
Abstract

In this paper, I work to find solutions to existing problems in com-
pressed sensing of fMRI data. First, I study a wavelet-based algorithm
and modify it to reconstruct data from subsampled Fourier space. Sec-
ondly, I study biased subsampling of fMRI data favoring lower frequencies.
Ultimately, I find the modified wavelet-based algorithm to be an effective
method of reconstruction for subsampled fMRI data, and I find the fa-
vored sampling of lower frequencies in Fourier space to reduce imaging
errors and ultimately produce more accurate reconstructions.

1 Introduction

Compressed sensing has become an increasingly important aspect of sig-
nal processing, with applications ranging from medical imaging to ocean floor
mapping. While sampling at the Nyquist rate (twice the maximum frequency of
the signal), signal processing theory has shown that signals can be recovered ex-
actly [6]. However, utilizing compressed sensing has great potential advantages
as it allows effective signal recovery to occur with significantly fewer samples
than the Nyquist limit would require. As such, signals can be processed faster
and with greater efficiency with the use of compressed sensing. In general, com-
pressed sensing has proven effective at reconstructing static 2D images, though
its applications are being spread towards a variety of signal types.

In this paper, I examine the application of compressed sensing for fMRI,
or functional magnetic resonance imaging. This is a particularly important
application, as fMRI scans typically extract large amounts of data, which in
turn requires a significant amount of time. Movement during an fMRI scan
can distort the extracted images, which becomes a problem with patients who
have difficulties restraining movement, such as small children. Hence, if one
were able to extract the same amount of information in a shorter amount of
time, both the clarity of images produced and the overall comfort of patients
could be increased significantly. Furthermore, fMRI data is conducive to effec-
tive compressed sensing recovery, as the data is taken in Fourier space. We can
hence extract our samples directly from Fourier space, and reconstruct an image
from an inverse Fourier transform of our data. It is important to note that the
method of sampling from Fourier space must be restricted when dealing with
fMRI data. As fMRI data is taken in rows of Fourier space, we must sample
out entire rows, rather than individual elements [1].

Recent research has shown that although reconstructions of fMRI scans using
compressed sensing maintained 95% statistical correlation at 50% compression,
i.e. retaining only 50% of the total data, the regression error over time deviated
from normality, and the general linear model exhibited some bias [2]. The data
also suggested these errors may have occurred as a result of the staircasing ef-
fects of the TV, or Total Variation, minimization algorithm used. I have now
directed my efforts towards utilizing other methods of compressed sensing for
fMRI data, both to see if a more effective algorithm could correct these errors
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in parameter estimates, and more generally to see if there is a way to produce
faster, clearer images with compressed sensing.

2 Wavelet-Based Compressed Sensing

Recently, Cai, Dong, and Shen [3] have proposed a Wavelet-based image
reconstruction, and have shown it to be very effective at removing Gaussian
blur. In contrast with a Wavelet-based L1 regularization like

inf
u
||γ ·Wu||1 +

1

2
||Au− f ||22,

the proposed algorithm is able to produce images that both maintained smooth-
ness and sharpness of edges by solving the following minimization problem:

inf
u,Γ
||[λ ·Wu]ΓC ||22 + ||[γ ·Wu]Γ||1 +

1

2
||Au− f ||22. (1)

Here Γ denotes the jump set, or the distinguishing edges of the image, and
W denotes the wavelet transform. The algorithm works by breaking a single
image into piecewise smooth composite images. The ||[γ ·Wu]Γ||1 term min-
imizes the oscillation of the jump set in the image, while the ||[λ · Wu]ΓC ||22
term minimizes oscillation away from the jump set. This idea is similar to the
Mumford-Shah functional [5].The above minimization problem is solved as an
alternating scheme. We fix Γ and minimize (1) with respect to u and alternate
this with fixing u and minimizing (1) with respect to Γ until the scheme con-
verges.

At iteration k, given Γk−1, uk is found by iterating the following Split Breg-
man algorithm with d0 = b0 = 0 for j = 1, 2, ...

uk,j = argminu
1

2
||Au− f ||22 +

µ

2
||Wu− dj−1 + bj−1||22 (2)

dj = argmind||[λ · d](Γk−1)C ||22 + ||[γ · d](Γk−1)||1 +
µ

2
||d−Wuk,j − bj−1||22

bj = bj−1 + (Wuk,j − dj)

Given the efficacy of this algorithm, we then seek to modify the algorithm to
utilize subsampling of Fourier space, as is done if fMRI compression, rather than
blurring, as the type of image distortion. To do so, we need only modify the
1
2 ||Au− f ||

2
2 term. We first define the discrete Fourier transform of u ∈ CN×N

by

Fu =
1

N
ΨuΨ,

where Ψ =
(
e

−2iklπ
N

)
k,l

. Notice that we can decompose Ψ into real and imagi-

nary parts as follows:

