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We demonstrate in both laboratory and numerical experiments that ion bombardment of a modestly

sloped surface can create knife-edge like ridges with extremely high slopes. Small pre-fabricated

pits expand under ion bombardment, and the collision of two such pits creates knife-edge ridges.

Both laboratory and numerical experiments show that the pit propagation speed and the precise

shape of the knife edge ridges are universal, independent of initial conditions, as has been

predicted theoretically. These observations suggest a method of fabrication in which a surface is

pre-patterned so that it dynamically evolves to a desired target pattern made of knife-edge ridges.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755838]

The efficient fabrication of ever-smaller structures is

one of the major challenges of 21st century science and engi-

neering. Ion bombardment has emerged as a promising can-

didate to create patterns on surfaces.1–4 One method uses a

focused ion beam (FIB) to micro-machine sharp features

directly5–8—this allows for detailed control of the shape of

the features but, as a serial writing process, is too time-

consuming to pattern large areas. Another method is to bom-

bard a surface uniformly, which can excite linear instabilities

that grow into patterns such as quantum dots.9–11 This is less

costly, but can only create structures as small as the smallest

linearly unstable wavelength, with steepnesses limited due to

saturation of the linear modes. To overcome these limita-

tions, one would like to create steep, sharp structures sponta-

neously, by exploiting the dynamical processes that underlie

surface evolution under ion bombardment.12

Recently, we proposed a scenario for creating very sharp

features on ion bombarded surfaces, by starting with a sur-

face that is pre-patterned to have modest slopes on the

macroscale.13 Under ion bombardment, our theoretical cal-

culations demonstrated that if the initial slope is in the right

range, the structures would spontaneously evolve to knife-

edge-like ridges, with extremely high slopes, and high radius

of curvature. Both the final slope and radius of curvature are

independent of initial conditions, and depend only on the

shape of the curve describing sputter yield (atoms out per

incident ion) vs. incidence angle. Here, we demonstrate the

formation of knife edge ridges in experiments. Our experi-

ments show that uniformly irradiated small pits expand

outward, developing steep sides with uniform slopes. When

two pits collide, the front evolves to a sharp, knife-edge-like

structure with features on a scale much smaller than any con-

tained in the initial conditions. Numerical simulations of the

classical macroscopic equations show remarkably similar dy-

namics. Both experiment and simulations show that the pit

propagation speed and the precise shape of the knife edge

ridges are universal, independent of initial conditions, as

predicted theoretically. These dynamics can be understood

by a theoretical analysis of the equations in which the knife-

edge structure arises as a particular traveling wave solution

with a large basin of attraction. Because there is only one

FIG. 1. Surface evolution of a magnesium alloy under uniform irradiation

by a focused ion beam, after 5, 12, and 19 min. The surface initially con-

tained small holes that grew from scratches. The imaged region is 30 lm,

viewed at 52�.
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such solution, the dynamics are relatively insensitive to

the initial conditions and a pre-patterned surface will evolve

to uniform knife-edge ridges with the same slopes and radii

of curvature. If one can learn to control the location of

the ridges by solving an inverse problem, one could poten-

tially make a desired target pattern out of the knife-edge

ridges.

Our experiments were performed on an ingot of a mag-

nesium AZ91D alloy, with nominal alloying element content

9 wt. % Al and 1 wt. % Zn; however, the experiments were

confined to the alpha (aluminum-poor) phase of a two-phase

mixture. The surfaces were uniformly irradiated using a FEI

dual beam FIB-scanning electron microscope (SEM) deliver-

ing 30 keV Gaþ to the surface in a background pressure of

1:4� 10�6 mbar at room temperature. The incident ion

beam was parallel to the surface normal and the ion beam

current was 3 nA. The beam was rastered in a boustrophe-

donical scan across a pre-defined region of the sample sur-

face, during which time the beam would dwell at each

discrete location for 0:1 ls and then move rapidly to an adja-

cent location. Separation between adjacent locations was set

to nominally 50% overlap, which in this case meant a 75 nm

center-to-center spacing for a 150 nm diameter beam. The

current profile within the beam is believed to be roughly

Gaussian. The irradiation was interrupted periodically so that

the irradiated surfaces could be observed using in-situ SEM

from both normal incidence and tilted 52�.
The surface topography was initially irregular due to

metallographic polishing scratches, and some of these irregu-

larities initiated small holes in the surface (Figure 1, top).

