

∥∥∥∥A2ρ1 −A1ρ2

A1A2

∥∥∥∥2

0

≤
∣∣∣∣ ρ1

A1

∣∣∣∣2
∞
‖∇u‖20 + |∇A2|2∞

∣∣∣∣ 1
A1A2

∣∣∣∣2
∞

(
|ρ1|2∞ ‖u‖

2
0 + |A1|2∞ ‖v‖

2
0

)
.

Making use of the fact that |1/A|∞ ≤ C1 gives the final result.
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A.4. Extended Sobolev Inequalities

For the proof of the following theorem see 17.

Theorem Appendix A.1 (Extended Sobolev Inequalities in Bounded Do-
mains). Let Ω be a bounded domain with ∂Ω in Cm, and let u be any function in
Wm,r(Ω)∩Lp(Ω), 1 ≤ r, q ≤ ∞. For any integer j, 0 ≤ j ≤ m, and for any number
a in the interval j/m ≤ a ≤ 1, set

1
p

=
j

n
+ a

(
1
r
− m

n

)
+ (1− a)

1
q
.

If m− j − n/r is a nonnegative integer, then∥∥Dju
∥∥
Lp
≤ C ‖u‖aWm,r ‖u‖(1−a)

Lq . (A.4)

If m− j−n/r is a nonnegative integer, then (A.4) holds for a = j/m. The constant
C depends only on Ω, r, q, m, j a.

Deriving Inequality (5.8)
Applying (A.4) for p = 2 gives:

‖u‖2L2 = C ‖u‖W 1,2 ‖u‖L1

≤ ε
(
‖u‖2L2 + ‖∇u‖2L2

)
+
C

ε
‖u‖2L1
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models for chemosensitive movement. J. Math. Biol., 50(2):189–207, 2005.

16. Avner Friedman. Partial differential equations of parabolic type. Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1964.

17. Avner Friedman. Partial differential equations. Holt, Rinehart and Winston, Inc., New
York, 1969.

18. J.B Greer. Fourth Order Diffusions for Image Processing. PhD thesis, Duke Univeristy,
2003.

19. Philip Hartman. Ordinary differential equations. Birkhäuser Boston, Mass., second
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