Ψ = B − iC,
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where B = cos
(

2klπ
N

)
k,l

and C = sin
(

2klπ
N

)
k,l

. With these definitions, the

inverse Fourier transform is given by

F−1u =
1

N
Ψ∗uΨ∗,

where Ψ∗ denotes the conjugate transpose of A.
We define S ∈ Rk×N , a subsampled identity matrix, to be a subsampling

matrix and g = SFu0 to be the original subsampled Fourier data, i.e. u0

is the original image data, u0 ∈ RN×N . Hence, to modify the algorithm for
subsampling of Fourier space, we must alter the 1

2 ||Au− f ||
2
2 term to become of

the form 1
2 ||SFu−g||

2
2. If we make this substitution in (2) and solve for uk,j via

the Euler-Lagrange equations, it is difficult to impose the constraint that uk,j

should be real-valued. In order to impost this constraint, we take an alternative
approach. First, we multiply both terms in the fidelity by ST , making both
terms N ×N matrices, so

||SFu− g||22 = ||STSFu− ST g||22.

By Plancheral’s theorem, ||F−1u||22 = ||u||22, and hence

||STSFu− ST g||22 = ||F−1STSFu− F−1ST g||22
= ||φu− f ||22,

where φ = F−1STSF and f = F−1ST g, f ∈ CN×N . Using our definitions of
Fourier transforms,

φu = F−1STSFu

= F−1(STS(
1

N
AuA))

=
1

N2
A∗STSAuAA∗

=
1

N
A∗STSAu

=
1

N
(B − iC)∗STS(B − iC)u

=
1

N
(B + iC)STS(B − iC)u

=
1

N
(BSTSB + CSTSC)u+ i

1

N
(CSTSB −BSTSC)u

= φRu+ iφIu,
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where φR and φI are both real-valued matrices. Note for a matrix A ∈ CN×N ,

||A||22 =

N∑
k=1

N∑
l=1

|Ak,l|2

=

N∑
k=1

N∑
l=1

Re(Ak,l)
2 + Im(Ak,l)

2

= ||Re(A)||22 + ||Im(A)||22,

and hence

||φu− f ||22 = ||φRu−Re(f)||22 + ||φIu− Im(f)||22.

Hence, to modify the algorithm for subsampling of Fourier space, we must
change the 1

2 ||Au− f ||
2
2 term to

1
2 ||φRu−Re(f)||22 + 1

2 ||φIu− Im(f)||22,

and thus the overall minimization problem is

minu
1
2 ||φRu−Re(f)||22 + 1

2 ||φIu− Im(f)||22 + µ
2 ||Wu− dj−1 + bj−1||22,

where the µ
2 ||Wu− dj−1 + bj−1||22 term accounts for the wavelet transform and

utilization of the jump set, and we set h = dj−1 + bj−1. To solve this minimiza-
tion, we derive the corresponding Euler-Lagrange equations. If u minimizes E,
then for every vector v ∈ RN×N

E(u) ≤ E(u+ tv) for all t ∈ R,

so E(u+ tv) will have a minimum at t = 0. Thus, to minimize E, we set

d

dt

∣∣∣
t=0

1

2
||φR(u+ tv)−Re(f)||22 +

1

2
||φI(u+ tv)− Im(f)||22 +

µ

2
||W (u+ tv)− h||22 = 0.

And thus we have

0 = 〈φRu−Re(f), φRv〉+ 〈φIu− Im(f), φIv〉+ 〈Wu− h,Wv〉
= 〈φTR(φRu−Re(f)) + φTI (φIu− Im(f)) + µu− µWTh, v〉.

This equation holds true for every matrix v ∈ RN×N , and hence

0 = φTR(φRu−Re(f)) + φTI (φIu− Im(f)) + µu− µWTh.

Gathering u terms,

(φTRφR + φTI φI + µI)u = φTRRe(f) + φTI Im(f) + µWTh.

Solving for u

u = (φTRφR + φTI φI + µI)−1(φTRRe(f) + φTI Im(f) + µWTh).
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(a) (b)

Figure 1: Original Image (a) and reconstructed image (b) at 70% compression.
Some overall smoothing has occurred, but important sharpness of edges has
been preserved.

Hence, the overall Split Bregman algorithm becomes

uk,j = argminu
1

2
||φRu−Re(f)||22 +

1

2
||φIu− Im(f)||22 +

µ

2
||Wu− dj−1 + bj−1||22

dj = argmind||[λ · d](Γk−1)C ||22 + ||[γ · d](Γk−1)||1 +
µ

2
||d−Wuk,j − bj−1||22

bj = bj−1 + (Wuk,j − dj)

Overall, the results were positive. Figures 1 and 2 show some sample re-
constructions using this algorithm, along with a visualization of the calculated
jump set. The PSNR for an image with 70% compression using this algo-
rithm was 29.2711, while the PSNR for an image with 50% compression was
27.7383. Though some significant smoothing has occurred, the edges are well
maintained and the overall structure of the image is reasonably well preserved.
These PSNR values are similar to those of TV reconstructions, which average
around 30, though by adjusting the gamma and lambda parameters it may be
possible to obtain even higher PSNR values. This illuminates a drawback of the
algorithm, in that the parameters are difficult to assign for a given reconstruc-
tion, and hence a good direction for future research would be to find a method
for obtaining ideal parameter values for a given reconstruction.
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(a) (b)

Figure 2: Reconstructed image (a) at 50% compression and jump set (b) of
reconstruction.