Most of the holes then decayed to a flat surface, but certain

holes developed into pits that continuously expanded. What

is notable is the pits appear to be identical: they expand at

the same rate, and have sides of the same slope. We meas-

ured the diameters of five different pits as a function of time

from a normal view of the surface. These changed at an

average rate of 0:24lm=min, with all rates lying within

0:02lm=min of the average, well within the resolution of our

measurement of the diameter (Figure 2, left). We are not

able to quantitatively compare the slopes, but qualitative ex-

amination of Figure 1 middle, bottom suggests they are also

very similar.

When two pits collided, they created very steep, sharp

ridge-like structures. There are three examples of such ridges

in Figure 1 (bottom). These are notable because the length

scale that is created by the collision is much smaller than any

contained in the initial condition. Qualitatively, the steep

ridges have similar slopes in each of the three cases.

We now turn to numerical simulation of these structures,

using a partial differential equation governing the evolution

of the surface height h(x, y, t) on the macroscale

ht þ RðbÞ þ B0r �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p rj

� �
¼ 0: (1)

This equation is derived from the widely used Sigmund

theory of sputter erosion,2 by expanding the sputter integral

for surfaces whose curvature is much smaller than the lateral

scale over which an ion deposits its kinetic energy.14,15 Here

RðbÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2
p

YðbÞ is the average velocity of erosion of

the surface as a function of its slope b ¼ jrhj (or equiva-

lently the angle of the incoming ion beam), obtained from

the yield function Y(b) by multiplying by a dimensional fac-

tor R0 and a geometrical factor. The fourth-order term with

magnitude B0 is a function of the surface curvature

j ¼ r � 1ffiffiffiffiffiffiffiffi
1þb2
p rh
� �

, and models additional smoothing

effects such as Mullins-Herring surface diffusion16,17 or ion-

enhanced viscous flow confined to a thin surface layer.18 We

neglect the second-order (curvature) terms that are often

included,3,19 as the dynamics we are interested in occur

when these are small.

We have developed an efficient, stable method to solve

Eq. (1) in two dimensions. Solving such higher-order nonlin-

ear equations in multiple dimensions is a generally a chal-

lenge—explicit methods impose severe restrictions on the

time step Dt for the scheme to be stable (Dt < OðDxÞ4, where

Dx is the grid spacing20,21), while fully implicit schemes that

are unconditionally stable require solving a difficult nonlin-

ear problem at each time step. We overcome these difficul-

ties by adding a fourth-order linear term to the equation that

we treat implicitly, while treating the nonlinear parts of the

equation explicitly.22 Specifically, our scheme takes the

form

hjþ1 þMDtD2hjþ1 ¼ hj � Dt
�

RðjrhjjÞ

� NðjrhjjÞ þMD2hj
�
; (2)

where hjðx; yÞ is the solution at time jDt, N(b) is the fourth-

order nonlinear term, and M > 0 is a constant that we are

free to choose. Analysis for similar equations23–25 has shown

FIG. 2. Diameter of pits in experiment (left)

and simulations (right), as a function of

time. Each marker represents a different pit

(expts) or initial condition (sims); experi-

ments are accurate to 60:15 lm. Best-fit

lines are dashed and legend indicates their

slopes. The initial conditions for the sim-

ulations were: (cross) hðx; yÞ ¼ �6e�ðx
2þy2Þ,

(circle) hðx; yÞ ¼ �10e�ðx
2þy2Þ=4, (triangle)

hðx; yÞ ¼ �6e�ðx
2þy2Þ=rðhÞ2 with rðhÞ ¼ 1

þ 0:5 sinð4hÞ; tanh ¼ x=y.
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the scheme is stable irrespective of the grid spacing provided

M is large enough. However, with fixed timestep the accu-

racy decreases if M is too large. We found a good balance

between stability and accuracy with M¼ 1.

To apply Eq. (2), the right-hand side is evaluated explic-

itly using centered finite differences for the spatial deriva-

tives, the result is converted to Fourier space using periodic

boundary conditions, and hjþ1 is found in Fourier space by

solving the linear inversion problem.

We perform simulations using a yield function of the

Yamamura form26

YðhÞ
Yð0Þ ¼ ðcoshoptÞ�f

expf�RððcoshoptÞ�1 � 1Þg; (3)

where the parameters are f¼ 2.36, hopt ¼ 69:5, and

R ¼ f coshopt. Yamamura has shown that a great many exper-

imentally measured yield functions can be represented in

this form, by fitting for f, hopt. Our theory (to be described)

shows that the qualitative features of the dynamics are robust

to changes in these parameters so we chose these for numeri-

cal convenience; we do not attempt quantitative comparison

as the yield function for the experiments is unknown.

We ran two kinds of simulations. First, we looked at the

formation of pits, by initiating the surface with individual

small holes. For small perturbations, the pits expand slowly

and decay without creating smaller length scales. However,

for large enough perturbations, the pits evolve to a circular

crater whose sides have a uniform, steep slope, which

expands outwards with a constant velocity. The slopes of the

sides, and the speed of propagation, are fixed numbers, inde-

pendent of the form of the initial perturbation. Figure 2

(right) illustrates the constant speed for three different initial

conditions.

Next, to investigate how pits collide, we initiated the

surface with two nearby pits. These expand, and when they

collide, they form a ridge whose sides are very steep—much

steeper than the sides of the crater. The slope of the sides is

always the same, regardless of the initial conditions. Figure 3

shows the surface evolution for one choice of initial condition,

and Figure 4 (bottom) shows the maximum slope as a function

of time for this simulation. The plateau from time 13 to 20

corresponds to the slope of the ridge, and is the same height

for a broad class of initial conditions.

The simulations are striking because of their remarkable

resemblance to the experiments. Two notable features occur

in both: (1) Craters expand with a constant slope and veloc-

ity; (2) When craters collide, they create a very sharp knife-

edge-like ridge, with steeper slopes than those originally on

the surface. In both cases, the slopes are universal, independ-

ent of the initial condition.

These features were predicted by a recently developed

theory,13,14 as the consequence of the unusual type of travel-

ing wave solutions that occur in the governing equation (1).

When a pit is large enough, the crater rim is locally nearly

straight, and can be well approximated by a traveling wave

that is invariant in one horizontal direction. Therefore, we

look for traveling wave solutions to the one-dimensional

equation. As shown in Holmes-Cerfon et al.,13 the slope b ¼ hx

can propagate as a traveling wave provided the slopes in the

FIG. 3. Numerical simulations of Eq. (1) with yield function Eq. (3),

B0 ¼ 1=100, at times t¼ 0, 11, and 19. The initial condition was

hðx; yÞ ¼ h0e
�ðx2þy2 Þ

2r2 .

FIG. 4. slope hx through a horizontal cross-section y¼ 0, at the center of the

simulations in Figure 3, at time t¼ 11 (left), t¼ 15.5 (right). The ordinate

axis indicates slopes b0 ¼ 2:3; b� ¼ 4:7 that act as dynamical attractors for

the one-dimensional traveling wave equation. Bottom: maximum slope jhxj
as a function of time. An initial transient period during which the narrow ini-

tial condition adjusts to the undercompressive shock b0, is followed by colli-

sion of shocks where the maximum slope jumps to b�.

143109-3 Holmes-Cerfon et al. Appl. Phys. Lett. 101, 143109 (2012)



far-field are held constant, so we look for solutions

b¼ S(x� ct) to

cðS� brÞ� ðRðSÞ�RðbrÞÞ ¼ B0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2
p S0

ð1þ S2Þ3=2

 !0 !0
;

(4)

with boundary conditions Sðþ1Þ ¼ br; Sð�1Þ ¼ bl;
S0ð61Þ ¼ 0. This equation is obtained from Eq. (1) by dif-

ferentiating once, and then integrating from þ1 to x� ct,
while the speed c is determined by conservation of mass to

be c ¼ RðbrÞ�RðblÞ
br�bl

. Only certain pairs ðbl; brÞ yield a solution,

and this fact is crucial for determining the dynamics.