3 Biased Subsampling

My second area of research centered around different methods of sub-
sampling in TV, or total variation, minimization, particularly in biasing the
sampling towards lower-frequency samples. Prior research has shown that sub-
sampling images to favor lower frequencies is able to produce images that are
both clearer and lack some of the image errors caused due to sampling higher
frequencies, all while maintaining the criterium required in compressed sensing
theory[4]. This is because natural images tend to have more lower frequency
and fewer higher frequency components in Fourier space, i.e. most of the Fourier
values for high frequencies are 0. As such, if we favor lower frequencies, we may
be better able to obtain a more accurate reconstruction. Though the effective-
ness of biased sampling of individual pixels has been shown, when working with
fMRI data, we must sample rows of Fourier space, as this is how fMRI data is
gathered[1].

TV minimization solves the following minimization problem:

x̂ = argminx||x||TV s.t. ||M(x)− y||2 ≤ ε,

where M = SF , the subsampled Fourier transform. The directional derivatives
xh and xv are defined as follows:

xv : Cd
2

→ C(d−1)×d, (xh)j,k = xj+1,k − xj,k

xh : Cd
2

→ Cd×(d−1), (xv)j,k = xj,k+1 − xj,k
The discrete gradient transform is defined as follows:

((∇x)j,k,1, (∇x)j,k,2) :=


((xv)j,k, (xh)j,k) : 1 ≤ j, k ≤ d− 1
(0, (xh)j,k) : j = n, 1 ≤ k ≤ d− 1
((xv)j,k, 0) : k = n, 1 ≤ j ≤ d− 1
(0, 0) : j = k = d
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(a) (b) (c)

Figure 3: Reconstruction (a) at 50% compression with no bias, reconstruction
(b) at 50% compression with low bias, and reconstruction (c) at 50% compres-
sion with high bias.

And thus the TV norm is defined:

‖x‖TV :=

d∑
j,k=1

(
(∇x)2

j,k,1 + (∇x)2
j,k,2

)1/2
. (3)

Utilizing the l1 magic package, I performed 100 reconstructions at 50% com-
pression, i.e. retaining half of the available signals. I then split the reconstruc-
tions into three groups: No Bias, Low Bias, and High Bias. In the No Bias
group, the rows were subsampled randomly from Fourier space. In the Low
Bias group, the lowest frequencies had an 80% probability of being sampled,
while the highest frequencies had a 20% probability. Between the lowest and
highest frequencies, the likelihood of being sampled was linear from 80% to 20%.
For the High Bias group, the lowest frequencies had a 90% probability of being
sampled, while the highest frequencies had a 10% probability. Again, between
the lowest and highest frequencies, the probability of being sampled was linear
from 90% to 10%.

The results indicate the effectiveness of favoring lower-frequency samples
(Fig 3, Fig 4, Fig 5, Table 1). Without bias, at 50% compression, the PSNR
value given is 30.2693. With low bias, the PSNR value is 31.1782, and with
high bias the PSNR value is 32.0792. Hence, we can see a correlation with
higher bias towards lower-frequency samples and an increase in PSNR values.
Furthermore, using the L∞ norm, the average difference between the original
and reconstructed image is lower for a higher bias, suggesting that higher levels
of bias correspond to more accurate reconstructions.

7



Figure 4: Average difference using the L∞ norm between original and recon-
structed image for no bias (column 1), low bias (column 2), and high bias
(column 3) along with standard deviation of values.

No Bias Low Bias High Bias

PSNR 30.2693 31.1782 32.0792

Table 1: Peak Signal-to-Noise Ratio (PSNR) values for No Bias, Low Bias, and
High Bias reconstructions at 50% compression. The ratio values are higher for
higher amounts of bias, suggesting a more accurate reconstruction.

Figure 5: PSNR values for no bias (column 1), low bias (column 2), and high bias
(column 3) reconstructions at 50% compression, along with standard deviation
of values.
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4 Discussion

Ultimately, I have effectively utilized several aspects of compressed sensing
for fMRI data. The Cai, Dong, and Shen algorithm has now been shown to be
an effective method of image recovery not only for blurred images, but also
images that have been subsampled from Fourier space. Hence, it is possible
that this algorithm could be utilized in the world of fMRI and MRI research, as
it has the potential to reconstruct high quality images from subsampled data,
and it does so relatively quickly. A direction for future research would be to see
the effects on the normality of errors and bias in the generalized linear model,
as the staircasing effects of TV minimization could have been taken care of.

Furthermore, I have shown the efficacy of subsampling from Fourier space
with a bias towards lower-frequency samples. Again, this can be useful for
fMRI and MRI research, because it provides a solution to some of the imaging
errors that arise when subsampling randomly from Fourier space. A direction
for future research in this respect would be to extract data over a large quantity
of natural images to see if an overall natural bias towards certain frequencies is
present. If this were the case, one could potentially sample data with respect
to this ideal bias to produce even stronger reconstructions.
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