Ahead of the crater rim, the surface is flat, so we look

for solutions with boundary condition br ¼ 0. The theory

shows that there are solutions ðbl; 0Þ for all bl less than a crit-

ical slope bc
0 depending on the yield function. Above this

critical slope, there is exactly one boundary value yielding a

solution: bl ¼ b0, where b0 is a number that again depends

on the yield function. This solution is isolated and serves as

an attractor for the dynamics in the following sense: if a one-

dimensional surface is patterned initially to contain slopes

greater than bc
0, then these slopes will evolve spontaneously

to the traveling wave connecting b0 to 0 as the sloped region

propagates into the flat far-field.13

This explains the first observation. When the initial per-

turbation is large enough, it evolves to a crater whose rim

propagates outwards with speed c corresponding to the dis-

crete traveling wave ðb0; 0Þ, and whose sides therefore have

slope b0. Figure 4 (left) shows the slope b through a horizon-

tal cross-section of the simulated craters just before they col-

lide, which clearly shows the slope of the sides is a constant,

uniform value b0.

What happens when pits collide? The simulations sug-

gest a symmetry so we look for solutions with boundary con-

ditions ðbl;�blÞ. Again there is a threshold determining the

behaviour: when bl < bc
� for some yield-function-dependent

number bc
�, there is always a solution, but when bl > bc

�,
there is exactly one solution: bl ¼ b�. This solution corre-

sponds to a ridge with very steep sides and a small radius of

curvature at the tip. Simulations13 showed that this solution

will evolve from two nearby regions with slopes of opposite

signs, provided both have (not necessarily equal) magnitudes

>bc
�. Since b0 > bc

�, we predict that colliding pits will evolve

to the knife-edge ridge.

Indeed, our numerical simulations confirm this—Figure 4

(right) plots the slope b through a cross-section in the center

of the colliding pits. The step-like appearance captures both of

these traveling waves: the first step at b0 is the slope of the

original crater sides, and the second step at b� is the knife-

edge ridge. At later times (not shown) there is only one step,

at b�, as the crater sides have entirely evolved to the knife-

edge.

For the yield function in our simulations, the numerical

values are bc
0 ¼ 1:26; b0 ¼ 2:3; bc

� ¼ 1:28; b� ¼ 4:7—but the

values of the dynamical attractors increase with hopt, and for

certain materials, we predict ridges with slopes of b� ¼ 30 or

more.13 Therefore, we can create very sharp features by choos-

ing an energy level or material that gives the desired values.

We have shown that the sharp, small-scale structures

observed in our experiments and numerical simulations can

be explained through the set of traveling wave solutions to

the governing macroscopic equations. It is notable that only

the macroscopic mechanisms of erosion and smoothing are

required to instigate the observed features. Of course, addi-

tional small-scale physics may help to explain some of the

qualitative differences between the experiments and simula-

tions, such as the curvatures of the pit bottoms. Indeed, we

hypothesize that the experimental geometry may be signifi-

cantly influenced here by multiple scattering effects, where

ions incident on the pit wall and forward-scattered, as well

as forward-sputtered atoms from the pit wall, may contribute

to enhanced erosion along the perimeter of the pit bottom.

The theory predicts that two traveling wave solutions,

both with steep slopes, control the dynamics over a wide

range of initial conditions. What is potentially useful about

these solutions is that they arise spontaneously from smaller

slopes—therefore, we do not need to start with steep, small-

scale structures in order to create them; these are created by

the dynamics. This suggests a potential self-organizing prin-

ciple for fabricating small-scale features on a surface, by

pre-patterning the surface on the macroscale so that it

evolves to a structure built of small-scale ridges. One is then

interested in the inverse problem: to find an easily achievable

initial patterning of the surface, so that it evolves under uni-

form irradiation to a target small-scale pattern.
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